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Abstract

Test Instance Generators (TIG’s) are important to evaluate heuristic proce-
dures for NP -hard problems. We analyze a TIG in use for the TSP. This TIG,
due to Pilcher and Rardin, is based on a random cut method. We show that
it generates a class of instances of intermediate complexity: not as hard as the
entire TSP class unless NP = co(NP ); not as easy as P unless NP = P . Since
the upper bound on complexity must hold for any efficient TIG, our analysis
verifies that this random cut TIG is, in a sense, as good as possible a TIG for
the TSP. This suggests that the random cut method may be a good basis for
constructing TIG’s for other problems.
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1 Introduction

A tremendous amount of effort in the past two decades has been directed towards
developing good heuristics for NP -hard problems. A good heuristic, classically, has
performance ratio vh/v∗ close to 1, where vh and v∗ denote the value of the heuristic
and optimal solutions, respectively. Since we have no practical way to find v∗ for
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an arbitrary instance (if we did we wouldn’t be resorting to heuristics) we cannot
empirically determine vh/v∗ by testing instances generated purely at random. Hence
we need a Test Instance Generator (TIG) that supplies instances with known optimal
solutions.

Pilcher and Rardin [11, 12] developed a TIG in use for the TSP based on a random
cut method. This TIG was later extended by Rais and Rardin [13]. We analyze the
complexity of the class of instances generated by this TIG. The result is that the TIG
essentially does as well as one could hope for. In particular, while it fails to generate
a class as difficult as the TSP in general, this is a generic failing of efficient TIG’s.
We verify that the random cut TIG does generate a class as difficult as possible (for
efficient TIG’s).

Let us for a moment discuss TIG’s in general. These have been considered by
Sanchis [14]. Sanchis observes that any TIG designer faces a problem analogous to
the cryptographers — how to simultaneously satisfy three conditions:

1. The TIG should generate instances efficiently, i.e., it should run in time polynomial
in the length of the output.

2. The TIG should generate instances with known optimal solutions.

3. The TIG should generate instances that are hard to solve.

If one did not enforce condition (2), one could just generate an instance at random.
If one did not enforce condition (1), one could just generate an instance at random
and solve it by brute force.

Returning to the TSP, let us call the random cut generator the RC TIG. Ideally,
to satisfy condition (3), we would like to be able to generate instances as hard as
the hardest TSP instances. It is very unlikely that RC accomplishes this; for unless
NP = co(NP ), its instances are not at the same complexity level as the general
TSP. This turns out not to be a specific failing of the RC TIG, but rather an in-
evitable consequence of satisfying conditions (1) and (2). This is because the language
generated by anything satisfying (1) and (2) must be in NP ; the “solver” could non-
deterministically replicate the generative process and thereby have a succinct proof
of optimality. That is, there must be a short computation that solves the instance,
namely the computation path of the TIG itself. Therefore, the full complexity of an
optimization problem cannot be captured by a TIG satisfying (1) and (2). [See [14]
for more details.]

Does this mean that the RC TIG must produce easy problems? Surprisingly,
the answer is “no”. We show that unless P = NP , the instances cannot be solved
in (deterministic) polynomial time. This is true even if the instance comes with a
“promise” that it was created by the generator. At the heart of the analysis is the
issue of recognizing valid input.

Taken together, these results imply that the class of instances so generated is of
intermediate complexity. This depends on distinguishing different questions asso-
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ciated with an instance. The exact value question, which asks whether a particular
v is the optimal solution value to a given instance, is DP -complete for general TSP
instances (harder than NP -Complete unless NP = co(NP )), but only in NP for the
instances generated by RC TIG. On the other hand, the search problem, which asks
for an optimal solution given an instance, turns out to be NP -hard for the RC TIG
instances. Hence, the RC TIG generates instances as hard as can be expected from
an efficient TIG.

TIG’s with similar properties could be constructed for many other optimization
problems for which integer programming formulations are known. We believe this
suggests the random cut method is a good basis for effective TIG design, at least
according to criteria 1,2,and 3.

