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Computational complexity measures how much work is required to solve different problems.
It provides a useful classification tool for OR/MS practitioners, especially when tackling dis-
crete deterministic problems. Use it to tell, in advance, whether a problem is easy or hard.
Knowing this won’t solve your problem, but it will help you to decide what kind of solution
method is appropriate. Complexity analysis helps you to understand and deal with hard
problems. It can pinpoint the nasty parts of your problem, alert you to a special structure you
can take advantage of, and guide you to model more effectively. You will solve your problem
better when you know the borders between hard and easy. Locating the difficulty can indicate
where to aggregate, decompose, or simplify. To detect and prove computational difficulty,
show that a known hard problem from the literature is embedded within your problem. Fix
parameters of your problem to arrive at the known hard problem, or use specialization, pad-
ding, forcing, or the more difficult gadget proofs. Study contrasting pairs of easy and hard
problems to develop your intuitive ability to assess complexity.
(Analysis of algorithms: computational complexity.)

C omputational complexity is the measurement of
how much work is required to solve different

problems. It provides a useful classification tool for
OR/MS practitioners, especially when tackling dis-
crete deterministic problems. Use it to tell, in advance,
whether a problem is easy or hard. Knowing this won’t
solve your problem, but it will help you decide what
kind of solution method is appropriate. If the problem
is easy, you can probably solve it as a linear program
(LP) or network model or with some other canned
method. If the problem is hard, finding an exact solu-
tion is apt to be costly or impractical, and you will
probably have to resort to enumerative methods
(which may be slow or useless for large cases) or settle
for an approximate solution obtained with heuristics.

Complexity theory can help you to understand and
deal with hard problems. It can pinpoint the nasty
parts of your problem, alert you to a possible special
structure you can take advantage of, and help you
model more effectively.

I’ve written this tutorial for two audiences. For prac-
titioners who want to improve their intuitive ability to

assess complexity, I recommend this introduction and
§§1, 4, 6, 8, and 10. Those who want more, for example,
to be able to use standard references, should read the
entire tutorial.

What can you expect to learn? A basic way to solve
problems in OR/MS is to have a toolbox of standard
well-solved easy problems, such as maximum flow
and shortest path. You take your real problem and
model it with the right choice of problem from the tool-
box. That process classifies your problem as easy and
lets you solve it by a standard method. This tutorial
teaches how to classify problems in the opposite way.
You have a second toolbox, containing basic hard
problems. You make the right choice of problem from
the toolbox and model it with your real problem. That
process classifies your problem as hard. The model in
reverse is a complexity proof, and it sometimes pinpoints
the difficulty in real problems. Pinpointing the diffi-
culty can indicate where to aggregate, decompose, or
simplify. If you know where the borders are between
hard and easy, you will be better able to deal with your
problem.
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The abbreviated reading I’ve suggested should ex-
pand your knowledge of the toolbox of basic hard
problems and improve your ability to distinguish hard
problems from easy problems. It includes examples of
finding the complexity within problems (§4) and of
how to use complexity to cope with hard problems
(§8). You will need to read the entire tutorial to use the
huge toolbox found in the standard references and to
insure that you use complexity theory correctly and
appropriately.

There is no way around doing complexity proofs if
you want to use computational complexity. Therefore,
much of this tutorial is more mathematical than most
Interfaces articles. Fortunately, once you can read the
standard references, you can often find a known hard
problem similar enough to yours that you can use one
of the easier proof techniques, such as specialization
or padding. The tutorial also covers gadget proofs,
which are more difficult.

Some other complexity classifications (§9) get short
shrift because I have not found them very useful. Fi-
nally, I discuss how complexity limits our ability to
solve problems and what kinds of trade-offs we as a
community might consider.

You do not need to know any complexity theory to
read this tutorial. It will help if you know basic LP,
networks, and integer programming (IP) at the under-
graduate or MBA level, since I will draw several ex-
amples and analogies from these areas.

I’ve included two kinds of problems, imitating
Knuth (1973) and McConnell (1989). Questions are to
help you to understand what you are reading. Ques-
tions ordinarily won’t require pencil and paper; the
answers are short and all are given at the end of each
section. Exercises may require some scribbling and a
few minutes of thought. They should help you to de-
velop skill in computational complexity. You should
answer all the questions as you read. If you want to
develop the ability to recognize complexity or do com-
plexity proofs yourself, do the exercises as well.

1. Complexity and NP-Hardness
This section explains the ideas of time bounds for al-
gorithms, O( ) notation, and polynomial and expo-
nential time. It introduces the crucial concepts of in-
stances, problems, and realistic cases.

In the heady years following the invention of LP and
the simplex method, researchers explored many ap-
plications and extensions. One of these was integer
programming, which is the same as LP except for the
seemingly minor additional requirement that certain
variables take on only integer values. Two patterns
soon emerged, one good, one bad.

The good news was that many problems could be
modeled as IPs that (apparently) could not bemodeled
as LPs. Problem after problem, from fixed charge to
traveling salesman, fell before the onslaught of IP
modelers.

The bad news was that all the solution methods pro-
posed turned out to be poor at solving IPs, except small
cases. Gomory’s cutting-plane algorithm is a quintes-
sential example. It was an extension of the simplex
method, just as IP was an extension of LP. Like the
simplex method, it could be proved to converge in a
finite number of steps. By analogy, one would have
expected Gomory’s algorithm to solve IPs effectively.
And it did, on small instances with, say, fewer than 20
constraints. But on moderate-sized instances, the al-
gorithm frequently bogged down, making many tiny
ineffectual cuts and sometimes failing to converge at
all because of precision problems.

Researchers tried cutting planes, dynamic program-
ming, branch and bound, and group theoretical meth-
ods, but all failed to solve the medium-sized cases.

The theory of computational complexity gives us a
magic lens through which we can look at these two
patterns and see them, the good and the bad, as a
whole.

Integer programming is an NP-hard problem. Like
all NP-hard problems, it shares two properties: that it
can be used to model a host of important problems,
and that no known solution method has proved to con-
sistently and exactly solve large instances efficiently.

Running Time of Algorithms
Sooner or later any problemwill get big enough that you can’t
solve it. But it’s nicer if you make it later (Rosenberg 1993).

How long does it take to find the maximum in a set
of numbers? A numerical answer, such as “0.66 sec-
onds,” is meaningless, because the length of time de-
pends on the hardware and software and, more im-
portant, varies depending on how big the set is. The
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answer should be a function of the size of the particular
instance to be solved. The function tells how the al-
gorithm run time grows as the input size increases. In
this case, suppose the numbers are A(i): i � 1, . . . , n.
The obvious algorithm finds themaximum in time pro-
portional to n. We say the algorithm runs in linear
time, or is O(n). If instead we wish to sort the numbers
in ascending order, the fastest algorithms require time
proportional to n log n. We say that sorting is done in
O(n log n) time.

A precise definition of O( ) time bounds is that an
algorithm has time bound O( f(n)) if there exist con-
stants N and K such that for every input of size n � N
the algorithm will not take more than Kf(n) processing
time. Notice two points: First, this is a worst-case def-
inition, since the bound applies to all sufficiently large
inputs. Some algorithms that are fast in practice but
not in theory, such as the simplex method for LP or
the Lin-Kernighan heuristic for the traveling-salesman
problem, will have misleading time bounds. To get
around this difficulty, we might say, for example, that
the simplex method is O(m3) on average or in practice
even though the best theoretical bound is exponen-
tially large. Second, what exactly do we mean by size
of an input? The precise meaning is the actual length,
for example, the number of bits, of the input data. This
is the mathematical definition, but it is nonintuitive
and awkward to work with. Instead, usually one or
two natural parameters describe the size of the partic-
ular instance to be solved, and we state an algorithm’s
time requirements as functions of these parameters.
You can usually get away with using these natural pa-
rameters instead of input length, because they usually
give the right answer.

For example, consider more carefully the time re-
quired to find the maximum of n numbers. The natural
parameter to use is n. However, the bound O(n) is not
technically correct, because comparing two numbers
takes more time if the numbers are very large (many
digits long). The correct analysis must be performed in
terms of the combined input length of the numbers, L,
which takes into account the number of digits. There
might be a few very large numbers or many small
numbers of total length L. Fortunately, you can com-
pare two numbers in time proportional to the length
of the shorter. Hence, it takes time O(L) to find the

maximum of a list of numbers L bits long, regardless
of whether it contains many small numbers or a few
large numbers.

To find the maximum of a set of numbers, O(L) is
technically correct while O(n) is not. On the other
hand, since numbers have limited precision in practice,
the more natural O(n) bound is a good surrogate. As
a rule of thumb, use the natural parameters without
fear, unless the individual numbers in the data (for
example, cost coefficients) are very long or very short.
If they are very long, your problemmay be harder than
it looks; if they are very short, your problem may be
easier because of dynamic programming. (Question:
How much time would we say is required to add n
numbers? Exercise: why is it trickier to determine the
time required to divide a pair of numbers?Why isO(1)
the practical answer?)

The major distinction we make between algorithms
is whether they take polynomial time or not. An al-
gorithm requires polynomial time if for some k it has
a time bound of O(nk). Since the heapsort algorithm
has a time bound of O(n log n), it is polynomial with
k � 1.5. (Question: Would k � 1.001 be correct? How
about k� 2?) Most algorithms that are not polynomial
are exponential, requiring more than c dn time in the
worst case, for some constants c � 1 and d � 0. Any
exponential function will eventually exceed any poly-
nomial function as n increases. From a theoretical point
of view, that is why polynomial time algorithms are
preferred to exponential time algorithms. In practice,
exponential time algorithms are usually slower than
polynomial time algorithms even for quite modest val-
ues of n.

In ordinary English usage, the term problem can refer
to a specific numeric case or to a class of cases having
the same form. When employing computational com-
plexity, we always call a specific case an instance. We
use the term problem to mean a class of instances of the
same type, for example, the integer programming
problem, or the min cost network flow problem. Max-
imize c • x subject to the constraints Ax � b; x � 0, is a
problem. Maximize 4x1 � 3x2 subject to the constraints
5x1 � x2 � 10; xi � 0, is an instance of that problem.
(Question: Is Maximize �i xi subject to the constraints
Ax � 0; x � 0, a problem or an instance?)
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Figure 1: P is the set of easy problems. The NP-hard problems include
the NP-complete problems and many hard problems that are not in NP.
Almost all real problems are either easy or NP-hard.

The Straight Dope: Theory and Practice
In complexity theory, wemake the following sweeping
generalizations: If an algorithm runs in polynomial
time, it is fast; otherwise it is slow. Fast is good; slow is
bad. A problem that we can solve by a fast algorithm
is easy; a problem that we can’t is hard.

These generalizations work very well in practice, on
the whole. Most polynomial-time algorithms are fast,
and most exponential-time algorithms are useless on
large cases in practice. Most easy problems can be
solved quickly in practice (not necessarily by a theo-
retically fast algorithm—the simplex method is a good
example); most hard problems cannot be solved
quickly in practice if the cases are large.

Examples of easy problems include LP, minimum
cost network flow, matching, minimum spanning tree,
and sorting. Examples of hard problems include IP,
traveling salesman, and job-shop scheduling. The class
of easy problems is denoted by P in Figure 1. In Figure
1, a problem is represented by a single point.

Most uses of complexity in OR/MS involve a theo-
retically defined class of problems, the NP-complete
problems. Theoreticians (like me) worry about
whether the NP-complete problems really are hard. In-
deed, the major unsolved question in theoretical com-
puter science is to prove that no fast algorithm exists
for an NP-complete problem. Practitioners (like me)

don’t worry about this question, because with the al-
gorithmic technology available at present, the NP-
complete problems are hard.

Figure 1 depicts the class P of easy problems, the
class of NP-complete problems, and the class of NP-
hard problems, which contains the NP-complete class.
You do not need to know the definitions to read and
use this tutorial, but I’ve included them in §9.

This tutorial focuses on recognizing NP-hardness
rather than NP-completeness for two reasons. First, it
is just as useful in practice to prove membership in the
larger class, NP-hard, as in the smaller class, NP-com-
plete, and the NP-hard class is simpler to work with.
Second, most problems encountered in practice that
cannot be solved by any known fast algorithm are NP-
hard. Few naturally occurring problems lie between
the set of easy problems P and the set of NP-hard prob-
lems, in the unshaded region of Figure 1.

Thousands of problems are already known to beNP-
hard. If you want to be sure your problem is NP-hard,
you must either determine that someone has already
proved it to be hard or use a known NP-hard problem
to prove that your problem is hard as well.

If a problem is hard, you may be able to solve small
instances readily, but any exact solution method will
be in essence enumerative and will require exorbitant
amounts of time on large enough instances in theworst
case. Classifying a problem as hard means you cannot
expect to solve exactly every possible case quickly but
not that you should despair of solving it for practical
purposes.

