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Abstract

The yolk, defined by McKelvey as the smallest ball intersecting all
median hyperplanes, is a key concept in the Euclidean spatial model of
voting. Koehler conjectured that the yolk radius of a random sample from
a uniform distribution on a square tends to zero. The following sharper
and more general results are proved here: Let the population be a random
sample from a probability measure µ on <m. Then the yolk of the sample
does not necessarily converge to the yolk of µ. However, if µ is strictly
centered, i.e. the yolk radius of µ is zero, then the radius of the sample
yolk will converge to zero almost surely, and the center of the sample yolk
will converge almost surely to the center of the yolk of µ. Moreover, if
the yolk radius of µ is nonzero, the sample yolk radius will not converge
to zero if µ contains three noncollinear mass points or if somewhere it
has density bounded away from zero in some ball of positive volume. All
results hold for both odd and even population sizes.

1 Introduction

In the Euclidean spatial model of voting [9, 28, e.g.], voter ideal points are
located in <m and voters prefer policies (points) closer to their ideal points
under the Euclidean norm. This is perhaps the most widely used voting model,
with many applications (e.g. [26, 25, 30, 23, 24, 4, 29, 5]). Ever since the
work of McKelvey and Schofield [17, 27] showed that a core would generally not
exist, and in fact the space collapses into chaotic cycles, much effort has been
made to find a satisfactory solution to the equilibrium problem in the spatial
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model. The yolk, established in [15, 18], has emerged as an important solution
concept. Defined as the smallest ball intersecting all median hyperplanes, it is
the region of policies where a voting game will tend to stabilize. The yolk is also
important by virtue of its close relationships to other solution and evaluation
concepts, such as the uncovered set [20, 21, 10, 18], the Pareto set [12], the win
set [10], Shapley-Owen power scores [11], epsilon cores [32], and the finagle point
[35]. Several researchers [12] have investigated the size of the yolk, and some
have speculated that the yolk may tend to be small as the voter population
increases. This would be a very desirable property, for if the yolk were very
small there would (arguably) be a de facto equilibrium even if no single point
were undominated. Koehler [16] combines geometric analysis and simulation to
suggest that if voter ideal points are uniformly distributed in a square region of
<2, the yolk shrinks towards a point as the population grows. We say that the
uniform distribution on a square is strictly centered: every halfplane that does
not contain the center has total probability < 1

2 . In a companion paper [33] the
author applies the Glivenko-Cantelli theory of uniform convergence to prove the
following sufficient condition: If n ideal points are sampled at random from a
strictly centered, (uniformly) continuous probability measure µ with compact
support on <m, then the yolk radius converges to 0 and the yolk center converges
to the center of the distribution µ, almost surely.

This paper employs more specialized techniques to generalize and sharpen
the result just cited. The main results are these: The strict centered condition
is, by itself, sufficient for almost sure yolk shrinkage. The same condition comes
close to being necessary as well; it is necessary for large classes of probability
measures including all discrete distributions in two or more dimensions, and all
measures that somewhere put positive continuous density in an open ball. The
condition also implies almost sure convergence of the yolk center.

To give these results some intuitive foundation, we use the language of dis-
tributional analysis. Suppose the population is a random sample of n points
from a probability measure µ on <m, inducing empirical measure µn . Extend
the definition of median hyperplane to distributions: hyperplane h is a median
of µ if each halfspace defined by h has measure at least a half, µ(h+) ≥ 1

2 and
µ(h−) ≥ 1

2 . The distributional yolk Y (µ) would then be defined as the smallest
ball intersecting all median hyperplanes. One would expect that the yolk of the
sample Y (µn) would converge to Y (µ) as n → ∞, and therefore the natural
condition for the radius of Y (µn) to converge to 0 would be that Y (µ) have zero
radius.

However, the yolk of a random sample may fail to converge to the distri-
butional yolk, in both radius and location. An example is given in section 3.
Nonetheless, in this paper we prove that the natural strict centeredness con-
dition, that the radius of Y (µ) equals zero, is a sufficient and often necessary
condition for the sample yolk to shrink to 0 almost surely, in any dimension. In
particular, the yolk radius does not converge to zero for any distribution that
violates the condition, if somewhere the distribution has density bounded from
zero in some open ball, or if it contains three noncollinear mass points, or if it
has singular positive density on the surface of a compact manifold with nonzero
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volume.
These conditions encompass all of the commonly used models of random

voter population in the social choice literature, including the standard multi-
variate normal, uniform distributions on balls, spheres, and hyperrectangles,
and all discrete distributions, except for the one-dimensional discrete. Because
many populations of interest are moderate in size, the rate of convergence is of
concern as well. We obtain an explicit but loose upper bound on the rate of
convergence for the uniform distribution on the square.