2 Versions of the General TSP and Class DP

The Traveling Salesman Problem is the problem of finding a minimum total weight
hamiltonian (vertex-spanning) cycle of a graph. Our interest will always be in the

symmetric (undirected) case on a completed graph with n
4
= |V | vertices and rational

edge weights. A formal definition is as follows:

Traveling Salesman Optimization (TSP )

Instance: a complete graph G with rational weights on the edges.

Solution: a minimum total weight hamiltonian cycle of G.

Several different language recognition or decision problems can be derived from
this optimization form. The most familiar is the threshold decision problem

Traveling Salesman Threshold (TSP≤)

Instance: same as TSP plus a rational threshold v.

Question: Does there exist a hamiltonian cycle of G with total weight less
than or equal to v?

A related decision problem important to our development is the exact value version

Traveling Salesman Exact Value (TSP=)

Instance: same as TSP≤.

Question: Does a minimum total weight hamiltonian cycle of G have
weight v?

The rest of this section contains elementary background material related to these
three versions of the TSP.
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We have already alluded to the well-known facts that TSP≤ ∈ NP -Complete,
TSP≤ ∝ TSP , and thus TSP ∈ NP − Hard (here and throughout ∝ denotes
polynomial reduction).

Also notice that the optimization version of the TSP is qualitatively different from
the two decision problems in the type of “solution” it demands. The optimization
form requires a full optimal solution. Contrast with decision problems TSP≤ and
TSP= that call for only a yes or no response. An algorithm “solves” the latter
problems if it can recognize all yes cases, i.e. accepts an input if and only if its is a
well formed instance for which the corresponding question is properly answered yes.

Still, these decision questions are not equivalent. The former is certainly in NP .
The latter is probably not because it is complete for complexity class DP , introduced
by Papadimitriou and Yannakakis [8].

A problem in DP is formed as the intersection of the set of instances of a member
of NP and the set of instances of a member of co(NP ) (the collections of complements
of problems in NP ). One example is TSP=. An instance of TSP= with v = v̄ has
proper answer yes if and only if the corresponding instance of TSP≤ can be answered
yes, and the instance with v = v̄ − δ has answer no, where δ is the least common
denominator of its edge weight denominators. Informally, TSP= is the intersection
of TSP≤ with a “translation” of its own complement.

It is also easy to see that NP ⊆ Dp and co(NP ) ⊆ Dp. To show any prob-
lem in NP (respectively co(NP )) belongs to Dp, we need only appeand a vacuous
co(NP )question (respectively NP question).

Papadmitriou and Yannakakis [8] also showed there are Dp-complete problems,
i.e. members of Dp to which all problems in Dp reduce in polynomial time. Among
these “hardest” members of Dp are the exact value versions of many hard discrete
optimization problems, including TSP= on which we are focusing.

We may summarize these facts about the three TSP versions we have so far
introduced:

Lemma 2.1 TSP≤ ∈ NP − Complete, TSP= ∈ Dp − Complete, TSP ∈ NP −
Hard, and TSP≤ ∝ TSP= ∝ TSP .

The following is implicit in [8]:

Lemma 2.2 If any problem in Dp −Complete also belongs to NP or co(NP ), then
NP = co(NP ) = Dp.

We see from Lemma 2.2 that unless NP= co(NP ), Dp − Complete is a higher
complexity class that either NP or co(NP ). Since TSP= ∈ Dp − Complete, that
exact value decision problem is apparently materially different from the threshold
version TSP≤ ∈ NP . (Search for TSP is harder still [6].) Figure 1 summarizes in a
Venn diagram the containments generally conjectured, and the standing of our three
versions of the Traveling Salesman Problem.
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Figure 1: Generally Conjectured Complexity Class Containments
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3 Polyhedral Relaxations and Random Cut Gen-

erators

In this section we present the RC TIG for the TSP. It is based on polyhedral meth-
ods, one of the earliest approaches to combinatorial optimization, now experiencing
renewed interest (see for example [1]). Given a combinatorial optimization prob-
lem OPT , the approach introduces a polynomial-dimension vector of binary decision
variables, x, and encodes OPT as the binary linear program:

minimize cx

subject to A0x ≤ b0

1 ≥ x ≥ 0

x integer

Here A0x ≤ b0 denotes a system of linear inequalities on solution vectors x satisfied
by exactly the binary x feasible for OPT . We make no assumption about the size of
the A0x ≤ b0 system relative to the size of OPT .