As problem solvers, we do not give up on a problem
because it is hard. Our task does not end with an ac-
curate diagnosis. I used to encounter a few computer
science (CS) students each year who had been taught
to stop work on a problem if they discovered it was
hard. For years this has been an amusing contrast:
many CS papers end with NP-hardness, while many
OR papers begin with NP-hardness. That is, the au-
thors of a typical CS paper define a problem that is
simple enough to solve quickly, add generalizations
that still permit quick solution, then end by showing
that the next level of generality makes the problemNP-
hard. Unfortunately, they are ending the story just as
it is starting to become realistic. In a typical OR paper,
the authors describe a model (presumably) based on a
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real problem and show that it is NP-hard: this justifies
the heuristic or math-programming solution methods
that form the core of the paper. The CS community
instead has focused on developing sophisticated and
powerful sets of data structures and algorithms to
solve fundamental, recurring problems with surpris-
ing efficiency. Recently they have also developed
many fast algorithms that find approximate solutions
to hard problems.

There are many reasons why a hard problem might
still be solved in practice. NP-hard means only that it
takes a long time to solve exactly all cases of suffi-
ciently large size. This leaves us with many loopholes.
Most cases might be solvable quickly, or all could be
solvable quickly to within a few percent of optimality,
or the cases you will have to solve might be small
enough to be manageable.

In practice, you will usually have to deal with some-
thing more general than a specific instance but less
general than a problem. We can call the set of instances
of a problem that you expect to deal with realistic cases.
The realistic cases are usually a family of related in-
stances, often sharing structural or other properties.
You don’t know in advance exactly what is in the fam-
ily. Identifying and taking advantage of features of the
realistic cases is usually crucial to successful problem
solving. Suppose, for example, that the realistic cases
can be decomposed into a series of moderate-sized in-
stances. Then you may do perfectly well using, say,
canned software for nonlinear or mixed-integer
programming.
(Question: Why do we usually describe a problem
rather than the realistic cases?)
Answers:

—O(n), although O(L) is technically correct.
—Yes, yes. Any k � 1 will do.
—A problem.
—The realistic cases take too long to explain and

aren’t fully known.

2. Yes-No Form
This section shows how to convert problems into the
standard instance, yes-no question format used in
complexity analysis. The conversion is usually
achieved by including a threshhold value in the input,

but some care may be needed so as not to alter the
problem’s complexity. When we solve a problem, we
almost always produce an explicit solution, for exam-
ple, a schedule or a design. We laugh at the story of
the mathematician who, seeing a fire in his wastebas-
ket, points to the water faucet and a bucket, and ex-
claims, “A solution exists!,” letting the house burn
down. When I optimize the inventory policy for a
corrugated-paper plant to minimize trim, I don’t tell
the manager the problem is solved and average trim
can be reduced to 1.82 inches without providing the
policy that achieves this value.

To do complexity analysis, we must suppress our
inclination to provide solutions. The first skill you
must acquire is to convert optimization problems into
yes-no form.

In some applications, problems naturally occur as
feasibility or satisfice questions. These include many
classroom- and other facility-scheduling problems.
Converting these to yes-no form is simple. For exam-
ple, if we are scheduling jobs with various processing
times and deadlines on a machine, it may be appro-
priate to seek a schedule with no late jobs. Following
Garey and Johnson’s (1979) popular format, we define
this scheduling problem in two parts. The first part
describes the form of the input data. The second part
is a yes-no question. The format is as follows:

One-Machine Deadline Scheduling
Instance: Processing times ti and deadlines di : i �

1, . . . , n.
Question: Is there a set of start times si � 0 : i� 1,. . .,n
that is feasible, sj � [si, si � ti) ∀i � j, and that meets
all deadlines, si � ti � di ∀i?

Usually the conversion is not that simple. Consider
the optimization version of LP, which is to find x to
maximize c • x subject to the constraints Ax � b; x � 0.
To make a yes-no version, we introduce a threshhold
value v as part of the input data, and ask whether there
is a feasible x with objective value v or better. For
threshhold LP, we write the following:
Instance: m by n matrix A; m-vector b; n-vector c;
scalar v.
Question: Does there exist x such that c • x � v and Ax
� b?
(Question: Consider the optimization scheduling
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problem of minimizing the number of late jobs on a
machine. Write a yes-no version in the standard for-
mat.) In general, you can convert an optimization
problem to yes-no form by including a threshhold
value with the input data.

We analyze the yes-no version of a problem to clas-
sify its optimization version. Therefore, hard problems
should stay hard and easy problems should stay easy
when converted to yes-no form. That is, the yes-no ver-
sion should be hard if and only if the optimization ver-
sion is hard. For example, the yes-no version of LP
given above does not mislead us about the complexity
of the optimization version: both are easy.

If you correctly convert a problem to yes-no form,
the yes-no version will never be more difficult to solve
than the original version. (Question: What erroneous
conclusion might we reach from an incorrect conver-
sion?) The converse property usually holds as well, but
it does not need to be established in an NP-hardness
proof.

Often it is possible to restrict a yes-no threshhold
problem by fixing the threshhold value, without af-
fecting the complexity of the problem. The two-
machine line-balancing problem provides a good ex-
ample. The problem is to divide jobs with known
processing times as evenly as possible between two
machines. This is the threshhold version:

Two-Machine Line Balancing
Instance: A set of processing times t1, . . . , tn, and a
number v.
Question: Can the indices i � 1, . . . n be partitioned
into two sets, K and J, such that |�i�Jti � �i�Kti| � v?

A restricted version of the threshhold problem oc-
curs when we require perfect balance between the ma-
chines, that is, v � 0. In standard format, we would
write the following:

Two-Partition
Instance: A set of processing times t1, . . . , tn.
Question: Can the indices i � 1, . . . n be partitioned
into two sets, K and J, such that �i�Jti � �i�Kti?

It turns out that this more narrowly defined problem
is just as hard as the two-machine-line-balancing prob-
lem. (Question: Why couldn’t it be harder?) Since it is
simpler to state and more restricted, the two-partition
is often better to work with.

On the other hand, an extreme restriction can be
much easier than the threshhold version. For example,
one of the classic NP-hard problems on graphs, inde-
pendent set, seeks a maximum-size subset of vertices,
no two of which are connected by an edge. (Exercise:
State the threshhold yes-no version of this problem in
standard format.) What happens if we fix the thresh-
hold at an extreme value? We get the following
problem:
Instance: A graph G � (V, E).
Question: Does G contain an independent set of car-
dinality |V|, that is, does there exist S � V; |S| �

|V|; (i, j) � E ∀i � S, j � S?
In other words, does the given graph have no edges?

By fixing the threshhold at an extreme value, we’ve
substituted a very easy problem for a hard one. We
could be misled into thinking that independent set was
easy.

Often it is not simple to determine whether or not
you can fix a threshholdwithout altering the problem’s
complexity. You have to figure out what makes the
problem hard. A problem may be hard because it is
difficult to get everything to balance out or fit together
perfectly. Two-partition is an example. But in other
problems, it is easy to find out if you can get every-
thing perfect; the hard part is to minimize the ill effects
when you can’t get everything to fit. Independent set
is an example.

When you convert a problem to yes-no form, imag-
ine fixing the threshhold to an extreme value (usually
0). Focus on the restricted problem if it seems as com-
putationally hard as the original. It will be simpler to
work with. Otherwise, focus on a different range of
threshhold values, but keep the easy restricted case in
mind as a source of heuristic solution ideas. Either
way, you will gain useful insight into your problem. If
you trust your judgment, all you risk is spending a few
hours thinking that your problem is easier than it ac-
tually is.

Sometimes you can remove the objective function
without affecting the complexity of the problem. You
should trust your judgment here too. Integer-
programming feasibility is just as hard as threshhold
integer programming. (Question: State each of these
problems in standard format, and explain why the for-
mer is just as hard as the latter.) LP optimization is just
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Figure 2: � transforms G into a related graph H by splitting and extending
a vertex u. G has a Hamiltonian cycle if and only if H has a Hamiltonian
path starting at s.

Figure 3: Show your problem (II) is hard by constructing �, which trans-
forms instances of a known hard problem (I) to instances of yours. � must
satisfy the three properties listed.

as easy as LP feasibility (combine the primal, dual, and
strong duality constraints). (Question: Think of a prob-
lem that changes from hard to easy if the objective is
removed.) (Exercise: For each yes-no problem defined
in this section, write a specific instance for which the
answer is yes and an instance for which the answer is
no.) Answers:

—Besides the threshhold value v, the input contains
the matrix A and the vectors c and b.

—We might conclude that the optimization problem
is hard, when in fact it is easy.

—Any algorithm that solved two-machine-line-
balancing would also solve two-partition.

—The threshold problem is as follows:
Instance: m by n matrix A, m-vector b and n-vector c,
scalar v.
Question: Is there an integer n-vector x such that Ax
� b and c • x � v?

—The feasibility problem is as follows:
Instance: m by n matrix A, m-vector b and n-vector c.
Question: Is there an integer n-vector x such that Ax
� b?
Any threshhold instance can be turned into an equiv-
alent feasibility instance by including c • x � v in the
feasibility constraints.

—Knapsack, clique maximization, graph coloring,
line balancing, and many others. (See §4 for problem
definitions.)

3. The Nuts and Bolts of NP-
Hardness Proofs

This section introduces NP-hardness proofs. The main
idea is to model a known NP-hard problem as your
problem. Figure 2 illustrates a particular proof, and
Figure 3 shows the general form of a proof. The proof
in Figure 2 actually arose during a practical applica-
tion. We were sequencing placements of electronic
components on a circuit board to minimize the pro-
duction cycle time per board. Themachine took at least
0.25 seconds to place a component on the board; if the
previous component was far away on the board or was
a type of part located far away on the machine, it could
take much longer. The machine had to begin and end
at a fixed location (a fiducial), so our problem was a

traveling-salesman problem (TSP), a famous NP-hard
problem.

In our TSP, the vertices represent placements and the
cost of edge from i to j is the time required to place j
if the previous placement is i. So many edges cost 0.25
that for practical purposes we could slightly simplify
our problem: discard the arcs costing more than 0.25
and seek a Hamiltonian cycle in the simplified graph.
(A cycle or path in a graph is Hamiltonian if it visits
each vertex exactly once.) (Question: How could we
arrive at this Hamiltonian cycle model as a yes-no ver-
sion of our TSP?)

The Hamiltonian cycle problem is another famous
NP-hard problem, and we used heuristic methods to
solve it. Then the problem changed. We found that
some of the circuit boards had parts of varying sizes.
The overall speed of the machine depended on the
largest part it had picked up so far. We decided to sort
the parts into size classes and solve separate sequenc-
ing problems for each class in turn. However, these
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new sequencing problems were not Hamiltonian cycle
problems! Consider the smallest size parts: the fiducial
forces a fixed starting point, and we must visit each
vertex (make each placement) once, but we no longer
have to return to our starting point.

Would this extra bit of freedom make the problem
any easier? Should we still have been using heuristics
to solve it? We demonstrate that the new problem is
NP-hard. This will be our first example of an NP-
hardness proof.

We already know that the following problem is
hard.

Ham Cycle
Instance: A graph G.
Question: Does G contain a Hamiltonian cycle?

We would like to show that our new problem is
hard. In words, our problem is to find a Hamiltonian
path that starts at a particular vertex. The starting point
is referred to as distinguished because it is known in
advance. We precisely define our new yes-no problem:

s-Ham Path
Instance: A graph H � (V, E) with distinguished ver-
tex s � V.
Question: Does H contain a Hamiltonian path begin-
ning at s?

Suppose s-Ham Path were easy. Then software to
solve it quickly would exist. We use this imaginary
software to solve Ham cycle quickly, giving a contra-
diction. (Question: What will be the contradiction, and
what will we be entitled to conclude?) The way to use
our imaginary software is to build a fast front end:
Input: A graph G with vertex set U and edge set E.
Output: A graph H with distinguished vertex s.
(Question: What are the input and output instances
of?) Our imaginary software would work as follows:
given input graphG, select any vertex u ofU andmake
a copy of it, û, connected to the same vertices u is con-
nected to. Create a new vertex s connected only to u
and likewise a new vertex ŝ connected only to û. The
resulting graph, H, is depicted in Figure 2. The front
end is fast, with most of its time spent in copying G.

If G has a Hamiltonian cycle, we can think of it as
starting and ending at u. This cycle corresponds to a
path in H starting at u, ending at û, and visiting all the
vertices in H except s and ŝ. Extend this path at the

beginning and end to reach s and ŝ, respectively. This
is a Hamiltonian path in H starting at s. Therefore, if
we input a graph G that has a Hamiltonian cycle, our
front end will output a graphH that has a Hamiltonian
path starting at s, and the imaginary software for s-
Ham path, coupled with our front end, will correctly
answer yes.