Building on properties of the yolk established in the literature, our results
have similar strong implications regarding the shrinkage and/or non-shrinkage
of win sets, the Pareto set, and the uncovered set, and regarding the outcomes
of strategic voting under voting agendas, and epsilon-cores. The win set W (x)
of a point x is the set of points that defeat x by majority vote. Denote the
yolk center and radius by c and r, respectively. Let B(c, k) denote the ball of
radius k about c; if k < 0 then B(c, k) = φ. It is easy to see [22] that the winset
lies between two balls about c, in particular that W (x) ⊆ B(c, ||x − c|| + 2r)
and W (x)

⋂
B(c, ||x − c|| − 2r) = φ. Therefore, if r → 0, we have a very good

idea as to the location and small size of the winsets. If y ∈ W (x) ⊃ W (y),
or equivalently y defeats x and y defeats every point that x defeats, then we
say y covers x. The uncovered set [20] is the set of all points not covered by
any point. The uncovered set is contained in the ball B(c, 4r) [18]. Therefore,
if r → 0, the uncovered set shrinks towards a point. Since outcomes of many
voting agendas are in the uncovered set even if voting is strategic (see [10]), a
small yolk radius would greatly limit the set of possible outcomes. A point is
in the ε-core if no other point is preferred to it by more than ε by a majority of
voters. An amendment sequence will converge to the ε-core at a rate inversely
proportional to the yolk radius [32]. Thus a small yolk radius greatly improves
the dynamics of ε-cores.

The next section establishes notation and definitions. Section 3 proves the
sufficiency theorem, that the yolk radius shrinks to 0 with probability 1 if the
distribution is strictly centered. Section 4 improves the convergence rate for sev-
eral specific distributions. Section 5 proves that strict centeredness is necessary
for almost sure convergence for all distributions on <m with positive density
in some m-dimensional ball, for all distributions containing three noncollinear
mass points, and for another class of distributions that includes the uniform
distribution on the unit sphere. Section 6 proves that strict centeredness also
ensures convergence of the yolk center. Section 7 states conclusions and some
open questions.

2 Definitions and Notation

We work in Euclidean space <m. Let µ denote a probability measure on <m.
When n points are randomly sampled from µ, the discrete distribution that puts
mass k/n on each point that occurs k times is called the empirical distribution,
denoted µn. For any hyperplane h ∈ <m, denote the two closed halfspaces
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defined by h as h+ and h−, respectively, where h− contains the origin (if h
contains the origin the ambiguity won’t matter). A hyperplane h is a median
of µ iff µ(h+) ≥ 1

2 and µ(h−) ≥ 1
2 . In the definition of median, µ may be

any probability measure, including empirical distributions. The yolk of µ is a
smallest ball intersecting all median hyperplanes of µ. The yolk’s radius and
center are respectively denoted r(µ) and c(µ). A probability measure µ is strictly
centered at 0 iff for every hyperplane h not passing through 0, µ(h+) < 1

2 . A
probability measure µ(X) is strictly centered at z iff µ(X+z) is strictly centered
at 0. It follows from these definitions that µ is strictly centered at z iff the yolk
of µ is the point z.

Let V denote a sample of n (not necessarily distinct) voter ideal points in
<m. The standard definition of a median hyperplane is a hyperplane h such
that |h+ ∩ V | ≥ n/2 and |h− ∩ V |/n ≥ n/2. We permit n to be odd or even.
Now, let Vn denote the empirical distribution corresponding to V . Then for
any subset S ⊆ <m |S ∩ V |/n = Vn(S). In particular, for any hyperplane h
|h+ ∩ V |/n = Vn(h+). Therefore if Vn = µ the definition of median hyperplane,
yolk, yolk radius, etc. which we have given for probability measures in general
are equivalent to the standard definitions for finite configurations of voter ideal
points.

A median hyperplane h = {x : c · x = c0} is strict if no hyperplane parallel
to it is median, that is, no hyperplane defined by the same normal vector c,
of form h′ = {x : c · x = c′0 6= c0}, is median. The median space is the linear
subspace spanned by the (normal) vectors that define strict median hyperplanes
of µ. The median dimension of µ is the dimension of the median space. For
example, µ on <2 has median dimension 2 iff it has at least two distinct strict
medians. As another example, µ on < has median dimension 1 iff it is strictly
centered.

Let X1, X2, . . . be a sequence of random variables on a common probability
space Ω. If for all of Ω except a subset of probability measure zero, it is true
that for all ε > 0 there exists N such that for all n ≥ N , |Xn − t| < ε, then we
say Xn converges to t almost surely. The term almost surely is often abbreviated
as a.s.; it is synonymous with with probability 1, often abbreviated w.p.1, and
with almost everywhere, often abbreviated a.e.. We limit our usage to the first
choice, although it is tempting to claim that “the yolk converges to a point
almost everywhere” in Theorem 1.

3 Shrinking the yolk

The goal of this section is to prove that the sample yolk radius r(µn) converges
to 0 if the distributional yolk radius r(µ) equals 0. Perhaps the most natural way
one might attempt a proof would be to show that in general r(µn) converges to
r(µ). However, the more general statement is false! A simple counterexample
is the distribution µ with mass 1

4 at each vertex of a unit square. The lines
defined by the diagonals and the sides of the square are all medians of µ; the
yolk of µ is the inscribed circle of the square. Now consider a sample of n
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points from µ: as n → ∞ the two diagonals will almost surely be medians of
the sample configuration, but the probability tends to zero that the two parallel
sides of the square will be median. (See the proof of Proposition 5 for a rigorous
explanation). So most of the time the yolk of the sample will be the inscribed
circle of a right triangle whose legs are two sides of the square. Thus the sample
yolk radius converges (in probability anyway) to 1/(2 +

√
2) while µ has yolk

radius 1/2, and the sample yolk center doesn’t converge at all. Nonetheless we
will prove that r(µn)→ r(µ) if r(µ) = 0.