The linear programming (LP) relaxation of this formulation, which we denote
ROPT0, is formed by deleting the requirement “x integer”. If an optimal solution
to this relaxation happens also to be integer, it obviously produces an optimum in
OPT . If the relaxation optimum is not integer, we may sharpen the formulation by
adding new constraint sets

A1x ≤ b1

...

Atx ≤ bt

Each system Aix ≤ bi contains new inequalities or “cuts” valid for all binary solutions,
but violated by some x feasible in linear programming relaxations. If any of the
sharper relaxations

minimize cx

ROPTk subject to Aix ≤ bi for all 0 ≤ i ≤ k

1 ≥ x ≥ 0

formed over the new systems (k ≤ t) has an integer optimum, that solution also yields
an optimum for OPT .

In the specific case of Traveling Salesman Problems on vertices in V , one integer
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linear programming formulation is

minimize
∑
i∈V

∑
j>i

cijxij

subject to
∑
j<i

xji +
∑
j>i

xij ≤ 2 for all i ∈ V (1)

−
∑
i∈V

∑
j>i

xij ≤ −|V | (2)∑
i<j∈S

xij ≤ |S| − 1 for all S ⊂ V (3)

1 ≥ xij ≥ 0 for all i < j ∈ V (4)

xij integer for all i < j ∈ V

The O(|V |2) variables xij indicate whether edges (i, j) are part of the tour. Con-
straints (1) - (2) require the solution to have degree two at each vertex. Inequalities
(3) are the famous subtour elimination constraints preventing non-spanning cycles.
Together (1) - (3) constitute system A0x ≤ b0 for TSP .

Many other inequalities are known for the TSP that can form the systems Aix ≤ bi,
i ≥ 1. Among these are the comb inequalities [3], and the more general clique tree
inequalities [4].

These polyhedral considerations led us to propose a random cut generation scheme
[10, 11] based on creating instances drawn from the large subset that could, in prin-
ciple, be solved over an appropriate linear programming relaxation. To be more
specific, standard linear programming optimality conditions establish that a vector
x∗ is optimal in ROPTk above if there exist dual vectors u0, u1 . . . , uk, z, w satisfying

ui ≤ 0 for all 0 ≤ i ≤ k (5)

ui(Aix
∗ − bi) = 0 for all 0 ≤ i ≤ k (6)

z ≤ 0, w ≥ 0 (7)

z(1− x∗) = 0, wx∗ = 0 (8)

c =
k∑

i=0

uiAi + z + w (9)

The procedure for generating instances of OPT with known solution x∗ exploits
(5)–(9) as follows:

Procedure Random Cut [RC]

1. Randomly chose the feasible set for an instance of OPT , and generate any
binary vector x∗ satisfying the corresponding A0x ≤ b0 constraints;
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2. Randomly select a sample of main and cut inequalities A∗
i x

∗ ≤ b∗i , i = 0, 1, . . . , k,
for the instance such that all are satisfied as equality at x∗ (i.e. A∗

i x
∗ = b∗i );

3. Randomly generate vectors {u∗i < 0 : i = 0, 1, . . . , k} of dimension consistent
with {A∗

i };

4. Randomly generate vector z∗ ≤ 0 with z∗j = 0 for all j with x∗j 6= 1, and vector
w∗ ≥ 0 with w∗

j = 0 for all j with x∗j 6= 0;

5. Compute c←
∑k

i=0 u∗i A
∗
i + z∗ + w∗;

6. Return an instance of OPT with feasible set as in Step 1 and objective function
vector c;

Lemma 3.1 The solution x∗ chosen at Step 1 of procedure [RC] is optimal for the
resulting OPT instance.

Proof: An instance generated by [RC] will have (binary) x∗ optimal because the
construction clearly assures it satisfies LP optimality conditions (5)–(9) when all
dual ui components not set at Step 3 are taken as zero. �

Pilcher [10] employed subtour and comb inequalities in an implementation of [RC]
for generating TSP ’s. Later Rais and Rardin [13] extended the approach to include
clique tree inequalities.