We also need to verify that, if G has no Hamiltonian
cycle, our software will correctly answer no. We prove
this by the contrapositive. (Question: State the contra-
positive.) If our software answers yes then H contains
a Hamiltonian path starting at s. Since the path is Ham-
iltonian, it must visit ŝ. By construction, only one edge
is incident to ŝ. Therefore, the path has to visit ŝ last.
Truncating the first and last edges in the path gives a
path from u to û, which corresponds to a Hamiltonian
cycle in G.

We’ve shown that our software answers yes if and
only if G contains a Hamiltonian cycle. The front end
is fast, the imaginary software is fast, and thus we have
fast software to solve the Ham cycle problem. By con-
tradiction, s-Ham path is NP-hard.

We have completed our first NP-hardness proof.
(Suggested Exercise: Without referring to the above,
write down the proof showing s-Ham path is NP-hard.
This is not a rote-memory exercise; it is a standard
method to master proof techniques. Reconstructing a
proof you’ve read, in detail, reinforces your under-
standing and makes you much more able to do proofs
on your own.) (Exercise: Prove s-Ham path is NP-hard
using a modified front end as follows. Make the copy
û of u as above, and make a new vertex ŝ connected
only to û as above, but do not make a new vertex s.
Instead, change the label u to s.)

The General Form of an NP-Hardness Proof
Figure 3 shows the basic outline of an NP-hardness
proof. Youmust follow this structure to show that your
problem is NP-hard. Select a known hard problem and
model it as a case of your problem. This is counterin-
tuitive because it is the opposite of what you might do
to solve your problem, namely, to model your problem
as an IP or as a case of some other better-known
problem.

You must concoct a transformation, �, essentially a
computer program like the front end in our s-Ham
path proof, which has



TOVEY
Computational Complexity

Interfaces
38 Vol. 32, No. 3, May–June 2002

Input: Instance of I, a known NP-hard problem.
Output: Instance of II, your problem.

Your transformation � must satisfy three properties:
(1) Yes-to-Yes: � maps yes instances of I to yes in-
stances of II.
(2) Yes-from-Yes: � maps no instances of I to no in-
stances of II.
(3) Fast: � is fast.

Finding the right � often requires a flash of insight
because it has to satisfy all three properties. NP-
hardness proofs are more akin to integration in cal-
culus than to differentiation: they require creative rec-
ognition of patterns rather than following cookbook
procedures. (Question: Suppose you know IP is NP-
hard and you wish to prove two-machine line balanc-
ing is hard. For this specific proof, describe precisely
the input form, the output form, and the three required
properties of the transformation �.)

One could state properties (1) and (2) more suc-
cinctly. � must output a yes instance of II if and only
if it is input a yes instance of I. I have separated this
into two properties because, in my experience, the
most common mistake is not to satisfy property (2).
Always verify property (2) by the contrapositive:
prove that if the output of � is a yes instance of II, the
input must have been a yes instance of I. I call property
(2) Yes-from-Yes instead of No-to-No because it is al-
ways verified by the contrapositive.

Occasionally a proof fails because it violates prop-
erty (3). Property (3) means that � runs in polynomial
time in the length of the input instance.

Beginners are often confused about the direction of
the transformation �. They want to input an instance
of their problem, II, and output an instance of some
known hard problem, I. That is the natural direction
of a transformation if you are trying to solve your
problem. You would convert your problem into some
better known mathematical form, such as IP or TSP.
Complexity proofs require you to do the opposite,
which at first seems counterintuitive.

The explanation is as follows. Suppose I is IP, a
known hard problem. If you had fast software to solve
II, you could put in � as a front end and have a fast
IP solver! So it must be at least as difficult to solve II
as to solve IP. (Question: Why does it help to know

many NP-hard problems when trying to prove a new
problem is NP-hard?)
Answers:

—We find it as a threshhold question with a partic-
ular fixed value. Does there exist a Hamiltonian cycle
with total cost � n(0.25)?

—Being able to solve Ham cycle quickly contradicts
the fact that Ham cycle is hard. We are entitled to con-
clude that s-Ham path is hard.

—The input is an instance of Ham cycle; the output
is an instance of s-Ham path.

—The contrapositive is this: if our software answers
yes, then G has a Hamiltonian cycle.

—Input: an instance of IP consisting ofm by nmatrix
A and n-vector b. Output: an instance of two-machine
line balancing consisting of k integers s1, . . . , sk, and an
integer v. The three required properties: (1) If there
exists integer x such that Ax � b, then the si can be
partitioned into two sets, so that the sum of each set is
� v. (2) If the si can be partitioned into two sets, so that
the sum of the si in each set is � v, then there exists
integer x such that Ax � b. (3) � runs in time polyno-
mial in the size of A and b.

—� runs in time polynomial in the length of the
input instance.

—Yes, it is consistent.
—Knowing more hard problems gives you more

choices of what to model as your problem. The more
choices, the more likely you are to find one that you
can do readily.

4. Spotting Complexity
This section will help you get better at spotting com-
plexity. I begin with some general tips. Then I invite
you to spend some time studying a collection of con-
trasting hard and easy problems. I don’t know of a
more effective way to develop your intuitive ability to
recognize what is hard and what is easy. Reading this
will also give you important practice understanding
the concise style of Garey and Johnson (1979) and other
references.

Here are some things that tend to make problems
hard: dividing up work or resources perfectly evenly;
making sequencing decisions that depend not just on
where you are but also on where you’ve been; splitting
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a set of objects into subsets, where each subset must
satisfy a constraint; finding a largest substructure that
satisfies some property; maximizing or minimizing in-
tersections or unions of sets; interactions among three
or more objects or classes of constraints.

If you limit a threshhold value, you produce a re-
stricted version of a problem. When a problem in-
volves a bunch of interlocking decisions, and you are
trying to minimize the number of bad events, such as
late jobs, mismatches, or items out of place, consider
the restricted problem that tries to eliminate all bad
events. Frequently the restricted problem will be hard
if the original problem is hard. On the other hand, if
you are trying to minimize a sum of penalties, such a
restriction is more likely to alter the complexity of the
problem. For example, in one-machine scheduling (see
§2), it does no harm to restrict the problem of mini-
mizing the number of late jobs to the problem of get-
ting all jobs done on time. Both problems are easy. On
the other hand, minimizing the total tardiness (sum of
amounts by which late jobs are late) is hard. The prob-
lem complexity would change if it were restricted to
achieving zero tardiness.

How do I evaluate the complexity of a problem? I
don’t follow a rigid method, but this is how I tend to
proceed. First, I get a clear idea of the situation. I state
a precise formulation of the problem, usually inwords,
sometimes with a picture. Second, I strip away the
story part of the problem and abstract it down to a
math problem: I turn people into vertices, processing
times into numbers, retrieval orders into subsets, and
so forth. Third, I visualize several different cases of the
problem. I tinker with a few small instances by hand.
What is the problem like if all the weights are equal or
if all subsets are the same size or if there are only two
subsets? If the problem has several complicating fea-
tures, such as deadlines and precedence constraints, I
take turns eliminating them. Often I immediately rec-
ognize the simpler case of the problem as NP-hard. It
is important to know where the complexity of your
problem resides. Fourth, after I’ve visualized some
cases, I usually get a feeling that the problem is easy
or that it is hard. If the former, I try to solve it with
standard methods, such as greed, and to model it as
an LP, network, or other known easy problem. If the
latter, I focus on the simplest case that seems hard.

Why does it seem hard? What does it remind me of?
If it is simple to state, I pore through the references and
try to find it or something similar. If this doesn’t work,
I either take my simplest case back to the third step or
I roll up my sleeves and try a gadget proof.

Following is a list of NP-hard problems. In each en-
try, I first describe a hard problem and then describe
an easy problem to contrast with it. Visualize each
problem as you read. This is the best way I know for
you to develop your own intuitive sense of complexity.
Compare problems in the same entry; observe the al-
teration that makes an easy problem hard. Later, as
you explore a new problem, youmay find that it seems
hard, or easy. What other problem does it remind you
of? You may be on your way to resolving its complex-
ity. (Exercises: For each problem in the following col-
lection, think of an instance whose answer is yes and
an instance whose answer is no. I’ve written some of
the problem descriptions in the less compact Instance-
Question format, to give you practice for reading the
references. Some of the other problems will give you
practice converting to yes-no form.)
Integer programming (IP): Maximize c • x subject to Ax
� b, x integer. Contrast: LP is easy, as is IP when the
constraint matrix is totally unimodular or has one of
its two dimensions fixed. Its dimensions are the num-
ber of variables and the total number of constraints,
including nonnegativity.
Two-machine weighted flow-time minimization: Given two
parallel processors and a set of jobs with individual
processing times and weights, find a schedule to min-
imize the weighted sum of completion times. Contrast:
If all weights are equal or all times are equal, the prob-
lem is easy even for more than two processors (run
shorter or weightier jobs first).
Steiner tree: Given a graph G � (V, E), edge lengths,
and a subset S � V of vertices, find a tree in G of min-
imum total length that contains S. (The tree may con-
tain vertices in V � S; try connecting the vertices of a
square in the plane.) Contrast: The minimum spanning
tree problem, in which S � V, is easy.
Maximum clique:
Instance: Graph G � (V, E) and integer k.
Question: DoesG contain a clique of size k, that is, does
there exist C � V such that |C| � k and for all i � C,
j � C, i � j, the edge (i, j) � E? This is the same as
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seeking a maximum independent set (no pair of ver-
tices connected) in the complementary graph. Contrast:
Maximum clique is easy on planar graphs (graphs that
can be drawn in the plane without any edges crossing),
since planar graphs cannot contain cliques of size 5.
Finding a maximum independent set in a planar graph
is hard.
Approximate solution of maximum clique: Given a graph
G, it is hard to find a clique that is at least 1/100 the
size of the largest clique in G. The value 1/100 could
be set to any 1 � � � 0 and the problem stays hard.
(Note: this particular problem cannot be phrased in
yes-no form (Papadimitriou 1994).) Contrast: It is easy
to find a Steiner tree whose length is within 1.5 times
the minimum possible length.
3-matching (3DM): Also called three-dimensional or tri-
partite matching, this is the matchmaking problem if
there are three sexes.
Instance: A base set of three distinct sets, X, Y, and Z,
with n � |X| � |Y| � |Z|, and a set S � X � Y �

Z of acceptable triples.
Question: Is there a collection of n disjoint triples from
S?
Contrast: When there are two sexes, this is easy. (Ques-
tion: Why?)

Tip for reading: In the standard reference on com-
plexity by Garey and Johnson (1979), as well as in most
other texts, problems are defined compactly. Get used
to puzzling over a definition for a moment before you
understand the problem. For example, the three-
matching problem asks if we can match up all 3n crea-
tures into n triples. But the definition asks only if we
can find n disjoint triples. It takes a moment to see that
every creature will end up in a triple, as there are only
3n altogether.
Knapsack: This is essentially IP optimization with a sin-
gle functional constraint. Given nonnegative vectors c
and w and scalars v and K, does there exist a 0–1 vector
x such that w • x � K and c • x � v? Contrast: The
knapsack problem is theoretically hard only when the
coefficients occur to great precision. Otherwise it is
solved fast with dynamic programming.
Partition: Given a set of n numbers x1, . . . , xn, can the
indices i � 1, . . . n be partitioned into two sets, K and
J, such that �i�Jxi � �i�Kxi?
Bin packing: We are given a set of numbers 0 � xi � 1,

and an unlimited number of bins. The sum of the num-
bers placed in each bin may not exceed 1. The problem
is to minimize the number of bins used to hold all the
numbers. (Question: State bin packing in instance-
question format.) Contrast: There are fast approximate
solutions to the same problem.
3-partition: This is very similar to bin packing. Given a
set of 3n numbers 1/4 � xi � 1/2, with total sum n,
can they be partitioned into n subsets (of three num-
bers each) with subset sum 1? Contrast: It is easy to
partition 2n numbers into n subsets of two each.
3-SAT (three-satisfiability): This is the canonical NP-
hard problem. It is similar to 0–1 IP with 0–1 coeffi-
cients and only three nonzero coefficients per con-
straint. We are given a set of Boolean (true-false)
variables, X1, . . . , Xn. A literal is a variable Xi or its
complement X̄i. We are also given a set of clauses Cj,
in which each clause contains three literals. The ques-
tion is, can each variable be set to true or false so that
each clause is satisfied, that is, each clause contains at
least one true literal?