In the proof of the theorem that follows, we relax a nonlinear optimization
program for the yolk radius to a linear program, and apply the fundamental
theory of linear programming. This kind of theoretical use of linear programming
was pioneered by Dantzig (see e.g. [7]); a more recent example is [1]. The rest
of the proof mainly uses the probabilistic method, expounded in [2].
Theorem 1: Let a population n voters be sampled independently according to
any distribution µ on Rm strictly centered at 0. Then as n→∞, the radius of
the sample yolk r(µn)→ 0 almost surely.

Proof: Let the voters be denoted V = {v1, v2, . . . , vn} where vi ∈ <m. A
median split of V is defined to be any pair of sets (S, T ) such that:

• S ∪ T = V .

• |S| ≥ n/2; |T | ≥ n/2.

• |S ∩ T | = 1 (resp. 0) if n is odd (resp. even).

A hyperplane {x : p · x = p0} is consistent with a median split (S, T ) iff

p · vj ≥ p0 ∀vj ∈ S

p · vj ≤ p0 ∀vj ∈ T.

In other words, h is consistent with (S, T ) if S ⊂ h+ and T ⊂ h−. Note that
there may be many voters on h, i.e. |h ∩ V | ≥ |S ∩ T |. It is obvious that a
hyperplane is median iff it is consistent with at least one median split. For any
median split (S, T ) and any point z ∈ <m the nonlinear program below finds
the consistent median hyperplane farthest from z.

max |p · z − p0| subject to: (1)
m∑
j=1

p2
j = 1 (2)

p · vi ≥ p0 ∀vi ∈ S (3)
p · vi ≤ p0 ∀vi ∈ T (4)

Constraint (2) normalizes the hyperplane (p, p0) and the other two constraints
(3) and (4) ensure it is consistent with (S, T ). If no solution to (2,3,4) exists we
take the value of the objective function (1)to be −∞.
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Let M denote the set of all median splits. Since every median hyperplane
is consistent with some (S, T ) ∈ M, the system below finds the radius of the
smallest ball centered at z that intersects all median hyperplanes.

max
(S,T )∈M

[value of (1) subject to (2,3,4)] (5)

We call this the radius of the z-centered yolk, and denote it rz(). In principle,
the yolk can be found as the minimum of (5) over all z. Since the value of (5)
is a supremum of convex functions, it is a convex function of z and finding the
yolk would not be too difficult computationally if (5) could be solved easily.
However, Bartholdi et al.[6] show it is co-NP-complete just to determine if the
radius of the yolk is zero, when the dimension m is not fixed. So the system
above probably cannot be made significantly more concise.

For any z, the radius of the z-centered yolk is at least the radius of the true
yolk, rz(V ) ≥ r(V ). We will fix z = 0 and denote r0(V ) as the radius of the
0-centered yolk.

Summarizing what we have so far,

r(V ) ≤ r0(V ) = max
M

max |p0| s.t. (6)

‖p‖ = 1
p · vi ≥ p0 ∀vi ∈ S
p · vi ≤ p0 ∀vi ∈ T

There are two problems with (6). The inner optimization is nonlinear, and
the outer maximization is taken over the exponentially large set of median splits
M. To circumvent these problems, we introduce a linear programming relax-
ation:

r0(V ) ≤ max
M

max |p0| s.t. (7)

−1 ≤ pj ≤ 1 ∀j = 1, . . . ,m (8)
p · vi ≥ p0 ∀vi ∈ S (9)
p · vi ≤ p0 ∀vi ∈ T (10)

(We can drop the absolute value signs on p0 because swapping S with T reverses
the sign of p0 in the optimum solution). The set of linear programs (LPs) in
(7–10) has some nice properties which we now use. The key property is that
they all have the same set of basic solutions! The different LPs differ in their
choice of S and T , but this only affects the direction of the inequality constraints
(9–10). If a constraint is tight, it is the same regardless of S and T . Thus the
exponentially large number of LPs agree on what is basic; they just disagree
about what is feasible. And there are at most

(
n+2m
m+1

)
< (n + 2m)m+1 basic

solutions, a polynomial number since m is fixed.
Any basic solution may be specified by three sets of indices L (Lower), U

(Upper), and T (Tight):
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U ⊆ {1, . . . ,m};
L ⊆ {1, . . . ,m};
T ⊆ {1, . . . , n};
U ∩ L = ∅; |L|+ |U |+ |T | = m+ 1,

where j ∈ L⇒ pj = −1, and j ∈ U ⇒ pj = 1, and also i ∈ T ⇒ p · vi = p0.
In words, L and U force the corresponding coordinates of p to their lower

or upper bounds, and T forces the hyperplane (p, p0) to pass through the cor-
responding voters. (If µ is smooth, then with probability 1 the only feasible
basic solutions will have 1 ≤ |T | ≤ m: we employ this fact in the next section
to improve the upper bounds for some specific distributions µ.)