The technical challenge in these implementations of the random cut strategy arises
in sampling Step 2. The RC method must only use inequalities that are tight for the
prospective optimal solution x∗, because complementary slackness constraints (6)
forbid nonzero weighting of nontight constraints at Step 3. Implementation of [RC]
on any particular problem thus requires a constructive characterization of the tight set
at any optimal solution. Subtour elimination constraints provide an easy illustration.

Lemma 3.2 Subtour elimination constraint (3) for vertex subset S is satisfied as an
equality at the tour indexed by x∗ if and only if vertices of S are adjacent on that
tour.

Proof: Consider the subgraph of a tour induced by vertex subset S. This subgraph
contains no cycles because S is a proper subset of V . Thus well known results in graph
theory show its number of edges

∑
i<j xij will total |S| less the number of its connected

components. It follows that the corresponding subtour elimination constraint will be
active exactly when the subgraph has only one component, i.e. when vertices of S
are adjacent on the tour. �

With the characterization of Lemma 3.2, it is straightforward to implement RC
over subtour constraints. Sampling in Step 2 is done simply by choosing intervals off
the fixed tour as the S’s of tight inequalities (3).
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4 Exposed Instances

To analyze RC TIG’s, we begin by establishing a simple geometric characterization
of the instances that it generates.
Definition. An instance of a combinatorial optimization problem OPT is exposed for
partial polyhedral description k if the corresponding LP relaxation ROPTk for that
instance has an integer optimal solution.

Informally, an instance is exposed for k it it can be solved by linear programming
over ROPTk. Figure 2 illustrates the notion. It shows the complete polytope of
a combinatorial optimization problem, along with one LP relaxation ROPT0. The
extreme point marked x∗ belongs to the underlying OPT feasible set. Every instance
of such an OPT consists of a description of its feasible set and a cost vector c. Two
different instances are illustrated in Figure 2. The one in part (a) is exposed because c
supports the partial polyhedral description at integer solution x∗. Relaxation ROPT0

will yield x∗ as an LP optimum. The instance in part (b) is not exposed. Vector x∗

is still the integer optimal solution, but a more complete polyhedral description is
required before that solution can be found by linear programming.

Although exposed instances can in principle be solved by linear programming,
nothing in the definition guarantees it is particularly easy to do so. The number
of constraints in ROPTk need not be polynomial in the size of OPT , even for k =
0. Thus, exposed instances are polynomially solvable by linear programming only
if suitable separation routines exist for constraints of ROPTk (see for example [9,
chapter 4]). Furthermore, (as we will see), if the ROPTk optimal solution is not
unique, it may still be a difficult task to find an integer optimum among the alternative
LP solutions.

Collecting all instances of problem OPT exposed for partial polytope k, we define
exposed instance subsets

OPTk
4
= {instances of OPT : LP relaxation ROPTk has an integer optimum}

These exposed instances are exactly the once that can be produced by our RC TIG.

Theorem 4.1 Each exposed optimization subset OPTk is exactly the collection of
instances of OPT generatable by procedure [RC] over the corresponding ROPTk poly-
tope.

Proof: Optimality conditions (5)-(9) are necessary and sufficient for x∗ to solve
ROPTk. Thus, since procedure [RC] can generate any instance satisfying those con-
ditions, it generates exactly the members of OPTk. �

To go further we need to be a bit more precise about the nature of constraints
Aix ≤ bi. Such constraint systems are termed nondeterministically recognizable if the
problem of deciding whether a string constitutes one of the constraints belongs to
NP . It is easy to check that most well-known constraints for TSP and other discrete

9



Figure 2: Exposed Instances of Optimization Problems

10



problems have polynomial-length derivations, which implies they are nondeterminis-
tically recognizable. However, some cases are known, notably the hypohamiltonian
constraints of Grötschel and Wakabayashi [1987], that are not believed to possess this
property.

Parallelling our TSP notation, we can define threshold and exact value decision
problems associated with instance subsets OPTk:

Combinatorial Optimization Threshold (OPT≤
k )

Instance: an instance in OPTk plus a rational threshold v.

Question: Does there exist a feasible solution with objective value less
than or equal to v?

Combinatorial Optimization Exact Value (OPT=
k )

Instance: same as OPT≤
k .

Question: Is the optimal objective function value v?