Several important variations on 3-SAT are also hard.
In not-all-equal 3-SAT, NAE-3-SAT, the instance is de-
fined the same as in 3-SAT, but the question is, can the
variables be set so that each clause contains at least one
true and one false literal? In Exact-3-SAT, the question
is, can the variables be set so that each clause contains
exactly one true literal? Contrast: 3,3-SAT, the same
problem as 3-SAT except that no variable appears in
more than three clauses, is easy (Tovey 1984). 2-SAT,
the same as 3-SAT except that every clause contains
two literals, is easy, too. However, Max 2-SAT, which
maximizes the number of satisfied clauses, is hard. It
is easy to set the variables in 3-SAT so that the number
of satisfied clauses is at least 7/8 the maximum pos-
sible; it is hard to satisfy more than 7/8 the maximum
(Karloff and Zwick 1997, Håstad 1997).
Ham cycle, Ham path: Given a graph, find a cycle (re-
spectively path) that visits each vertex exactly once.
Even for the cases in which the graph is a grid graph
(could be cut out of square mesh), these problems are
hard. You should be able to see that if Ham cycle is
hard, then the traveling-salesman problem is hard
even when all costs are 0 or 1. Also, since Ham path is
hard, so is finding a longest (respectively shortest) path
in a graph whose distances are all 0 or 1 (respectively



TOVEY
Computational Complexity

Interfaces
Vol. 32, No. 3, May–June 2002 41

�1). Contrast: Finding the shortest path in a graph
with nonnegative costs is easy. A traversal in a graph
may revisit vertices and edges. Finding a shortest tra-
versal that visits all the edges (respectively vertices) in
a graph is easy (respectively hard).
Max cut: Given a graph, partition the vertices into two
sets S, T to maximize the number of edges crossing
between the sets. Contrast: Min cut is easy; it is the dual
of maximum flow where we take all edge capacities �

1. Max bisection cut is also hard. It is the same as Max
cut, except we require |S| � |T|. Min bisection cut
is hard, too. This seems surprising until we see that it
is the same problem as Max bisection cut on the com-
plementary graph.
Minimum feedback arc set: Given a directed graph G,
arrange the vertices in a line so that as few arcs point
backwards as possible. (Exercise: Show that this is
equivalent to finding a minimum size subset S of arcs,
with the property that every directed cycle in G con-
tains at least one arc in S. The related problem of find-
ing a subset of vertices is also hard.) Contrast: It is easy
to determine whether G has no directed cycles. (Ques-
tion: How is this easy problem related to the hard one?)
Graph 3-coloring: Given a graph, partition the vertices
into three sets such that no two vertices connected by
an edge are in the same set. This problem is hard even
if the graph is planar. Contrast: 2-coloring a graph is
easy. 4-coloring a planar graph is easy, since the an-
swer is always yes. But 4-coloring a graph in general
is hard.
Shortest path with obstacles: Finding the shortest path
between two points in three dimensions that avoids a
collection of polyhedral obstacles is NP-hard (Canny
and Reif 1987). Contrast: The two-dimensional problem
is easy (Latombe 1991).

Answers:
—It is a simple kind of assignment problem, also

called bipartite matching.
—Bin-packing instance: numbers x1, . . . , xn and in-

teger B. Question: Can the xi be partitioned into B sub-
sets each with sum � 1?

—Set the threshhold value of minimum feedback arc
set to zero to get the easy problem.

5. Illustrations of Common Pitfalls
One common pitfall is to make � a simple but lengthy
procedure, violating property (3)—� is fast. You can

often detect this error by noticing that � produces ex-
ponentially long instances of II. For example, here is a
very easy problem:
Find zero
Instance: A list L of nonnegative integers.
Question: Does L contain a 0?

Let us construct an invalid transformation from s-
Ham path to find zero (Figure 4). For each permutation
of the vertices V � s, we start at s, traverse G, and
record on a list the number of mistakes, or missing
edges. Obviously G contains a Hamiltonian path from
s if and only if we record a 0. The error is that L is not
polynomially long in the size of G. Precisely, if G has
n vertices, then it has O(n2) edges and the input to �
is O(n2). But the list L contains (n � 1)! integers, and
(n � 1)! grows faster than any polynomial function of
n2. If � produces more than a polynomial length out-
put, it cannot possibly run in polynomial time, violat-
ing property (3)—� is fast.

Although this mistake seems too obvious to make,
people make it surprisingly often. You are most likely
to make this mistake when transforming from a prob-
lem involving numbers. A number does not have to be
very long (for example, 30 binary characters) to be very
big (�109).

A related error is to make � solve the instance of
problem I in some enumerative fashion. I’ve seen this
error in print. Some years ago, a well-known applied
mathematician claimed to have a new solutionmethod
for LP. His algorithm amounted to enumerating the
extreme points of the polyhedron, sorting them by ob-
jective value, and selecting the maximum (Brockett
1991). (Question: How could you construct a valid
transformation from LP feasibility to find zero?)

Suppose s-Ham path is a known NP-hard problem,
and we wish to use it to prove Ham cycle is NP-hard.
This is the opposite of the first transformation de-
scribed earlier in §3. Now we must take as input an
instance H of s-Ham path, and transform it into an in-
stance G of Ham cycle. I will use this situation to illus-
trate two of the most common pitfalls.

Many beginners take the graph H and connect s by
new edges to every other node of H to make G. They
reason that they can extend a Hamiltonian path in H
starting at s to form a cycle in G simply by returning
to s. They further reason that a Hamiltonian cycle in G
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Figure 4: We can transform the hard s-Hamiltonian path problem to the trivial find-zero problem by enumerating
possibilities, but property (3) is violated because the output of � is exponentially long.

Figure 5: Connecting s to all nodes in H violates property (2). In the case
depicted, H has no Hamiltonian path from s but G has a Hamiltonian cycle.

can be thought of as beginning at s; simply cut out the
new edge and what remains is a Hamiltonian path
from s in H. (Exercise: What is wrong with this reason-
ing?) Figure 5 shows that this transformation will
sometimes convert a no instance of s-Ham path to a
yes instance of Ham cycle (a definite no-no). The be-
ginner here is guilty of wishful thinking when verify-
ing property (2)—convert Yes-from-Yes. All that we
may assume is thatG has a Hamiltonian cycle.Wemay
not assume that this cycle uses exactly one of the new
edges. The beginner is dazzled by the vision of the
Hamiltonian path turning into a cycle by means of the
new edge and perforce imagines all Hamiltonian cy-
cles consist of a path from H extended by a new edge.
But the cycle might contain two new edges and not
correspond to a Hamiltonian path in H. (Question: Do
cases in which the cycle contains no new edges cause
an error?) (Exercise: Find a counterexample similar to
Figure 5 in which graphH has only three vertices.) You
might have noticed that if H is a 2-vertex graph with
one edge, the transformation will convert this yes in-
stance into a no instance. This is not a serious error. It
only occurs on graphs with fewer than 3 vertices, and
transformations are permitted to fail on a finite num-
ber of instances.

This kind of wishful thinking is a very common

source of error in verifications of property (2)—Yes-
from-Yes. Don’t get so caught up in your vision of how
solutions to I transform to solutions to II that you think
all solutions to II have that form. To verify property
(2), you may assume only that a solution exists; you
may not make assumptions about its form.

Let’s dig another pit for our beginner to fall into. The
previous transformation didn’t work because we con-
nected s to too many vertices. This time we add only
one new edge, so a cycle in G can’t contain two new
edges. If H contains a Hamiltonian path starting at s,
take the vertex v at the end of that path and add a
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Figure 6: Connecting s to any one node x can convert a yes instance of s-
Hamiltonian path to a no instance of Hamiltonian cycle, violating property
1. � may not calculate which x to use without violating property (3).

Figure 7: A valid transformation of s-Ham path to Ham cycle allows any
Hamiltonian path from s in H to extend to a cycle in G, and forces any
Hamiltonian cycle in G to traverse from t to u to s.

single new edge between v and s. The resulting graph
G has a Hamiltonian cycle. This verifies property (1)—
Yes-to-Yes; this time we can also verify property (2)—
Yes-from-Yes. A Hamiltonian cycle in G can’t contain
more than one new edge. Remove the new edge if it is
present, otherwise remove either edge incident on s.
The remaining edges of the cycle form a Hamiltonian
path from s in H. (Question: What is wrong with this
transformation?)

The error is that we have violated property (3)—�

is fast. How does the transformation � determine the
vertex v? � is just dumb, fast front-end software.When
it gets an instance as input, � doesn’t know whether
the answer is yes or no, much less can it solve the in-
stance. But when we “take” the vertex v at the end of
the Hamiltonian path in H, we are implicitly assuming
that � has been clever enough to find that Hamiltonian
path.

When you verify property (1)—� maps yes in-
stances of I to yes instances of II—you are permitted
to assume the answer to the instance of I is yes. When
you verify property (2)—� maps yes instances of II
from yes instances of I—you are permitted to assume
the answer to the instance of II is yes. But the trans-
formation � is never permitted to make such an as-
sumption. If a no instance is input to �, it must pro-
duce a no instance. We often don’t see no instances
because we prove property (2) by the contrapositive,
but these instances are crucial. (Question: Why isn’t �

permitted to know whether the answer to the input
instance is yes or no?) If instead � selects an arbitrary
vertex x in H to connect to s, property (1) may fail (Fig-
ure 6).

Finally, let us construct a valid transformation. Add
two new nodes, t and u, to H (Figure 7). Connect t to
every vertex except s in the new graph G, but connect
u only to s and t. If there is a Hamiltonian path from s
in H, you can extend to a Hamiltonian cycle in G by
appending t, then u. The required edges from un-
known vertex x to t, from t to u, and from u back to s,
are all in G. Conversely, if there is a Hamiltonian cycle
in G, it must use the edges from t to u and from u to s.
This is because G doesn’t have any other edges inci-
dent to u. Removing these edges and the other new
edge (the other one from t) leaves a Hamiltonian path

from s in H. (Question: If we omitted u from the trans-
formation and connected s directly to t, which part of
the proof would become invalid?) (Exercise: Find an
instance for which this invalid proof fails.)

The key to avoiding the wishful-thinking error is to
put into the instance an extreme substructure that
forces a solution to have the desired characteristic. In
problems involving Hamiltonicity, vertices with only
one or two incident edges have strong forcing power.
In other problems, it may be helpful to use very large
or very small costs or sizes, or other extreme condi-
tions. (Question: In a scheduling problem with prece-
dence constraints, what kind of job might have strong
forcing power?)



TOVEY
Computational Complexity

Interfaces
44 Vol. 32, No. 3, May–June 2002

Figure 8: To transform the problem on a directed graph G into a problem
on an undirected graph H, split each vertex into three vertices. A tour of
the vertices of G must correspond to a tour of the vertices of H.

We implemented the transformation of Figure 7 for
the circuit-card-assembly project described in §3. Be-
cause our code already contained a module to solve
Ham cycle, the most practical way to solve s-Hampath
was to add a front end to that module. Also, Ham cycle
is the more widely studied problem of the two. We
planned to acquire better software for Ham cycle in
the future and swap out our own module.

In the ordinary undirected graphs we have encoun-
tered so far, an edge (i, j) permits travel in either di-
rection between i and j. In a directed graph, an arc (i,
j) permits travel only from i to j.

Directed Ham Cycle
Instance: A directed graph G � (V, A).
Question: Does G contain a directed Hamiltonian cy-
cle, that is, a permutation p(i) of the vertices V such
that (p(i), p(i � 1)) � A ∀i � 1, . . . ,|V| � 1 and
(p(|V|), p(1)) � A?

Suppose we know that the directed Ham cycle prob-
lem is hard and wish to prove Ham cycle is hard. For
each vertex v of G, make three copies, vin, vmiddle, and
vout, connected in a path (Figure 8). For each arc (v, w)
of G, make an edge from vout to win. Call the new un-
directed graph H.

Property (1)—Yes-to-Yes: Suppose G contains a
Hamiltonian cycle v1, v2, . . . . This implies that for all
i, G contains the arc (vi, vi�1). Therefore for all i, H
contains the edge ( , ). H also contains the edgei i�1v vout in

between the in-copy and themiddle-copy and the edge
between the middle-copy and the out-copy of vi, for

all i. Therefore H contains the Hamiltonian cycle ,1vin
, , , , , . . . .1 1 2 2 2v v v v vmiddle out in middle out

Property (2)—Yes-from-Yes: If H contains a Hamil-
tonian cycle C, we can think of C as starting at some
vertex of H. The cycle C is Hamiltonian and must1vin
visit . But that vertex has only two edges incident.1vmiddle
So C must go from → → . From the1 1 1 1v v v vin middle out out

cycle must go to an in-copy of some other vertex, since
all its edges go to in-copies (besides the edge to its own
middle-copy, which C has already used). From that in-
copy of, say, v2, the cycle Cmust go to the middle- and
out-copies of v2 by the same reasoning as before
( has only two edges). Thus C traverses the in-,2vmiddle
middle-, and out-copies of each vertex of G, returning
to . This corresponds to a Hamiltonian cycle in the1vin
directed graph G.

Property (3)—� is fast: The transformation requires
time proportional to the size of the graph G, which is
a polynomially bounded function of the size.

A transformation that omits the middle copies of the
vertices is flawed (Figure 9). (Question: Which pit have
we fallen into? Exactly where does the above proof
become invalid?)

If you are a visual thinker, you will find the follow-
ing exercise an excellent way to achieve a firm under-
standing of correct NP-hardness proofs. (Hamiltonian
variations exercise: Find transformations between all
pairs of these four variations on the Hamiltonian
theme. All graphs are undirected, although you could
do all the directed variations, too.)