By the fundamental theory of linear programming [7], the maximum of the
system (7–10) is attained at a basic feasible solution for some (S, T ). This is a
basic solution that is feasible with respect to the constraints (8) and is consistent
with some median split. (By definition, a basic solution need not be feasible, it
only must satisfy m linearly independent constraints at equality.) Thus

max(7) subject to (8, 9, 10) = max
all basic solutions (p, p0) to
(8,9,10) that are median hyper-
planes and satisfy (8)

p0. (11)

Fix ε > 0. Let the basic solutions be indexed by k = 1, . . . ,K where K <
(n+ 2m)m+1. Thus the kth basic solution is specified by the triple (Lk, Uk, Tk)
and denote the resulting solution by (pk, pk0). Where appropriate we allow the
m + 1 vector (pk, pk0) to signify the associated hyperplane {x : pk · x = pk0}.
Consider the following events:

Ak : (pk, pk0) is a median hyperplane.

Bk : pk0 > ε.

Ck : −1 ≤ pkj ≤ 1 ∀j = 1, . . . ,m.

If for any k all three of these events occur, then by (11) the value of the system
(7–10) will exceed ε. Therefore we seek upper bounds on the probability of the
union over k of the intersection of these triples of events. Using a simple but
extremely useful bounding technique of probabilistic combinatorics [2] followed
by an equally simple application of Bayes’ rule, we have

Prob{
K⋃
k=1

(Ak ∩Bk ∩ Ck)} ≤

K∑
k=1

Prob(Ak ∩Bk ∩ Ck) ≤

K∑
k=1

Prob(Ak|Bk ∩ Ck).

Suppose Bk and Ck occur. The former implies |pk0 | > ε, the latter im-
plies ‖pk‖ ≤

√
m; therefore the distance from the hyperplane to the origin
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|pk0 |/‖pk‖ > ε/
√
m, a strictly positive constant. By hypothesis, µ is strictly

centered at the origin so there exists λ > 0 (depending only on ε/
√
m) such

that the total mass in the halfspace (pk, pk0)+ is at most 1/2 − λ. (This is the
second use of the “constant factor”

√
m.)

Each basic solution depends on only a few of the voters vi. Consider any
particular k. The hyperplane (pk, pk0) is determined by vi ∈ T k and the sets
Uk, Lk, but is independent of vj for all j 6∈ T k. This is because vj is independent
of vi for all j 6= i. (Another way to see this is to generate voters vj 6∈ T k first,
then generate the voters vi ∈ T k second. At the end of the first step, nothing
more is known about (pk, pk0) than at the start.)

Let the random variable X be the number of voters vj 6∈ T k which fall in
(pk, pk0)+. For (pk, pk0)to be median, X would have to be at least n/2− |T k| ≥
n/2 −m − 1. Now since the vi are independent, X simply follows a binomial
distribution B(r, q) with r = n−|T k| ≥ n−m−1 and some q ≤ 1/2−λ, which is
dominated by the distribution B(n, 1

2 −λ). Let Y follow the latter distribution.
Then the probability (pk, pk0)is median is less than Prob(Y ≥ n/2 − m − 1).
Applying Chernoff-type bounds [2, p.235] to Y − E[Y ] yields

Prob(Y − E[Y ] ≥ τ) < e−2τ2/n.

Select τ = λn−m− 1. Then

Prob((Y ≥ n/2−m− 1) < e−2(λn−m−1)2/n

= e−2λ2ne2λ(m+1)e−2(m+1)2/n

< c1c
n
2

for positive constants c1 = e2λ(m+1) and c2 = e−2λ2
< 1.

Summarizing the preceding, we now have shown that for any fixed ε > 0,
Prob(Ak|Bk ∩ Ck) < c1(c2)n for some constants c1 and c2, c2 < 1. Then the
probability that any of the K basic solutions is feasible (in some LP) and has
objective function value more than ε is

Prob

[
K⋃
k=1

(Ak ∩Bk ∩ Ck)

]
≤ Kc1cn2 ≤ c1(n+ 2m)m+1cn2 . (12)

This behaves as nmcn2 which obviously goes to 0 as n→∞. (Notice that event
Bk was defined as the objective function value of the linear program exceeding
ε, not the hyperplane maximizing the objective being more than ε/

√
m from

the origin. This is because the maximum to (7–10) need not occur at the same
physical hyperplane as the maximum to (6).) Applying the inequalities from
(6–11), we find

Prob [r(V ) > ε] < c1(n+ 2m)m+1cn2 → 0 (13)

as n→∞. Therefore the radius of the yolk shrinks to 0 in probability.
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To prove the stronger fact of almost sure convergence, we take advantage
of the geometrically decreasing factor cn2 . In 13, for sufficiently large n ≥ N
the right hand side c1(n + 2m)m+1cn2 < 1. Observe that for some constants
c > 0, c2 < 1,
∞∑
n=1

Prob(r(V ) > ε) < N+
∞∑
n=N

cnm+1cn2 < N+
∞∑
n=N

cc
n/2
2 < N+

c

(1− c1/22 )
<∞

because c2 < 1. By the Borel-Cantelli lemma [14], this proves the theorem. �

Corollary 1.1 If voters are drawn independently from any of the following
distributions in <m: multinormal (nonstandard), uniform on the unit ball, unit
sphere, or hypercube — then the radius of the yolk converges to 0 almost surely.

Corollary 1.2 If µ is strictly centered at z then the radius of the sample z-
centered yolk rz(µn)→ 0 almost surely as n→∞.
Proof: This follows because we proved Theorem 1 via the inequality (6).