Then we are ready for a main result.

Theorem 4.2 Given any combinatorial optimization problem OPT for which feasible
solutions can be nondeterministically verified, let OPTk be the exposed subset corre-
sponding to nondeterministically recognizable ROPTk constraints Aix ≤ bi, 0 ≤ i ≤ k.
Then the associated threshold and exact value decision problems OPT≤

k and OPT=
k

belong to NP .

Proof: We must exhibit a nondeterministic polynomial algorithm accepting precisely
the language of OPTk instances and v’s for which the relevant questions is properly
answered yes. That is the algorithm should accept an input exactly when both the
optimization instance belongs to exposed subset OPTk, and its optimal value is ≤ v
(respectively = v).

Given any instance of OPT , whether or not a exposed for k, we can emulate gen-
erator [RC] to nondeterministically compute and verify its ROPTk optimal value, say
vk. Standard LP theory establishes that there must exist a corresponding optimal
basis for the dual of LP relaxation ROPTk, consisting of polynomially many (O(|x|))
active constraints of the primal. To compute value vk, we need only guess the non-
deterministic derivation/recognition of such a polynomial-size collection of binding
constraints, compute nonzero parts of the associated dual basic solution, and verify
that it is dual feasible with value vk.

An OPT instance is exposed for k if and only if its integer solution x∗ is an
extreme-point of the feasible set for ROPTk, i.e. if and only if the complementary
primal solution corresponding to a dual nondeterministically solved in this [RC]-like
way is primal feasible. Thus our NDTM for OPTk

≤ (respectively OPTk
=) proceeds

by guessing an integer optimum x∗ for the given instance of OPT , applying the
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hypothesized algorithm for nondeterministically verifying its feasibility, computing its
objective function value v∗, and nondeterministically solving its ROPTk dual as just
outlined for vk. We accept exactly when the derived dual solution is complementary
with x∗ and vk ≤ v∗ (respectively vk = v∗). �

5 Intermediate TSP’s

Paralleling the above notation, define

TSPsubtour
4
= {TSP instances exposed for subtour constraints}

TSPcomb
4
= {TSP instances exposed for comb inequalities}

TSPclique
4
= {TSP instances exposed for clique tree inequalities}

Similarly, let TSP≤ and TSP= be the corresponding threshold and exact value de-
cision problems. Then, since all three of the defining constraint forms are nondeter-
ministically recognizable, and feasibility of a TSP solution x can be deterministically
verified, we have an immediate corollary to Theorem 4.2.

Corollary 5.1 Exposed exact value decision problems TSP=
subtour, TSP=

comb, TSP=
clique

all belong to NP .

A subset of instances of an optimization problem can appropriately be termed
“intermediate” if it is plausibly neither as general as the full problem nor polynomially
solvable. We are now ready to establish the “upper bound” half of the argument that
subsets TSPsubtour, TSPcomb, and TSPclique fulfill this definition by distinguishing
their exact value forms from that of the full TSP .

Theorem 5.2 TSP= does not polynomially reduce to TSP=
subtour, TSP=

comb, or TSP=
clique

unless NP = co(NP ) = Dp.

Proof. From Corollary 5.1, exposed decision problems TSP=
subtour, TSP=

comb, and
TSP=

clique all belong to NP . If the Dp-complete problem TSP= polynomially reduced
to any of the three, the latter would also be Dp-complete. We know from Lemma 2.2
that a Dp-complete problem can belong to NP only if NP = co(NP ) = Dp. �

Perhaps the more surprising half of the argument for intermediate status is the
“lower bound” fact that all instances of TSPsubtour, TSPcomb, and TSPclique are poly-
nomially solvable only if P = NP . Toward that end define the cost vector of graph
G, denoted cG, to be indicator vector of edges in G (1 if the edge belongs to the graph
and 0 otherwise).