(1) Ham cycle
(2) s, t-Ham path: Instance: Graph G � (V, E) with

two distinguished vertices s and t. Question: Does G
contain a Hamiltonian path with end points s and t?

(3) s-Ham path
(4) Ham path
To summarize, the most common pitfall in NP-

hardness proofs is wishful thinking, in which you
groundlessly assume a solution to II must have certain
properties or structure. This makes your proof of prop-
erty (2) invalid. You can often get around this difficulty
by introducing extreme values or substructures in the
instances of II, which force a solution to take a partic-
ular form. Other common pitfalls are to expect � to
guess something that actually depends on knowing the
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Figure 9: If the “middle” vertices are omitted, the no instance G transforms to the yes instance H, violating
property (2).

solution or to do more than a polynomial amount of
work.
Answers:

—Given an instance of LP feasibility, solve it with a
polynomial time algorithm, such as Karmarkar’s or the
ellipsoid. If the instance is feasible, output the list L �

{0}; otherwise, output the list L � {1}.
—No, those cases don’t cause an error. The input

instance has answer yes.
—Property (3) is violated, as explained in the text

following.
—If it knew, it could output 1 if yes and 0 if no and

thereby transform any problem into the trivial prob-
lem: instance, a binary number x; question, is x � 1?

—The contrapositive proof of property (2) would be
invalid. Gmight have a Hamiltonian cycle that doesn’t
use the edge (t, s).

—A job that must be performed after all the other
jobs or before all the other jobs.

—Wishful thinking. Property (2) fails because we
can’t be sure that C uses the edge ( , ).1 1v vin out

6. Examples of NP-Hardness Proofs
This section contains a series of NP-hardness transfor-
mations arranged in order of increasing difficulty. The
easiest method is parameter specialization: restrict the
natural parameters of your problem, and arrive at a
known NP-hard problem. The more problems you
know are NP-complete, the more powerful a weapon
you have. So many problems are known to be hard,

and real problems are so complicated, that this method
often suffices.

If the definition of a problem contains a parameter,
you can fix the value of the parameter to define another
problem that is no harder than the original one. For
example, an instance of IP (integer programming) con-
sists of an m by n constraint matrix A, an m-vector of
right-hand-side values b, an n-vector objective c, and a
threshhold value T. Fix m � 1 and you get the defi-
nition of the knapsack problem. Since knapsack is
hard, IP must also be hard. As another example, the
graph-coloring problem, given a graph G� (V, E) and
integer K, asks whether the vertices in V can be as-
signed colors 1 . . . K such that vertices connected by
an edge are differently colored. Fix K � 3 and you get
the definition of graph 3-coloring (§4). Since graph 3-
coloring is hard, graph coloring is hard. The transfor-
mation � in both of these examples is the identity, �(I)
� I. The three properties must be satisfied by the iden-
tity transformation, so I would write down the param-
eter restriction and the name of the resulting problem
but not the rest of the proof.

You can also fix a general threshhold parameter at a
particular value. I hinted at this kind of transformation
in §2, describing partition as a restricted case of 2-
machine line balancing. Intuitively, when V � �iti/2,
the line-balancing problem is the partition problem. To
be more precise, consider all the instances of line bal-
ancing in which V � �iti/2. These instances comprise
the set of all instances of the partition problem.

The transformation, which I would not ordinarily
write down, is as follows. Given an arbitrary instance
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x1, . . . , xn of partition, set ti � xi ∀ i � 1, . . . , n and
set V � �iti/2. The resulting instance of line balancing
has answer yes if and only if the given instance of par-
tition does. (Question: In a graph with nonnegative
edge costs, the shortest-path problem is a very well-
known easy problem. How would you prove that the
longest-path problem is hard?)

Garey and Johnson (1979) describe specialization, a
proof method one step up from parameter specializa-
tion. In a formal sense, almost every NP-completeness
proof is of this type, but this is what it means in prac-
tice: restrict the data of your problem in a simple way,
and show that the resulting special class of your prob-
lem is the same as a known NP-hard problem.

For example, in scheduling a set of n jobs with dead-
lines on a single processor, the ith job requires time ti
and incurs penalty pi if it is not completed by its dead-
line di. The problem is to minimize the total penalty
incurred or equivalently to maximize the sum of the pi
values of jobs completed on time.

When all jobs have the same deadline D, the prob-
lem is precisely the knapsack problem with knapsack
capacityD, item sizes ti, and values pi. (Question:What
transformation � are we implicitly using?) (Exercise:
Prove the following problem is NP-hard: There are two
processors, and each job must be run on one processor.
Job i has processing time ti and deadline di. The prob-
lem is to minimize the number of late jobs.)

The next example of specialization transforms Ham
cycle to directed Ham cycle. The latter problem is the
same as Ham cycle, except the graph’s arcs are directed
(one-way) rather than undirected (two-way). The cases
of directed Ham cycle in which all arcs come in pairs
(i, j) and (j, i) are equivalent to the undirected Ham
cycle problem.

As another example, we transform Ham cycle to the
threshhold version of the traveling-salesman problem.
Instance: Complete graphG� (V, E) with integer edge
costs ce : e � E and integer K.
Question: Does there exist a Hamiltonian cycle in G
with total cost � K?

Restrict this problem to cases in which all edge costs
ce are 0 or 1 and K� 0. The question is then equivalent
to whether G has a Hamiltonian cycle consisting only
of 0-cost edges. Thus it is the same as the Hamiltonian
cycle problem. The transformation, which ordinarily

we would not explicitly describe, is as follows. Take as
input an instance of Ham cycle, a graph H � (U, F).
Set the cost of each edge in F to 0; then fill in the graph
with the rest of the possible edges, each costing 1. Call
the resulting complete graph G. Finally, set K � 0.

Next I show that 3-matching transforms to exact 3-
cover, one of my favorite problems. On a base set we
are given a collection of acceptable triples. The exact
3-cover problem asks if there is a partition, or exact
cover, of the base set comprised of acceptable triples.

Exact 3-Cover
Instance: A collection S of subsets of X � x1, . . . , x3n,
each subset size 3.
Question: Is there a subcollection of n subsets in S
whose union is X?

3-matching is the special case in which all the ac-
ceptable triples xi, xj , xk happen to be of form 1 � i �

n � j � 2n � k � 3n. (Exercise: Show that the set-
covering problem is hard by transforming exact 3-
cover to it.)

Most NP-hard problems arising in practical appli-
cations are fancy versions of one ormore canonicalNP-
hard problems in the literature. If you strip away most
of the clutter, you often find that the much simpler
problem underneath is still hard. Consider, for exam-
ple, most vehicle-fleet-planning problems. There is a
set of vehicles (for example, trucks or ships) with vari-
ous travel ranges and capacities for conveying one or
more commodities. There are one or more supply
points, demands at various locations, and possibly re-
strictions on the timing of pickups, deliveries, and so
forth. You seek a low cost or perhaps just a feasible
schedule to meet demand. (Question: Where do you
spot potential complexity in this problem?)

—If you seek a low-cost plan, and travel distances
affect cost, then even if there were only one supply
point and one vehicle with plenty of capacity and
range, you would have a traveling-salesman problem.

—It is NP-hard to split a set of numbers into two
groups whose sums are equal. This is the partition
problem. If there are only two identical vehicles, a sin-
gle supply point, and it is either infeasible or costly to
split deliveries between vehicles, then the problem is
hard. Why? In the case that total demand equals total
fleet capacity, each vehicle has to go out full, hence a
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partition problem must be solved. This transformation
works even if travel costs are relevant: just make them
all equal.

—Partition is not as bad as some other hard prob-
lems because it is solvable by dynamic programming
in practice. If there are m identical vehicles, however,
splitting deliveries equally contains the 3-partition
problem, which is hard and not efficiently solvable by
dynamic programming.

—If deliveries may not be split between vehicles,
then the problem of minimizing the number of vehicles
to meet demand is the hard bin-packing problem. I’m
assuming that fleet size affects costs.

—If there are multiple commodities, even the asso-
ciated network-flow problems are NP-hard.

If deliveries may not be shared among vehicles, it is
hard merely to parcel out the deliveries to minimize
cost or to meet demand without exceeding capacity. If
deliveries may be split among vehicles, then assigning
deliveries among vehicles is like a transportation or
network-flow problem. However, even in this situa-
tion, the delivery cost to one location depends on
where else the vehicle goes. This is the part of the prob-
lem that is similar to the traveling-salesman problem,
and it makes things difficult.

The point is that regardless of vehicle differences,
customer peculiarities, and multiple commodities, just
routing vehicles or partitioning the orders is apt to be
hard.

Many real applications are made more difficult by
uncertainty in future demand, salvage (estimated fu-
ture) values of vehicle locations, inventory status, and
so forth. As a practical matter you can usually count
on such factors making your problem substantially
harder.

Padding and forcing transformations are a step up
in difficulty from specialization. In general, these
methods require you to do a little tinkering with small
examples. They do not require great ingenuity or a big
flash of insight. After you do the exercises in this tu-
torial, you should be able to perform this kind of trans-
formation. If you know a few dozenNP-hard problems
from the literature, you will find that padding, forcing,
and specialization are enough to resolve complexity
questions in most practical situations.

Often we want to make the solution to an instance

have a particular form or property to get a transfor-
mation to work. One method, forcing, is to use an en-
forcer, a substructure that forces something to happen.
I used enforcers in some transformations earlier (§§3
and 5). For example, a vertex incident to only one edge
in an instance of Ham path forces the solution (if there
is one) to have that vertex as an end point. Similarly,
a vertex with only two edges in an instance of Ham
cycle forces the solution (if there is one) to contain
those two edges. It is usually simple to contrive en-
forcers for an NP-hard problem. If you cannot do so,
this may be a clue that your problem is not NP-hard.

The subset-sum problem takes a set of integers X �

{x1, . . . , xn} and integer K as an instance. The question
is to find a subset of X whose elements sum to exactly
K. (Question: Prove the subset sum problem is hard by
using specialization.) To transform the subset sum
problem to the partition problem, include two addi-
tional elements in X. The first has value y � M � K;
the second z�M� xi � K. HereM, like a penaltyn�i�1

term, must be large enough to dwarf the sum of the
original terms. The big value forces y and z to appear
in different subsets in any solution to the partition in-
stance {X, y, z}.

Almost any scheduling problem that is hard on K
machines is also hard on K� 1machines. To transform
the K machine problem, you can usually add a single
large job (or a set of highly interconnected jobs) to the
instance. These added jobs completely tie up the K �

1st machine, leaving a de facto K-machine problem.
I chose the last example of forcing because it could

just as well be thought of as padding, our next method.
The idea is to pad an instance, typically with trivial
elements, to permit a property to be satisfied. Thismay
seem like cheating, but it is perfectly legal. For exam-
ple, some years ago, Ammons, Lofgren, McGinnis, and
I encountered a machine-configuration problem that
looked almost like a partition problem (Lofgren 1986).
A manufacturing company had two identical flexible
assembly machines, each of which could be configured
with up to 24 tools. Associatedwith each of the 48 tools
was a certain amount of work. The problem was to
divide the tools among the machines to balance their
workload. This is identical to the partition problem,
except the two subsets must have the same number of
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Figure 10: The triangle’s edges force the coloring A, B, C, allowing for
symmetry. Force vertex X1 to be colored A or B by connecting it to vertex
C.

elements. We can define this equipartition problem as
follows:
Instance: Set of integers X � {x1, . . . , x2n}.
Question: Is there a subset S � X with |S| � n such
that �Sxi � �Xxi/2?

How could we show that equipartition is hard?
Given an instance x1, . . . , xn of partition, pad the in-
stance with n additional zero elements xn�1 � . . . �

x2n � 0. (Question: Show that this transformation sat-
isfies the three properties.) (Exercise: Suppose every
tool carries a nonzero amount of work. Prove equipar-
tition is hard even if all xi must be strictly positive.
Hint: Increase each term by 1.)

Exercise: As another example of forcing, transform
equipartition to partition. Hint: Given an instance
y1,. . ., yn of equipartition, add a large constant M to
each yi, giving xi � yi � M.

Exercise: Use padding to transform max cut to bi-
section max cut.

Exercise: 4-SAT is defined the same as 3-SAT, except
each clause contains exactly 4 literals. Transform 3-
SAT to 4-SAT. (Hint: Force a dummy variable to be
false; use it to pad the 3-clauses into 4-clauses.)
Answers:

—On an n-vertex graph with edge costs of 0 and 1,
set the threshhold value to n � 1 to specialize to the
Ham path problem. This shows it is hard to find the
longest path.

—Given in the text following.
—The restriction of subset sum, in which K �

�ixi/2, is partition.