Recall from the introduction that the uncovered set has been shown to be
within a constant factor of the radius of the yolk from the yolk center [18]. As
a corollary to Theorem 1, we therefore have:

Corollary 1.3 If n voters are drawn independently from a strictly centered
distribution on <m the size of the uncovered set converges to 0 with probability
1 as n → ∞. Hence [31] the outcome of strategic voting under an amendment
agenda becomes nearly known as the population increases.

Another solution concept, the Banks set, is a subset of the uncovered set.
Therefore its size converges to zero too under the conditions of Corollary 1.3.

To conclude this section, we derive an explicit upper bound on the conver-
gence rate of the yolk radius for the uniform distribution on a unit square.
Remark 1.4 For m = 2, if µ has zero mass on any line, the probability that the
yolk radius exceeds ε in inequality 12 may be tightened from c1(n+ 2m)m+1cn2
to c12n(n+ 1)cn2 .
Proof: The probability is zero that a line passes through 3 voter ideal points,
because a homogenous system in p, p0 from (8–10) results with unique solution
0 with probability 1. Thus the number of basic solutions to be considered drops
from ∼ nm+1 to 2n(n+ 1).

In the proof of Theorem 1, λ > 0 is such that the total mass in a halfplane
defined by a line at distance ε/

√
2 is at most 1/2− λ. By elementary geometry,

for ε ≤ 2−
√

2 we can take λ = ε/
√

2. Applying this value of λ to Remark 1.4,
the probability that the yolk radius exceeds ε (for 0 < ε < .5858) is less than

c12n(n+ 1)cn2 = e2λ(m+1)2n(n+ 1)(e−2λ2
)n (14)

= e3
√

2ε2n(n+ 1)(e−ε
2
)n. (15)

Unfortunately, this bound is too loose to be useful for n = 100. For n = 600,
the probability that ε > 0.2 is less than 0.000064. Bounds for other distributions
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such as uniform on a circle can be obtained similarly, but they also are too loose
to be much use. Obtaining better bounds remains an open problem.

4 Not shrinking the yolk

For a simple two-dimensional example of the yolk not shrinking, place mass 1/3
on each vertex of an equilateral triangle. For large n the probability tends to
1 that each side of the triangle lies in a median hyperplane. Then the sample
yolk will be the inscribed circle. Thus if each vertex is at distance 1 from the
origin, the yolk radius will have expected value 1/2 in the limit as n→∞.

In the preceding example, the hyperplanes that made the distribution not
strictly centered were precisely those that bounded the yolk radius away from
0. This suggests that if we weaken the condition on µ in Theorem 1 the yolk
radius may not converge to 0. The following is easy to see:

Proposition 2: Fix z ∈ <m and let µ be any probability measure on <m. The
radius of the z-centered yolk of the sample µn converges to 0 almost surely as
n→∞ if and only if µ is strictly centered at z.
Proof: If µ is not strictly centered at z then there exists a hyperplane h at some
strictly positive distance δ from z, such that the mass of µ in the halfspace h+

away from z is at least 1/2. Then the number of voters falling in h+ is binomially
distributed with success probability at least 1/2, so the probability is at least
1/2 that µn(h+) ≥ 1/2. If this event occurs then some hyperplane parallel to h
and contained in the halfspace h+ (possibly the hyperplane h itself) is median.
This means there is probability at least 1/2 that there is a median hyperplane at
distance at least δ from z. Therefore for all n the radius rz(µn) of the z-centered
yolk has expected value E[rz(µn)] ≥ δ/2 which is bounded away from 0.

The “if” portion of the proof is from Corollary 1.2. �

Proposition 2 says nothing about the true yolk radius, because the location
of the yolk center might not converge. Now we come to the main result of this
section, necessary conditions for convergence of the yolk radius to 0. Recall that
no distinct hyperplane parallel to a strict median hyperplane can be median, and
that the median dimension of µ is defined to be the dimension of the subspace
spanned by the normal vectors to strict median hyperplanes of µ. Later we will
show that large classes of probability measures on <m have median dimension
m. Our main result is a necessary and sufficient condition for yolk shrinkage
within these classes.

Theorem 3: Let µ be any probability measure on <m that has median di-
mension m. Let µn result from a random sample of n points according to µ.
Then

r(µ) = 0⇔ r(µn)→ 0 a.s. as n→∞.
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Proof: If m = 1 then as remarked in section 2, r(µ) = 0. By Theorem 1
r(µn)→ 0 a.s., and both sides of the equivalence are always true. Hereafter we
assume m ≥ 2.

Let h1, . . . , hm be m strict medians of µ whose normal vectors are linearly
independent. Then these hyperplanes intersect at some point, say z. For nota-
tional convenience, translate µ so that z = 0. Since µ is not strictly centered,
there exists a hyperplane h0 not containing 0 such that the mass of µ in the
halfspace h+

0 is at least 1/2. The idea of the proof is shown geometrically in
Figure 1. The hyperplanes h0, . . . , hm form an m-dimensional simplex. Nudge
the hyperplanes h1, . . . , hm a little bit towards h0. Since these hyperplanes are
strict medians, when perturbed they are no longer medians. For large n, the
probability tends to 1 that there is a median hyperplane parallel to each of these
and outside the perturbed simplex. Meanwhile the probability is at least 1/2
that similarly there is a median hyperplane parallel to h0 outside the perturbed
simplex. Thus the probability is at least nearly 1/2 that the yolk radius is at
least as large as the radius of the inscribed sphere of the perturbed simplex, so
the yolk radius has expected value bounded away from 0.