Lemma 5.3 For every hamiltonian graph G, the corresponding instance of TSP with
weight vector −cG belongs to TSPsubtour, TSPcomb, and TSPclique.
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Proof: It is sufficient to prove the result only for TSPsubtour because subtour con-
straints are special cases of both comb and clique tree inequalities. Summing degree-
two constraints (1) with weights of−1/2 and combining with (2) shows that−

∑
i<j xij =

−|V | for every x satisfying (1)–(2). Thus for any graph G

−|V | ≤ min{−cGx : x satisfying (1)-(4)} ≤ min{−cGx : integer x satisfying (1)-(4)}

When G is hamiltonian, the incidence vector of the implied hamiltonian cycle exactly
achieves this lower bound. That is, the instance of TSP with weights −cG has an
integer optimal solution over the subtour constraint polytope, exactly what is required
for membership in TSPsubtour. �

Theorem 4.1 tells us any member of TSPsubtour should be generatable by random
cut procedure [RC]. Thus, under Lemma 5.3 there must exist an [RC] generation
sequence based on the subtour LP relaxation that yields the (negative) cost vector of
any hamiltonian graph. The actual construction begins with the incidence vector of
a hamiltonian cycle/tour and places dual multiplier −α (α > 0) on all tight subtour
inequalities. Summing as in [RC] Step 5, an interim c will have some integer number
of copies of −α, say −qα, on all tour edges, and another integer number of copies, say
−q′α, q′ < q, on nontour edges. Now choosing dual multipliers q′α/2 on all degree-two
constraints (1), yields the desired cost sum of 0 for nontour edges (−q′α + q′α/2 +
q′α/2). Corresponding costs on tour edges are (q′ + q′)α. Setting all unmentioned
dual variables 0 and fixing α = 1/(q − q′) > 0 completes the recovery of −cG.

It is interesting to consider what happens for a non-hamiltonian G. The corre-
sponding TSP instance with cost −cG is still well-defined, but there are two possibili-
ties. If the instance is exposed for subtours, i.e. it belongs to TSPsubtour, then the LP
relaxation optimum over (1)–(4) will be integer, but its value must be strictly worse
that −|V |. This is the case, for example, if we try non-hamiltonian bipartite graph
K2,3 as G. The other possibility is that the instance does not belong to TSPsubtour,
i.e. every LP relaxation optimum is fractional. The famous Petersen graph (see for
example [7, Figure 11.8]) provides an instance. Its subtour LP relaxation achieves
objective value −|V |, but the only optimal solution uses xij = 2/3 on all edges.

These ideas lead directly to a reduction from the NP -complete hamiltonian graph
problem, HAM (is a given graph hamiltonian?), that proves our exposed subsets are
hard.

Theorem 5.4 Exposed decision problems TSP≤
subtour, TSP≤

comb, TSP≤
clique, TSP=

subtour,
TSP=

comb, and TSP=
clique belong to NP − Complete.

Proof: We proceed by showing HAM reduces to both TSP≤
subtour and TSP=

subtour.
This is sufficient for all claims because subtour constraints are special cases of both
comb and clique tree inequalities, and because Theorem 4.2 already demonstrates all
the problems belong to NP .

Consider a graph G and the associated instance of TSP , say IG, with weight vector
−cG. If G is hamiltonian, Lemma 5.3 establishes that IG is exposed for subtours. It
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follows that the corresponding threshold and exact value instances with threshold
v = |V | are acceptable because the optimal value in IG will be exactly −|V |. If G is
not hamiltonian, then (from the above remarks) either IG is not exposed for subtours,
or IG ∈ TSPsubtour, but min{−cGx : x satisfies (1)–(4)} > −|V |. Either way input
pair (IG, |V |) would not be accepted in TSP≤

subtour or TSP=
subtour. �

Theorem 5.5 If every instance of TSP that belongs to TSPsubtour or TSPcomb or
TSPclique can be solved in polynomial time, then P = NP .

Proof: We proceed as in the proof of Theorem 5.4 to show that an algorithm [A]
solving every instance in TSPsubtour in time bounded by polynomial p(n) would pro-
vide a polynomial algorithm for HAM . Since subtours are special cases of both comb
and clique tree inequalities, this will prove all claims.

Given any G, we form the corresponding −cG and submit to [A]. If G is hamilto-
nian, [A] would halt with a feasible tour. If G is not hamiltonian, the result is less
predictable, but [A] certainly will not halt with a tour; there are none. Thus we will
know G is not hamiltonian when [A] either halts with some other outcome or exceeds
time limit p(n). �

Readers might be puzzled by the fact that this last result says set TSPsubtour is
NP -hard, even though well known separation techniques can solve its LP relaxation
of in polynomial time (see [7]). By definition instances of TSPsubtour have an integer
optimal solution over the subtour relaxation. How can they be NP -hard?