7. Gadgets: Transforming 3-SAT to
3-Coloring

In this section, I will construct a more complicated
transformation, from 3-SAT to 3-coloring. The trans-
formation requires the invention of one or two gadg-
ets, in this case, small graphs to use as parts of the 3-
coloring instance. I will show some of the blind alleys
I went down while developing this proof to show the
kind of thinking one does when inventing gadgets.

3-coloring a graph takes a graph G as an instance.
Question: Can G be legally colored using not more
than three colors? That is, can we assign to each vertex
of G a color A, B, or C, in such a way that we assign

different colors to vertices linked by an edge? 3-SAT
takes a set of clauses as an instance. Each clause is a
set of three different terms called literals, each of which
is a complemented or uncomplemented true-false vari-
able. For example, {X1, X̄3, X6} is a possible clause.
Question: Can the variables be assigned values of true
or false so that at least one literal in each clause is true?

First, we need a gadget or component to represent
the Boolean variables Xi. What portion of a 3-coloring
problem could correspond to a true-false, yes-no de-
cision? A single vertex does not work, since it could
have any of three values. But if we could forbid one
color, the other two possible colors could correspond
to T and F.

Let’s call the colors A, B, and C. Add a triangle,
which we may assume is colored as shown in Figure
10, since there is no a priori difference between colors.

Connect X1 to the vertex colored C. Now X1 is A can
meanX1 � true, andX1 colored B canmeanX1 � false.
Conveniently we can get an X̄1, too (Figure 11). Vertex
X̄1 must be A or B, and it is B if and only if X1 is A.

The same construction gives us all of our variables
X1 through Xn, along with their complements. (Ques-
tion: Why wouldn’t it work for each Xi to have its own
triangle marked ABC?) We will call these 2n vertices
the variables’ vertices.

Now we need a graph structure to act as a clause-
gadget. It must meet the following conditions:
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Figure 11: This gadget converts true-false variables to 3-coloring sub-
structures. In any legal coloring, either Xi � A and X̃i � B, or vice-versa.
The first choice corresponds to setting Xi true.

(1) Clause-gadget connects to three variables’ ver-
tices in some way. To help us think, let’s work with
(X1 2 X2 2 X̄3) as a generic example. This example in-
tentionally contains both complemented and uncom-
plemented variables.

(2) If one or more of the three variables’ vertices is
colored A, then clause-gadget can be colored. (Ques-
tion: What does this condition mean?)

(3) If all three variables’ vertices are colored B, then
clause-gadget cannot be legally colored. (Question:
What does this condition mean?)

My first idea for clause-gadget did not work. I tried
a triangle (Figure 12). The good news is that this struc-
ture satisfies condition (3). If all three variables’ verti-
ces are colored B, the triangle can’t be legally colored
since none of its vertices can be B. The bad news is that
if those three vertices were colored A, then the triangle
could not be legally colored. So condition (2) fails. My
second idea for clause-gadget (Figure 13) failed aswell.
(Question: Which condition fails?)

The first idea prohibited all three variables’ vertices
from having the same color. The problem was that all
A behaved the same as all B. To make A different from
B, we must know which is which. This would mean
using the triangle labelled ABC again. That gave me
an idea.

In Figure 14, ifX1 is coloredA, then its partner vertex

Y1 may be colored B or C (freedom of choice). But if X1

is colored B, then Y1 must be colored C (no freedom of
choice). Put this together with the first try to get a valid
clause-gadget (Figure 15). If all three variables’ vertices
are B, then there is no freedom of choice. Their partners
are all C and the inner triangle cannot be legally col-
ored. This gives condition (3). But as long as at least
one variable’s vertex is A, then one of the partners can
be B. The other partners can be C, so the inner triangle
can be legally colored, giving condition (2).

The pictures say it all, but we still must write the
algebra. One of the awkward parts in writing down
the proof is trying to describe correspondences in al-
gebraic notation. You can often make your formal
proof more readable by making a definition and
lemma about your gadget.

Clause-Gadget Definition. A clause-gadget is a
six-vertex subgraph, associated with a particular
clause C, containing vertices dl, pl : l� 1, 2, 3 and edges
(d1, d2), (d2, d3), (d3, d1), and (dl, pl) : l � 1, 2, 3. In ad-
dition, the clause-gadget must be attached to the rest
of the graph by edges (a, pl) : l � 1, 2, 3, where a is the
special vertex colored A, and by edges (Ll, pl) : l � 1,
2, 3, where Ll is C’s lth literal’s vertex.

Clause-Gadget Lemma. A clause-gadget subgraph for
clause C can be 3-colored legally if at least one of C’s literals’
vertices is colored with A. Conversely, if the clause-gadget
subgraph is legally 3-colored, then at least one of C’s literals’
vertices Ll : l � 1, 2, 3, is not colored with B.

The proof of the lemma could be as follows: If Lt is
colored with A, then color pt with B, the other two pl

with C, dt with C, and the other two dl with A and B.
This is a legal 3-coloring regardless of the coloring of
the other Ll. Conversely, in any legal 3-coloring of the
clause-gadget the three dl must be colored differently,
because of the edges between them. Hence, one dtmust
be colored with C. Then pt must be colored with B,
because of the edges (dt, pt) and (a, pt), and so Lt must
not be colored with B.

The NP-hardness proof of 3-coloring would then be
written as follows:

Given an arbitrary instance of 3-SAT with n vari-
ables Xi and m clauses Cj, create vertices {a, b, c; xi, x̄i :
i � 1, . . . , n} and edges (a, b), (b, c), (c, a) and (xi, x̄i),
(c, xi) and (c, x̄i) : i � 1,. . .,n. Vertices xi and x̄i corre-
spond to the literals Xi and X̄i, respectively. For each
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Figure 12: My first idea for a 3-coloring clause-gadget violated the Yes-
to-Yes property. If all three literals are colored A (true), the triangle cannot
be legally colored.

Figure 13: My second idea for a 3-coloring clause-gadget failed too.

Figure 14: An idea for part of the clause-gadget. If X1 is colored B (false)
we are forced to color Y1 with C, but if X1 is true, we have a choice.

clause Cj, attach a clause-gadget. Let G denote the re-
sulting graph.

Property (1)—Yes-to-Yes: Suppose the instance of 3-
SAT has a satisfying truth assignment. If Xi � T in this
assignment, color vertex xi with A and x̄i with B; oth-
erwise color vertex xi with B and x̄i with A. Color a
with A, b with B, and c with C. Since the assignment is
satisfying, each clause contains at least one literal
whose vertex is colored with A. By the lemma, the
clause-gadgets can be colored legally. Therefore G can
be legally 3-colored.

Property (2)—Yes-from-Yes: Suppose there exists a
valid 3-coloring of G. Without loss of generality a is
colored with A, b with B, and c with C. For each i, one
of the two vertices xi, x̄i must be colored with A and

the other with B because of the edges (xi, x̄i), (xi, c), and
(x̄i, c). Then by the lemma, at least one of each clause’s
literal’s vertices must be colored with A. In the 3-SAT
instance, set Xi � true if and only if xi is colored with
A. This truth assignment is satisfying because at least
one of each clause’s literals is true.

Property (3)—� is fast: The construction of G takes
polynomial time.

In a typical published NP-hardness proof, the ex-
planatory references to edges would be omitted, as
would the entire motivating discussion preceding the
algebraic description. The gadget would probably not
be illustrated, since it is not complicated enough. All
this makes NP-hardness proofs so hard to read that
many experts rarely read other people’s proofs! It is
usually easier to construct one’s own proof, perhaps
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Figure 15: This valid clause-gadget can be legally 3-colored if and only
if at least one of the three literals X1, X2, X̄3 is true (colored A).

with the hint of knowing what problem to transform
from.

In my experience, it usually is not too much trouble
to cook up a gadget for an NP-hard problem. As with
enforcers, if you can’t build gadgets for a problem, it
could well be a sign that the problem is not NP-hard.
Answers:

—There would not be any consistent meaning to the
colors of variables. Indeed, X1 could be A, X2 could be
B, and X3 could be C, so colors of variables would not
be restricted to two choices.

—If at least one of the literals in the clause is true,
hence the clause is satisfied, then the corresponding
clause-gadget portion of the graph can be colored.

—If the clause is false, the corresponding clause-
gadget cannot be colored.

—Condition (2) fails again.

8. Dealing with NP-Hard Problems
Complexity theory is usually an excuse for laziness. Give me
a problem: I’ll solve it (Dantzig 1979).

How do you solve a hard problem? Fortunately, the

NP-hard classification leaves several important loop-
holes. SomeNP-hard problems can be solvedwell with
dynamic programming. The realistic cases might have
special properties that permit effective solution. For ex-
ample, if the realistic cases are not very large, when
they are modeled as IPs, you should consider solving
your problem with commercial math-programming
software. One of the major accomplishments in our
field over the past couple of decades is the solution of
the medium-size IP, partly due to increases in com-
puter power, and partly due to the enormous improve-
ment of our algorithms.

If you can’t readily solve your problem with off-the-
shelf software, you may need to choose between
heavy-duty mathematical programming methods and
heuristics. Since tools for the former now accomodate
the latter, you may also pursue both alternatives.

When is it appropriate to use mathematical pro-
gramming? If the problem is stable, not apt to change
within a year or two, and of great economic value, so
getting that extra 0.1 or one percent is worth a great
deal, and you are confident of the accuracy of your
model and data, it may be worth the investment in
time and money to pursue a mathematical program-
ming solution. Many contenders for the Franz Edel-
man Award fall into this category.

When are heuristics appropriate? When you are un-
sure of the model, for example, when you can only
approximately quantify the objective. When your data
are not accurate and you don’t need an exact solution
to a guesstimated problem. When the problem is tran-
sient or unstable, and robustness in the solution
method becomes important. When the instances are
really enormous or the problem very difficult in prac-
tice (for example, job shop scheduling, quadratic as-
signment). When solution speed is critical. When your
client prefers a decent solution now to a great solution
later. When the amount of money at stake doesn’t jus-
tify using other techniques. And when the expertise
necessary for other methods is not available. In these
situations, you may choose to pursue heuristic solu-
tions. If they are successful, you can always reassess
the option of employing a more costly but more exact
solution method. Complexity theory can sometimes
help you to assess the prospects for an approximate
solution.
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Finally, you can often solve a hard problem by
changing your model. Turn a constraint into an objec-
tive or vice versa; aggregate or extract what matters
most; approximate on the model level rather than so-
lution level. Computational complexity can help you
to choose among models by assessing their difficulty.

Pseudo-Polynomial Algorithms, Dynamic
Programming, and Unary NP-Hardness
A few NP-hard problems can often be solved in prac-
tice via dynamic programming. These problems are
hard only in the sense of getting exact solutions when
the numbers are many digits long. If your problem nat-
urally occurs as a knapsack, partition, or other such
problem, you are in luck if the data do not occur to
great precision or if you do not require an absolutely
precise solution. However, many other NP-hard prob-
lems, including 3-partition, bin-packing, and all
number-free problems, are not susceptible to quick so-
lution by dynamic programming. Complexity theory
provides an additional tool to classify susceptibility to
dynamic programming.

How big a table do we need to solve the knapsack
problem by using dynamic programming? If the data
are integers and the knapsack capacity is K, the table
is n by K � 1 large, requiring O(nK) work. It suffices
to store one row of the table at a time, but there is no
way to avoid the factor of K (in the worst case) work
and space requirements. The algorithm is called
pseudo-polynomial because it is only fast when K is
small. This ties back to my discussion in §1 about
length. In that section, I mentioned that the natural
parameters of a problem are usually good surrogates
for the input length. If the dynamic programming al-
gorithm is polynomial in those natural parameters, we
say the algorithm runs in pseudo-polynomial time.

However, theoretically speaking, K can be enor-
mous. This is because it takes only log K digits to write
the number K. If K were an 80-digit number, the re-
quired table could not fit into the combined disk mem-
ory of all Internet-linked computers. In the proof that
knapsack is NP-hard, the transformation takes a prob-
lem like exact 3-cover on a ground set of n objects and
makes numbers that are each about 4n digits long. This
is polynomial in length, but the numbers are of extraor-
dinarily high precision. No naturally occurring knap-
sack instance would require that much precision. So,

most real problems that are naturally modeled by
knapsack have fairly small K, but other problemswhen
transformed to knapsack will turn out to have impract-
ically large K. In practice, dynamic programming al-
gorithms are apt to run out of memory before they bog
down with CPU usage.

There is another good thing about naturally occur-
ring knapsack cases. Even if K is large, dynamic pro-
gramming will quickly find an approximate solution
to knapsack. Simply round the sizes to a few digits of
precision; round them up if the capacity constraint
isn’t at all soft. (There aremore effective heuristics too.)
This technique is also appropriate when the data are
given to high precision, but you don’t have confidence
in the low order bits.