Formally, let δ > 0 denote the distance from h0 to the origin. Let h̃i :
i = 1, . . . ,m denote the hyperplane parallel to hi at distance δ/m3 from 0 and
selected so as to intersect the line segment of length δ between 0 and h0. Let
S denote the perturbed simplex whose facets are defined by the hyperplanes h0

and h̃i : i = 1, . . . ,m. Since m is fixed, and the normals to hi : i = 1, . . . ,m are
linearly independent, and h0 is not parallel to any of them (they define strict
medians and there is a median hyperplane parallel to h0 in the halfspace h+

0 ),
the simplex S has inscribed sphere with radius ν > 0.

We now sample the set V of n points independently at random from µ. For
i = 1, . . . ,m let Di denote the event: there exists a median hyperplane with
respect to V , parallel to h̃i, and in the halfspace h̃−i . Similarly, let D0 denote
the event: there exists a median hyperplane with respect to V , parallel to h0,
in the halfspace h+

0 . Notice that if all these events occur, there exist median
hyperplanes forming a simplex containing the simplex S.

Using the same argument as in the proof of Proposition 2, in the limit
as n → ∞, the probability of each of the events D1, . . . , Dm converges to 1,
because the number of voters falling in the halfspace h̃−i follows a binomial
distribution with success probability strictly greater than 1/2. Therefore, for
some N , Prob[Di] > 1−1/4m for all n ≥ N . Similarly, Prob[D0] ≥ 1/2 because
the number of voters falling in the halfspace h+

0 follows a binomial distribution
with success probability at least 1/2. Hence for all n ≥ N :

Prob

[
m⋂
i=0

Di

]
≥ 1− 1/2−

m∑
i=1

1
4m
≥ 1/6.

Then the yolk radius does not converge,

∃N, ∃ν > 0 : Prob [r(V ) ≥ ν] ≥ 1/6 ∀n ≥ N.

11



Figure 1: bounding the yolk radius away from 0

and has expected value bounded away from 0:

E[r(V )] ≥ ν/6 ∀n ≥ N.

So if µ has median dimension m and is not strictly centered, the yolk radius
does not converge to 0; if it is strictly centered it is almost sure to converge to
0 by Theorem 1. This concludes the proof of Theorem 3. �

Under the conditions stated, Theorem 3 shows constructively that the yolk
will not shrink to 0.

Theorem 4: Suppose µ is a probability distribution on <m, m ≥ 2 having
positive density in some m-dimensional ball, or containing at least three non-
collinear mass points. Then µ has median dimension m.
Proof: If µ has three non-collinear mass points, denote them as p1, p2, p3. If
B ⊂ <m is an open ball in which µ has positive density, select three non-
collinear points in B (note m ≥ 2) and denote them as p1, p2, p3. We will
repeatedly make use of a key observation: if h is a median hyperplane of µ
passing through p1, p2 or p3 then h is a strict median. This follows because any
perturbation of h parallel to itself either leaves a mass point, or passes through
a region of positive m-dimensional volume and positive density with respect to
µ.

We proceed by constructing a set of m strict medians whose normal vectors
are linearly independent. Inductively assume for 0 ≤ k < m that there are k
strict medians h1, . . . , hk whose unit normal vectors v1, . . . , vk are linearly inde-
pendent. Since k < m there exists a nonzero vector v in the m− k-dimensional

12



subspace orthogonal to the subspace of (i.e. not spanned by) the normal vectors
v1, . . . , vk. So v · vi = 0 : i = 1 . . . k. Let p be any of p1, p2, p3.

For any vector u such that u · v = 0, the three points p, p + v, p + u define
a 2-dimensional plane. Rotate a unit vector at p in a half circle in this plane,
so for 0 ≤ θ < π the vector, denoted tθ, equals v cos θ + u sin θ. For some value
θ(u, p) of θ in this range, the hyperplane

hθ(u,p) ≡ {x : tθ(u,p) · x = tθ(u,p) · p}

is median. By the key observation, hθ(u,p) is a strict median.
For the inductive base case k = 0, there exists a vector u orthogonal to v

because m ≥ 2. Choose p = p1, set v1 = tθ(u,p) and h1 = hθ(u,p), and continue
the induction.

For the other inductive steps, we seek some vector u and some value for p
for which θ(u, p) 6= π/2. Any value of θ other than π/2 would yield a normal
vector tθ such that

tθ · v = v cos θ + u sin θ · v = cos θ 6= 0.

Since vi · v = 0 for 1 ≤ i ≤ k, tθ would be linearly independent of the vi and the
inductive step would be complete. We will assume that no such vector u and
choice of p exists and derive a contradiction. This will complete the proof.