The answer hinges on whether the LP optimum over the subtour relaxation is
unique. If so, then for any instance of TSPsubtour the LP solution will index an
optimal tour. But when an instance has alternative relaxation optima, there is no
guarantee any LP solver will yield an integer one. Relaxation (1)–(4) does have
fractional extreme-points. Thus, even with the optimal value in hand, there remains
an NP -hard “rounding” task to find and prove an integer optimum.

6 Well Formed Instances and Promises

It is usual in complexity proofs to take as trivial the issue of recognizing a well formed
instance of a problem. For example, define

Traveling Salesman Recognition (TSP∈)

Instance: any string

Question: Does the string encode an instance of TSP?

All that is required to answer this question is to decide whether the input string can
be viewed as the weight vector of a complete graph.

A corollary of Theorem 5.4 shows the case is quite different for at least the subtour-
exposed case:
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Subtour-Exposed Traveling Salesman Recognition (TSP∈
subtour)

Instance: any string

Question: Does the string encode an instance of TSPsubtour?

Corollary 6.1 It is NP -hard to determine whether a given instance of TSP is ex-
posed for the subtour polytope, i.e. TSP∈

subtour is NP -complete.

Proof: We will show that TSP∈
subtour ∈ NP and that NP -complete TSP=

subtour ∝
NP∈

subtour. The proof of the first is essentially that of Theorem 4.2. When an instance
is exposed for the subtour polytope, the implied integer optimum for the LP relax-
ation must be a tour. By guessing the tour, and then guessing the construction of a
corresponding dual-optimal basis, optimality of the tour can be verified in polynomial
time.

To show TSP=
subtour ∝ TSP∈

subtour observe that an input is accepted for TSP=
subtour

if and only if it encodes a subtour-exposed instance of the TSP together with its
optimal value. Given any string, our reduction algorithm first invokes any polynomial
procedure for TSP∈. If the string proves to be a well formed TSP instance, followed
by a rational v, we then solve (via separation) the subtour LP relaxation for that
instance to obtain its optimal value v̄. Strings rejected by TSP∈ or having subtour
relaxation value v̄ equal to the prospective exact value v are submitted directly to an
oracle for TSP∈

subtour. In all other cases, which must have v̄ 6= v, we submit instead
an instance on 10 vertices with weights −cG, where G is the Petersen graph.

We have already remarked that this Petersen graph instance cannot be exposed
for subtours. Thus the TSP∈

subtour oracle will accept the submitted string exactly
when it yields a well formed instance of TSPsubtour with optimal value v. �

The proof of Corollary 6.1 depends strongly on the existence of polynomial-time
separation procedures for LP optimization over the subtour relaxation (1)-(4). Since
separation schemes are not known for comb and clique inequalities, we do not know
whether recognition of instances exposed over those polytopes is also NP -hard. Still,
we could use Sanchis’s reference [14, Proposition 4.4] to conclude that if TSP∈

comb or
TSP∈

clique belongs to P , then NP = co(NP ).

Her approach also raises our next issue. We know that threshold versions TSP≤
subtour,

TSP≤
comb and TSP≤

clique are all NP -complete (Theorem 5.4). What about their comple-

ments co(TSP≤
subtour), co(TSP≤

comb) and co(TSP≤
clique)? Since the exact optimal value

v∗ can be nondeterministically computed (proof of Theorem 4.2) for an instance in
any of these languages, no instances with unattainable threshold v < v∗ can also be
identified by a NDTM . It might seem that say co(TSP≤

subtour) ∈ NP . It would follow
that NP = co(NP ) because the complement of an NP -complete problem belongs to
NP .
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One simply may not ignore the “technicality” of recognition of well formed in-
stances. In particular, the complement of TSP≤

subtour is the union of two parts

co(TSP≤
subtour) = {strings acceptable in TSP∈

subtour with v unattainable} (10)

∪{strings unacceptable in TSP∈
subtour}

Nondeterministic polynomial recognizability of the first part is not enough to place
co(TSP≤

subtour) in NP . (Sanchis’s proof of Proposition 4.4 simply observes that if
any of the instance recognition cases TSP∈ were in P , both halves of (10) could be
checked, implying NP = co(NP )).