The bad news is that many NP-hard problems are
not susceptible to dynamic programming. These prob-
lems are called unary NP-hard or strongly NP-hard.
All NP-hard problems that don’t involve numbers at
all, such as 3-SAT or Ham path, are unary NP-hard.
Problems that involve numbers, but are obviously
hard even when the numbers are small, are unary NP-
hard, too. For instance, the TSP is hardwhen edge costs
are 0 or 1 (Ham cycle), so TSP is unary NP-hard. Fi-
nally, some problems, such as bin packing and 3-
partition, are very numerical yet are unary NP-hard.

Watch out for problems that are theoretically solv-
able in pseudo-polynomial time but are like unary NP-
hard problems in practice. Dynamic programming is
great for 2-machine line balancing; it is OK but slower
by a factor of n for 3-machine line balancing; it is im-
practical for 5-machine line balancing. Theoretically, if
m is allowed to vary and get large, the m-machine
problem is like 3-partition or bin packing, and is unary
NP-hard. Although the problem is not unary NP-hard
for any fixed value of m, m � 5 is large, practically
speaking.

Special Structure

All good statisticians cheat by looking at the data (Chernoff
1975).

The realistic cases have special structure if the data
cannot be arbitrary but are restricted in someway. Spe-
cial structure often derives from geometric or other
physical considerations, common causes, or other fac-
tors obvious to the problem-domain expert. One trick
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to elicit this information is to show the expert some
pathological instances and discover why they can’t oc-
cur. Structure can make a problem easy. Unfortu-
nately, many problems remain hard when restricted.
Even so, special structure often permits solution of
larger instances or better quality heuristic solutions.

A network flow problem is a kind of IP with special
structure. While this particular structure is very well
known, other helpful structures can be less obvious.

Here is a true story in which a problem that ap-
peared difficult turned out to be quite easy.

Recently I was having dinner with my friend Ivan
Chase, a biologist. Perhaps because the soup contained
fish, he remembered a question he had meant to ask
me. He had a hundred or so fish in his lab and wanted
to run as many trials as possible of an experiment that
required a small group of fish. No fish could partici-
pate in more than one trial, or the trials would not be
independent. The difficulty was that some groupings
among the fish were OK, and some were not. Ivan
wanted to know what to do.

Immediately I visualized, quite incorrectly, that cer-
tain groups of fish somehow possessed a bad social
dynamic, didn’t get along well, and would spoil the
experiment. Obviously, Ivan had a 3DM problem (3-
dimensional matching, §4). He was trying to form, say,
33 groups of three out of 99 fish, when only certain
groups of three were permitted. Then it occurred to
me that what went wrong might be pairs of fish that
didn’t get along, rather than a complicated dynamic
among three fish. In 3DM the triples abc, abd, and bcd
might all be acceptable, while acdwould not. But if the
problems were due to pairwise interference this could
not occur. Fortunately I remembered a problem
proved NP-hard by Garey and Johnson (1979), called
Partition into Triangles. Given a graph G � (V, E), the
problem is to partition V into |V|/3 triples, such that
for each triple, G contains all three edges between the
members of that triple. So even if groups were unsuit-
able because of pairwise conflicts, Ivan’s problem was
still NP-hard.

I hesitated to tell Ivan that his problem was hard to
solve, perhaps because I had a glimmer of the truth,
but probably because I needed more time to think of a
good heuristic for partition into triangles. I asked what
made groups of fish unacceptable. Ivan explained that

he couldn’t put big fish together with little fish—dif-
ferences of more than 15 percent in weight were not
allowed. “I see,” I responded, and discarding my com-
plexity proof and heuristic ideas, gave him a simple
procedure to maximize the number of groups. If the
three heaviest fish weigh within 15 percent of each
other, make them a group. Otherwise eliminate the
heaviest fish, which belongs to no acceptable group.
Recurse.

The moral of the story is that a problem may look
NP-hard but be so highly structured as to be easy. The
problem domain expert may tell you that certain jobs
must be performed before others: if you visualize an
arbitrary acyclic precedence constraint graph, youmay
be ignoring hidden structure. People close to the prob-
lem often think it is obvious what causes precedence
constraints, preferences, or mutual incompatibilities
(two activities can’t occur at the same time) and don’t
tell you about the natural structure of these constraints
or objectives. In my experience, the operations re-
searcher usually has to elicit information about special
structure from the problem-domain experts, to whom
the structure is either too obvious or too unimportant
to bear mentioning.

In the case of Ivan’s fish, there is an important in-
tuitive explanation of why the special structure of the
problem made it easy. 3DM is difficult because of the
arbitrariness as to which triples are OK and which are
not. If you decide to use the triple abc, this might force
d and e together and simultaneously force f, g, and h
apart. Solving 3DM is like putting together a puzzle in
which what you assemble in one location affects what
can fit together in many other locations. This looks dif-
ficult: making a bunch of interlocking yes-no decisions
to simultaneously satisfy a collection of arbitrary-
looking constraints. The constraint on weight differ-
ence so severely restricts the possible patterns of per-
missible triples that the problem becomes easy.
(Question: What if the total mass of the fish in each
group must equal 300 grams? Is this problem easy or
hard? What if the total mass of the fish in each group
may not exceed 300 grams?)

Here is a method that often works to elucidate spe-
cial structure. Find a transformation � from 3-SAT, IP,
knapsack, (or some other NP-hard problem you un-
derstand well) to your problem. Then apply � to a
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Figure 16: Transform coloring to classroom scheduling by turning colors into rooms. Each vertex becomes a
class, and each edge (i, j) becomes a time period during which both classes i and j meet.

simple no instance of the hard problem whose LP re-
laxation is feasible. (For example, the constraints 2x �

1; 2x � 1, are such a no instance of IP feasibility.) The
resulting instance of your problem is apt to be a small
no instance. However, if special structure is making
your problem easy, this instance likely cannot arise
from the actual circumstances of your problem. Show
this small instance to your problem-domain expert and
ask whether it could happen and if not, why not?
Whatever answer you get will deepen your under-
standing of the real problem.

In an example of the method at work, Mike Carter
and I (1992) investigated classroom-scheduling prob-
lems, where classes that meet at various times must be
assigned to rooms so that no classes use the same room
at the same time. A simple transformation from graph
coloring (§7) shows that finding a feasible schedule for
classes is hard. Each vertex in the graph is a class; each
edge is a time period during which the two incident
classes meet; each color is a room. Assigning colors to
vertices so no two vertices sharing an edge have the
same color is the same as assigning rooms to classes so
no two classes with overlapping time schedules have
the same room.

To use the method, we began with the no instance
of coloring a triangle with two colors (an odd cycle).
The natural LP model would find a feasible fractional
solution in which each vertex was assigned half of each

color. This instance transforms to an infeasible
classroom-scheduling instance (Figure 16). A practi-
tioner criticized this infeasible instance, saying that one
class met from 9:00 to 10:00 and 11:00 to 12:00, which
didn’t happen. This led us to realize that in many ap-
plications, each class uses one interval of time. Using
properties of interval graphs, these problems may be
easier to solve.

In a further application of this method (Carter and
Tovey 1992, pp. S31–32), a practitioner criticized an in-
feasible instance we had generated because some
teacher preferred every possible pair of the four rooms.
This criticism made us realize that there could be a
monotonicity structure among teacher preferences.
This special structure permits scheduling to be done
very easily in many applications, particularly in sec-
ondary schools.

Special structure doesn’t always make a problem
easier. The Ham-cycle problem (and therefore also the
TSP) is hard even for grid-graphs in the Euclidean
plane. Likewise, graph 3-coloring is hard on planar
graphs. 3-SAT has a hard planar version as well: rep-
resent each variable and each clause by a vertex. If a
variable or its complement appears in a clause, place
an edge between the corresponding vertices. Impose
the special structure that this graphmust be planar and
3-SAT is still hard. 3,4-SAT, in which no variable may
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appear in more than four clauses, is another useful
hard restriction of 3-SAT (Tovey 1984).

Proofs of NP-hardness subject to special structure
are often long and difficult. In general, these proofs
either depend on gadgets or on what Garey and
Johnson (1979) call the method of local replacement. It
is often best to impose special structure step by step,
generating a sequence of increasingly constrained NP-
hard problems, finally arriving at the target problem.
It can also help to start the transformation from one of
the restricted NP-hard problems listed above.

While special structure may be a complexity theo-
rist’s headache, it may be just what you need to solve
your problem. Even if special structure doesn’t make
a problem change from hard to easy, it will often give
you an extra order of magnitude in instance size before
your solution technique bogs down. Another thing
that special structure frequently does is to improve the
performance of heuristics. For example, 2-opting for
the TSP has much better performance guarantees if the
distances are Euclidean than if they are arbitrary or
satisfy only the triangle inequality (Chandra, et al.
1999).

Approximate Solutions

The devil’s in the details. . . . But do the detailsmatter? (Tovey
1993).

The idea of heuristic solutions brings up another
complexity question. How hard is it to obtain approx-
imate solutions to optimization problems? For some
problems, this turns out to be NP-hard. For example,
it is hard to find a solution to the traveling-salesman
problem within a factor of 1,000 of optimality. Why?
Because if there were a fast algorithm that always pro-
duced tours less than 1,000 times the length of the op-
timal tour, we could use it to solve Ham cycle quickly.
(Question:What costs would the transformation assign
to the edges?) A breakthrough in complexity theory
has led to many recent results of this sort, including
the max clique approximation problem listed in §4.
Other problems can be quickly solved to within some
constant factor of optimality although it is NP-hard to
guarantee a closer approximation. For example,
Goemans and Williamson (1995) have discovered a
fast algorithm that finds a solution to max out that is
within 48 percent of optimal, although it is NP-hard to

find a solution that is within 44 percent of optimal. The
NP-hardness results utilize the theory of probabilisti-
cally checkable proofs, and the techniques required are
beyond the scope of this tutorial (Håstad 1997).

It is tougher to develop intuition about the complex-
ity of approximability than about the complexity of ex-
act solution. Nonetheless, sometimes you can couple
your understanding of the real problem with your
knowledge of NP-hardness to gain valuable insight.

Based on complexity theory and knowledge of the
problem domain, one would expect the circuit parti-
tioning problem to be fairly nasty. In this problem, the
components of an electronic circuit must be partitioned
into sets. Each set will be packaged as an integrated
circuit, and the partition must minimize interconnec-
tions between partitions or optimize a similar objec-
tive. You should be able to see that the problem is hard
by using a transformation from exact 3-cover (§6). The
key to the transformation is that each component has
to be placed in exactly one set (§4). We might be
tempted to search for an approximate solution that
does not require an exact partitioning, since that seems
to be the source of the hardness. However, our
problem-domain knowledge tells us that a solution
would be useless if it placed some components inmore
than one set or omitted some components. The devil
is in details that matter.

Bramel and Simchi-Levi (1995) provide a lovely ex-
ample of a problem more susceptible to approximate
solution using vehicle-routing heuristics. Vehicle-
routing problems often consist of difficult routing de-
cisions combined with difficult partitioning or bin-
packing decisions. Although bin packing is hard,
approximate bin packing is not hard, and indeed
knowing the approximate value of the optimal solu-
tion to the bin packing is not hard. (This is partly be-
cause, in bin packing, the items don’t have to fit to-
gether perfectly to produce a feasible solution, as they
do in the partitioning problem above. Theymight have
to fit perfectly to produce an optimal solution.) This
insight suggests that the detailed routing be decoupled
and performed after vehicles are assigned to regions,
which helps lead to a theoretically effective heuristic
solution. Bramel and Simchi-Levi then find a more
practically effective heuristic by replacing the routing
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problem with a location problem that can be approxi-
mately solved more easily.
Answers:

—Hard, this is the 3-partition problem.
—Hard. Proof by specialization. When the total mass

of all n fish is 100n grams, the question of whether you
can use all the fish is exactly the 3-partition problem.
Same answer if I had required the mass of each group
to be at least 300 g.

—Costs of 0 for edges in the original graph and 1
otherwise.

9. Other Complexity Classifications
Some problems cannot be solved by any algorithm.
Software testing is a good example of a problem that
is at this extreme level of complexity. It has been
proved that no algorithm can correctly and thoroughly
detect bugs in software.

This complexity gives us some insight into what is
difficult and time consuming in our field. Generally
speaking, it is an unsolvable problem to verify that a
formal structure (for example, a model or a computer
program) does what we want it to do. I believe this is
a reason why OR/MS researchers have done little for-
mal work in the important area of modeling andmodel
validation—it is a very hard problem (Dantzig’s (1963)
activity analysis, Geoffrion’s (1987, 1996) structured
modeling, and Hackman and Leachman’s (1989) con-
tinuous time framework for modeling production sys-
tems are exceptions).

Co-NP Completeness and Lack of Succinct
Characterizations
Not all NP-hard problems are alike, although I’ve dis-
guised that fact until this point in the tutorial. Figure
17 shows how the class of NP-hard problem subdi-
vides into NP-complete, co-NP-complete, and other
categories.