The vectors p2 − p1 and p3 − p1 must be linearly independent, because
p1, p2, p3 are not collinear (i.e. they are affinely independent). Hence at least
one of these two vectors is not a multiple of em. Without loss of generality
assume ∀αp2 − p1 6= αem. Now define the vector w′ which is the projection
of p2 − p1 onto the space orthogonal to v, w′ ≡ (p2 − p1) − ((p2 − p1) · v)v.
Let w = w′/||w′|| be the vector scaled to be a unit vector. Note w · v = 0
and w 6= 0. By assumption, θ(w, p1) = θ(w, p2) = π/2. Hence the hyperplanes
h1 = {x : w · x = w · p1} and h2 = {x : w · x = w · p2} are both strict medians.
The hyperplanes have the same normal vector w. However,

w · p2 − w · p1 =
1
||w′||

(w′ · (w′ + v((p2 − p1) · v))) =
1
||w′||

(w′ · w′ + 0) 6= 0.

Therefore the two hyperplanes are parallel and distinct, which contradicts their
being strict medians. This completes the proof of Theorem 4. �

If we place weight 1/4 at each vertex of a rectangle, we get a good illustration
of Theorem 4. Notice that in the degenerate case of 4 collinear points, there is
only one strict median.

Corollary 4.1 Suppose µ is a probability distribution on <m, m ≥ 2 having
positive density in some m-dimensional ball, or containing at least three non-
collinear mass points. Then the radius of the sample yolk converges to 0 if and
only if µ is strictly centered.
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Corollary 4.2 Let µ be any continuous probability distribution on <m, m ≥ 2.
Then the radius of the sample yolk converges to 0 if and only if µ is strictly
centered.

Corollary 4.3 Let µ be any not strictly centered distribution on <m : m ≥ 2
with positive density in some m-dimensional ball. Then the size of the Pareto
set does not converge to 0.

Proof: Feld et al.[12] have shown that the yolk is contained in the Pareto set.
The result then follows from Theorem 4.

Notice that the proof of Theorem 4 fails for m = 1. It should, since 1-
dimensional distributions can have median dimension 0 but positive density on
an interval. For example, a uniform density on [0, 1/2] ∪ [3/2, 2] has positive
density on a 1-dimensional ball but has median dimension 0 since it has no strict
medians.

That Theorem 4 is false for m = 1 suggests that Corollary 4.1 would be
similarly false. And indeed, it is easy to see that for the distribution given
above, the yolk radius converges to 0 in probability. Yet part of Corollary 4.1
remains true: in one dimension, strict centeredness is necessary and sufficient
for almost sure convergence. The next proposition clarifies the situation:

Proposition 5 Let µ be any distribution on <. Then the radius of the sample
yolk converges to 0 almost surely iff µ is strictly centered.
Proof: The “if” follows from Theorem 1. So suppose µ is not strictly centered.
Then there exist distinct points x, x+ δ (δ > 0) which are both bisectors of µ.
Thus µ has no mass in the open interval (x, x+ δ), and mass 1/2 in each closed
ray (−∞, x] and [x + δ,∞). Denote these rays L and R respectively. For n
even, if n voters are drawn according to µ, the yolk radius is zero iff exactly n/2
voters fall in L (and R). This occurs with probability

(
n
n/2

)
2−n ∼ 1/

√
n, and

is precisely equivalent to a random (drunkard’s) walk returning to its starting
point. It is well known that a random walk almost surely returns infinitely often
to its starting point, see e.g. [14]. Therefore the radius r(V ) does not converge
to 0 almost surely. On the contrary, it is almost sure that for all N there exists
n ≥ N such that r(µn) ≥ δ/2. Notice that in general when µ has finite second
moment, r(V ) will converge to 0 in probability because 1/

√
n → 0 as n → ∞.

�

The next proposition extends theorem 4 to account for population models
such as the uniform distribution on the sphere.
Proposition 6: Suppose µ is a distribution on <m containing a singular com-
ponent with (strictly) positive density on the surface of a closed compact m−1-
dimensional manifold embedded in <m with interior of positive m-dimensional
volume. Then µ has median dimension m.
Proof: Observe that if h is any bisecting hyperplane of µ passing through any
point x in the interior of the manifold, then h is a strict median. Now the proof
is exactly as in Theorem 4.
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5 The Location of the Yolk

The aim of this section is to prove that if µ is strictly centered, then the yolk
center converges almost surely to the center of µ.
Theorem 7: Let µ be any strictly centered distribution on <m. Let a set V of
n voter ideal points be independently distributed according to µ and let c(V )
denote the center of the yolk of V . Then ||z − c(V )||∞ → 0 almost surely as
n→∞, where z is the center of µ.
Proof: Select arbitrary δ > 0 and let µ be strictly centered around z = 0
without loss of generality. Our goal then is to show that Prob {||c(V )|| > δ}
decreases to 0 at geometric rate.

Construct 2m hyperplanes hi : i = 1, . . . , 2m defined as

hi = {x ∈ <m|xi = δ/2} i = 1, . . . ,m
hi+m = {x ∈ <m|xi = −δ/2} i = 1, . . . ,m

that form a hypercube H of side δ centered at 0. Since µ is strictly centered at
0, the amount of mass in each of the 2m halfspaces h−i containing H is strictly
greater than 1/2. Let τ > 1/2 be the minimum of these amounts. Thus if v is
distributed according to µ,

Prob{v ∈ h−i } ≥ τ >
1
2
∀i = 1, . . . , 2m. (16)