Imagine now receiving some files of test instances (and solutions) from the authors,
or generating them yourself. You would know that the instances of say TSPsubtour

were produced by the RC TIG. They were constructed to be acceptable for TSP∈
subtour,

and the only remaining way a derived threshold instance can be a no case is if the
threshold is unattainable.

This scenario provides a natural example for that part of complexity theory dealing
with promises [15, 5]. A promise is an extra bit in the input of a language guaranteeing
the instance possesses some mathematical property. The Turing machine is allowed
to rely on this promise in deciding whether an input belongs to the language.

What occurs when problems TSP≤
subtour, TSP≤

comb and TSP≤
clique come with a promise

that they were constructed by [RC]? In a sense, they become easier. Define

RCTSPsubtour
4
= {TSPsubtour instances known generated by [RC]}

RCTSPcomb
4
= {TSPcomb instances known generated by [RC]}

RCTSPclique
4
= {TSPclique instances known generated by [RC]}

Also let threshold (≤), exact value (=) decision problems be defined analogously.

Theorem 6.2 Generated threshold problems RCTSP≤
subtour, RCTSP≤

comb and RCTSP≤
clique

belong to promise− (NP ∩ co(NP )).

Proof: The proof is the same for all three forms. It is easy to see that RCTSP≤
subtour ∈

promise−NP ; we merely ignore the promise bit and use the NDTM for TSP≤
subtour.

To show the problem is also in promise-co(NP ), we must establish that it is the
complement of a member of promise-NP , i.e. that its complement co(RCTSP≤

subtour)
is nondeterministically recognizable with the aid of a reliable promise bit. As in (10),
the complement co(RCTSP≤

subtour) has two parts: those that have the promise bit off
and those generatable by [RC] that have unattainable thresholds. A mere scan of the
bit will settle the first, and we know from discussion above that valid inputs with
invalid thresholds can be nondeterministically verified. �

We have already observed several times that subtour form RCTSP≤
subtour is unique

among our three classes of exposed instances in that its linear programming relax-
ation, (1)-(4), is known to be polynomially solvable. This leads to another promise-
based result.
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Theorem 6.3 Subtour-generated value problem RCTSP=
subtour belongs to promise-P.

Proof: Given an instance of RCTSP=
subtour we first apply the known polynomial-time

algorithm to compute v̄
4
= the optimal value of its LP relaxation. If the promise bit

is off, or the input threshold v differs from v̄, we reject. Otherwise, since the optimal
value of subtour-generated TSP ’s is known to equal v̄, we can accept. �

So in one sense, a promise or guarantee that the instances were generated by the
RC TIG does reduce their complexity. We conclude by showing that nonetheless they
remain formally hard to solve. Return for a moment to the problem of hamiltonian
cycles in graphs. One promise-based question in this context is

Hamiltonian Cycle Exhibition (HCE)

Instance: a hamiltonian graph G

Solution: the incidence vector xG of a hamiltonian cycle in G

As pointed out in [2], the promise of an input’s hamiltonicity does not change the fact
that the HCE form is hard. For if there were a polynomial time algorithm for HCE,
it could be modified to recognize hamiltonian graphs, by incorporating its polynomial
time bound as a time limit.

Similarly, full optimization on RC TIG instances remains hard, even with a
promise of [RC] generatability.

Theorem 6.4 Subtour-generated instances RCTSPsubtour form an NP -hard set.

Proof: Reduction from HCE. Given an instance of HCE, we proceed as above to
construct one for RCTSPsubtour by using graph cost vector −cG. The promise bit can
correctly be marked on for such an instance because Lemma 5.3 shows that [RC] can
generate −cG so long as the input graph is hamiltonian. The RCTSPsubtour output,
which will be an integer solution to (4)-(6), then yields the tour required in HCE. �

Even if test instances from the RC TIG come with an absolute seal of authenticity,
producing their optimal tours is, in a formal sense, still difficult.
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