Here is an NP-complete problem: the set of all
matrix-vector pairs (A, b) such that for some integer
vector x, it is true that Ax � b. Visualize this problem
as a point in the region NPC in Figure 17. Here is a co-
NP-complete problem: the set of all matrix-vector pairs
(A, b) such that for no integer vector x is it true that Ax
� b. Visualize this problem as a point in the region co-
NP-complete in Figure 17. The NP-complete problem

consists of the yes instances to IP feasibility, while the
co-NP-complete problem consists of the no instances.

NP-complete problems are not the same as co-NP-
complete problems, though both are NP-hard. If you
are lucky, you can solve an NP-complete problem
quickly by guessing the answer and verifying its cor-
rectness. For example, to solve the NP-complete IP fea-
sibility problem just defined, you could luckily guess
a feasible vector v and quickly verify that Av � b and
that v is integer.

However, as far as is known, co-NP-complete prob-
lems cannot be solved quickly by good guessing. If an
IP instance is infeasible, there isn’t in general a way to
prove infeasibility short of trying an exponential num-
ber of possibilities and showing that each fails. Even a
cutting-plane proof is apt to be exponentially long.
Chvatal (1973) demonstrates that finding a cutting-
plane proof can be identical to finding an exact solu-
tion using branch and bound.

The class co-NP-complete gives us insight into how
IP codes spend their time. It is commonplace for an IP
solver code to find an optimal solution in a few min-
utes and then spend a few hours verifying optimality.
What is happening? Let v* be the optimal solution
value. The IP solver is solving two problems. First, it
solves the NP-complete problem of finding an x with
objective value as good as v*. Second, it solves the co-
NP-complete problem of verifying that there isn’t any-
thing better than v*. (Question: What no instance is
being solved?) Complexity theory tells us that even if
we hot-start our IP code with the optimal solution, it
still can take a long time to verify optimality, because
any proof of optimality may have to be exponentially
long.

At present, we are better at heuristically solving
hard searching problems (NP-complete) than at heu-
ristically solving hard verification problems (co-NP-
complete). If you require proofs of optimality, you are
likely to add significantly to your computing
requirements.

You can also use co-NP-completeness theory to
show the hopelessness of a quest for a simple charac-
terization. For example, researchers spent a couple of
decades seeking concise necessary and sufficient con-
ditions for the existence of a core in spatial voting, but
the co-NP-completeness of the problem implies that
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Figure 17: The co-NP-complete problems are complements of the NP-complete problems. Both classes are within
the class of NP-equivalent problems, which is within the class of NP-hard problems.

this search was doomed from the start (Bartholdi et al.
1991). Coxson (1994) showed that attempts to find a
concise test for P-matrices were similarly doomed.

Definitions of NP, Co-NP, and NP-complete
A string is a finite sequence of 0’s and 1’s. Any instance
of any of our problems can be represented as a string.
The set of all possible strings is {0, 1}.* A yes-no prob-
lem L � {0, 1}* is a set of strings that consists of all
cases for which the answer is yes. For example, the
problem of whether an integer is even is the set of
strings whose rightmost character is 0. IP feasibility is
the set of all strings representing a matrix-vector pair
(A, b) such that Ax � b for some integer vector x.

A computer program recognizes a problem L if,
given a string s � {0, 1}* as input, it outputs yes if s �

L and outputs no if s � L. The class P of easy problems
(§1) takes its name from “polynomial time.” P is the
set of all problems L for which there exists a computer
program that recognizes L and runs in time polyno-
mial in |s|, the length of the input string. Since a prob-
lem is itself a set of strings, we often refer to P as a
class of problems rather than as a set of problems to
avoid confusion between sets and sets of sets.

The complement of a problem L is denoted by L̄ �

{0, 1}* � L. If L � P then also L̄ � P. (Question: Why
must this be true?) The complement of the class P
would be denoted co(P); it consists of the complements
of all problems in P. Given the above question, co(P)
� P, so we don’t use the term co(P).

Now we define NP, which, contrary to popular be-
lief, does not stand for “not polynomial.” It means
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“nondeterministic polynomial,” because if you allow
lucky guesswork, then the problems can be solved in
polynomial time. A certificate-checking computer pro-
gram C to nondeterministically recognize a language L
takes two distinct strings as input, s and a “certificate”
string c. The program C outputs yes or maybe. If s �

L, then no matter what c is, C outputs maybe. On the
other hand, if s � L, then for at least one certificate
string c, C outputs yes. NP is the set of all problems L
for which there is a certificate-checking computer pro-
gram that nondeterministically recognizes L and runs
in time polynomially bounded in |s|. This implies |c|
is polynomially bounded in |s|, for otherwise the pro-
gram would not have time to read all of c.

Determining that a number is composite (not prime)
is a good example of a problem in NP. It might take
you a long time to factor a number s, but once you have
done so, the certificate c can be a divisor of s, and it is
quick for C to check that c does divide s.

The class co-NP is the set of problems that are com-
plements of problems in NP. As far as is known, co-
NP is not the same as NP. Intuitively, this shouldmake
sense if you think about composite numbers. Just be-
cause there is a quick way to demonstrate that a num-
ber is composite doesn’t mean there is a quick way to
demonstrate that a number is prime. (It happens that
there is.) Perhaps a better example is that no one has
ever found a quick way to demonstrate that an IP is
infeasible, even though there obviously is a quick way
to demonstrate that an IP is feasible.

A problem L1 is NP-complete if (i) L1 � NP, and (ii)
every problem L � NP can be transformed to L1 in
polynomial time, as defined in §3. In this tutorial, I
have focused on (ii) because that property causes prob-
lems to be hard. Membership in NP is rarely important
in practice.

The NP-complete problems are the hardest prob-
lems in NP in this sense: if you had a fast solution
method for an NP-complete problem, you could solve
any problem in NP quickly. (Question: How?) The co-
NP-complete problems are similarly defined as the
hardest problems in co-NP. They turn out to be pre-
cisely the complements of the NP-complete problems.
They are NP-hard: if you had a fast solution method
for a co-NP-complete problem, you could solve any
problem in NP quickly.

P-space Completeness
There are other classes of problems that are widely be-
lieved to be harder than both the NP-complete and the
co-NP-complete. The most important of these is the
class of P-space complete problems, the hardest prob-
lems of those that can be solved using a polynomial
amount of computer memory. Usually, if a problem is
P-space complete, it will be harder to solve in practice
than an NP-complete problem. The best-known excep-
tion to this rule is the problem of finding the Lin-
Kernighan local optimum from a given starting point.
P-space complete problems include several natural

questions about electronic circuits, such as the problem
of finding a minimum size circuit to instantiate a given
Boolean function. You can sometimes tell you are deal-
ing with a problem of this type when it seems to in-
volve an alternating sequence of difficult decisions be-
tween two opposing sides. Many games, including
chess and checkers when generalized suitably to size
n � n boards, are in this category. Other things that
seem to make problems P-space complete are the pres-
ence of feedback, periodicity, or stochasticity.

Several important OR/MS problems are P-space
complete. They include stochastic scheduling, periodic
scheduling, Markov decision problems, queueing net-
works, and systems of differential equations. Several
motion-planning problems for jointed robot arms are
P-space complete as well (Latombe 1991).

In general, adding stochasticity or uncertainty
makes hard problems a whole level harder. The classic
illustration of this phenomenon is the problem of pro-
ject planning under uncertainty. This problem moti-
vated Dantzig (1963) to invent linear programming in
the 1940s. Since that time, people have used LP to solve
countless other problems, but only in the last decade
have people reported real success in solving the origi-
nal motivating problem.

Other Categories
Which problems can be solved faster with parallel pro-
cessors, and which problems are inherently sequential,
so that parallel computing does not help? We can try
to use computational complexity to answer these ques-
tions by studying such problem classes as NC.
Roughly speaking, the class NC is a subset of the easy
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problems that can be solved very quickly, in polylo-
garithmic time (O((log n)k) for some k), on a polyno-
mial number of parallel processors.

At present, however, this portion of complexity the-
ory is not useful to the practitioner. For one thing, only
rarely used network software provides even O(n) par-
allelism for real instance sizes. The main issue is that
the distinctions made by the theory do not carry over
to practice. Many problems that do not seem to be in
NC nonetheless benefit quite handsomely from the de-
gree of parallelism available now. For example, theory
predicts that parallelism cannot help us solve IPs (or
even LPs) much faster. But in practice, parallelism is
helpful. A branch-and-bound code for k parallel pro-
cessors solves IPs about k times faster than a single
processor.

Computational complexity theory has little to say
about continuous nonlinear problems. In practice, con-
vexity is usually the dividing line between easy and
hard (global) optimization, though nonsmoothness can
make things difficult as well. The analog to determin-
ing whether the problem is easy or NP-hard is to de-
termine whether or not the problem has multiple local
optima. The answer roughly dictates what kind of so-
lution method to use or solution quality to expect.
However, when we apply NP-completeness theory to
this domain, we find that problems thought of as sim-
ple in practice are theoretically difficult, for example,
determining whether a point is a local minimum of a
quadratic function. Thus traditional NP-completeness
theory has not been particularly useful.

A problem can be hard in a noncomputational sense.
It is not NP-hard for a human to run a three-minute
mile. On a visit to a manufacturing site, I was told that
the firm had a really hard problem assigning tools
among the four machines in a production line. I
thought the problem was hard because equalizing
workload to avoid bottlenecks is a line-balancing prob-
lem, and the firm had enough machines to make dy-
namic programming impractical (§8). I was completely
wrong! It turned out that, because of differences
among the machines, the firm had no choice as to
which tools to assign to each machine. The decision-
making part of the problem was trivial. The problem
was hard because one of the machines did not have
enough capacity for its tools.

Real problems are often difficult because they are
fuzzy and open-ended. Computational complexity
theory does not explain this type of difficulty, because
it presumes that the problem to be analyzed is well
posed.
Answers:

—If we are minimizing, with integer coefficients, the
instance is, given A, b, c, v*, is there integer x such that
Ax � b and c • x � v* � 1?

—Take the computer program that recognizes L and
change yes to no and vice-versa in the output
statements.

—Attach the transformation to L1 as a front end.

10. Conclusions and Recommended
Reading

Garey and Johnson’s (1979) book is the deservedly
classic reference. Papadimitriou and Steiglitz’s (1982)
book is excellent and is designed for readers who are
familiar with the basics of optimization, rather than
with computer science. For theoretical background,
Sipser’s (1997) book is a fine readable choice.

On the most fundamental level, understanding the
basics of computational complexity should make you
more conscious of how much time your solutionmeth-
ods require and how large your problem instances are.
Your choice of algorithm is often more important than
your choice of hardware or data structures.

On the next level, classifying problems as easy or
NP-hard will tell what kinds of solution methods may
be available. Deciding on an appropriate method de-
pends on many other considerations, including size,
financial stake, model accuracy, and time constraints.

Computational complexity is an ineluctable pheno-
memon. Many problems are hard to solve. Yet, I would
set against that statement the following assertion: re-
alistic cases are almost always easy if you study them
long enough.

Study the realistic cases carefully enough, and you
will find enough special structure to enable their so-
lution. If we count modeling as part of the study pro-
cess, this accounts for much of what we do in OR/MS.
Here is another reason to understand computational
complexity: improving your intuitive judgment of
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hard and easy problemswill make you amore effective
modeler.

However, all is not rosy even if you can solve any
problem if you study it enough. For one thing, it may
not be worth doing. For another, what often happens
when you give the user control of a model and solution
procedure is that he runs them until they die. There
are always things the model does not know about that
the user does. The user tries to push the model into
taking care of these extras until the solution procedure
fails.

What happens is that the problem’s inherent com-
putational complexity resurges. You beat NP-hardness
by knowing your problem really well and finding a
solution procedure that is effectivewithin a small zone.
The user pushes the model out of that zone to a place
where the procedure is ineffective.

It can be very tough explaining this to a user who
thinks, “I only made a slight change and now the
model doesn’t run.” People who believe the computer
is magic may not believe in its limitations. Sometimes
you can convince your users that a problem is hard by
excitedly telling themwhat a fascinating research topic
it makes.

One way or the other we are brought back to the
reality of the inherent computational difficulty of prob-
lems. Experience tells us that most real problems are
hard. Computational complexity then tells us that we
cannot build tools that have all of the following prop-
erties: they solve realistic models, they require little
expertise to use, they find an exactly optimum solu-
tion, they are always fast, and they apply to a broad
range of cases.

We can’t have all of these properties. What trade-
offs are we making or should we make? How we com-
promise on these issues gives us insight into the dif-
ferences between practitioners and theoreticians and
among other groups in our field.

I would like our professional community to have a
discussion about tools. An ideal tool would have all
the above qualities, but that is not possible. The tool
user must make compromises with the complexity of
reality; the tool developer must make compromises
with the reality of complexity. But are the tool devel-
opers making compromises that are effective for the
tool users, and are researchers exploring possibilities

for more effective compromises? Perhaps researchers
could have more impact on practice if they kept these
different trade-offs in mind.
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