Let Ai denote the event that at least half the voters in V are in the halfspace
h−i . The key idea is that if Aj occurs, then (as in the proof of Proposition 2)
there is a median hyperplane parallel to hj in the halfspace h−j . Suppose Y were
a binomially distributed variable with parameters (τ, n). Since each voter falls
in the halfspace h−i with probability at least τ , we have for all i,

Prob(Ai) ≥ P (Y ≥ n/2). (17)

By Chernoff type bounds on the binomial distribution [2, p. 233],

P (Y ≥ n/2) > 1− e−2n(1/2−τ)2 (18)

Combining (15) and (16) and applying the same bounding technique of [2]
used in the proof of Theorem 1, we have

P

(
2m⋂
i=1

Ai

)
≥ 1− 2me−2n(1/2−τ)2 . (19)

Therefore the probability that all the events occur converges rapidly to 1.
Now for any w ∈ <m, ||w||∞ > δ there is a hyperplane hi at distance greater

than δ/2 from w that separates w from the hypercube H (in the coordinate that
exceeds ±δ). If the event Ai occurs, then rw(V ) > δ/2 because there is a median
hyperplane parallel to hi in the halfspace h−i which is necessarily further than
δ/2 from w.
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We see that if all the events Ai occur, all the w-centered yolks (for all
||w|| > δ) have radii rw(V ) exceeding δ/2:

2m⋂
i=1

Ai ⇒ rw(V ) > δ/2 ∀w : ||w||∞ > δ. (20)

Therefore, if the true yolk radius r(V ) is less than δ/2, and the events Ai
occur, then the center of the yolk cannot be further than δ from the origin. Using
ε = δ/2 in (13) from the proof of Theorem 1, there exist constants c1 > 0, c2 < 1
such that:

P [r(V ) ≤ δ/2] > 1− c1(n+ 2m)m+1c
n/2
2 .

Therefore, the probability that the yolk center is far from the origin is

P [||c(V )||∞ > δ||] < 2me−2n(τ−1/2)2 + c1(n+ 2m)m+1c
n/2
2 (21)

which converges to 0 as n → ∞. As usual, the stronger convergence with
probability 1 follows because the sum (over n) of the terms on the right hand
side of (19) is bounded. This proves Theorem 7. �

The status of a converse to Theorem 7 is a bit odd. Recall that in 1 dimen-
sion, strict centeredness is not necessary for the yolk radius r(µn) to converge
to 0 (at least in probability—see the discussion preceding Proposition 5). In
general for higher dimensions, however, strict centeredness is necessary (Corol-
lary 4.1). The situation is the opposite in regard to the convergence of the
yolk center c(µn). For in one dimension, the proof of Proposition 5 shows that
c(µn) does not converge if µ is not strictly centered (because the random walk
is recurrent). But in two or more dimensions, c(V ) can converge even if µ is
not strictly centered. To re-use an example, suppose µ has mass 1/3 at each
vertex of an equilateral triangle with center 0. Then µ is not strictly centered
yet obviously ||c(µn)||∞ → 0 a.s. as n→∞.

6 Conclusions and Open Questions

The main contribution of this paper is to give a nearly definitive answer to
the question of when the yolk radius of a population sample tends to zero.
It provides a rigorous explanation for simulation results. Theorem 1 shows
that for any strictly centered distribution the size of the yolk will shrink to 0
almost surely. Corollary 4.1 and Proposition 6 give us necessary and sufficient
conditions for yolk shrinkage and hence de facto equilibrium over an enormous
class of distributions, including all that are commonly used.

Since all the common models of voter population in the literature (as well
as some potentially useful ones such as the nonstandard normal) are strictly
centered , it may be tempting to conclude that de facto equilibrium will occur
and so the nightmare of chaos is figuratively dispelled by the (almost sure)
light of probability. However, I think that this is too optimistic a conclusion.

16



First, the asymptotic results given here do not hold for the small committee-
sized populations that so often make real decisions. Second, empirical data can
suggest noncentered distributions, such as the triangular type observed in the
U.S.A. Congress in the 1960s.

Instead, I think that the results here suggest that the yolk radius is a good
measure of how uncentered, and how potentially unstable, is a voting popula-
tion.

This paper leaves several open questions. Chief among them is whether
strict centeredness is a completely general necessary and sufficient condition for
almost sure yolk convergence to a point. The other main open question is to
determine tighter bounds on the rate of convergence than we were able to obtain
in section 3. Some tighter bounds are found in the companion paper [33], albeit
for a less general class of distributions than is treated here.

Another question arises if we compare the conditions for yolk shrinkage with
conditions for equilibrium in configurations and continuous distributions [19, 8,
e.g.]. The condition employed there might here be termed “weak centeredness”:
a configuration is weakly centered at x iff the open halfspaces defined by each
hyperplane passing through x contain mass at most 1/2. Thus the conditions
are quite similar though not equivalent. Another striking similarity with results
in [8] is the following: the sufficient conditions for total ordering given there are
weak centeredness and that all median hyperplanes are strict (to use the termi-
nology from this paper.) This similarity suggests a question of whether the total
ordering result in [8] holds under the weaker conditions of weak centeredness
and full median dimension.

The results on non-shrinkage suggest some extremal problems: given m and
n, for what configuration of n points within a unit ball in <m is the yolk radius
maximal? Given m, for what probability distribution µ, restricted to have
support within a unit ball in <m, is the expected sample yolk radius r(µn)
maximal as n→∞?
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