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Abstract

We consider a class of random knapsack instances described by Chvátal,
who showed that with probability going to 1, such instances require an
exponential number of branch-and-bound nodes. We show that even with
the use of simple lifted cover inequalities, an exponential number of nodes
is required with probability going to 1.

It is not surprising that there exist integer programming (IP) instances for
which solution by branch-and-bound requires an exponential number of nodes,
since integer programming is an NP-complete problem while the linear programs
solved at each branch-and-bound node are polynomially solvable. Examples of
such instances were given by Jeroslow [5], who presented a set of simple instances
of the knapsack problem which require an exponential number of branch-and-
bound nodes when branching on variables, and by Chvátal [1], who considered
a class of random instances of the knapsack problem and showed that with
probability converging to 1, such a random instance requires exponentially many
branch-and-bound nodes to solve.

Most modern IP solvers use branch-and-cut algorithms, which combine branch-
and-bound with the use of cutting planes. Gu, Nemhauser, and Savelsbergh [4]
considered solving the knapsack problem with branch-and-cut. They presented a
set of instances that require an exponential number of branch-and-bound nodes
even with the addition of simple lifted cover inequalities. More recent work in
proving exponential worst-case bounds in the presence of various cutting planes
has been done by Dash [2], who proved worst-case exponential bounds in the
presence of lift-and-project cuts, Chvátal-Gomory inequalities, and matrix cuts
as described by Lovász and Schrijver.

The work of Gu et al. and Dash is similar to Jeroslow’s work in that spe-
cific “worst-case” examples are presented. In this paper we build on Chvátal’s
results, which are concerned with average-case performance over a class of ran-
dom instances. We add all simple lifted cover inequalities to his formulation and
show that an exponential number of branch-and-bound nodes is required with
probability converging to 1. This result is not suggested by the NP-hardness of
binary knapsack problems, because cover inequality separation for these prob-
lems is NP-hard [6].
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1 Statement of the result

Following Chvátal [1], we consider the following class of knapsack instances:

max
∑n

i=1 aixi

s.t.
∑n

i=1 aixi ≤ b
∑n

i=1
ai

2 c
xi ∈ {0, 1} i = 1, . . . , n,

(1)

where the coefficients ai are integers selected independently and uniformly such
that 1 ≤ ai ≤ 10n/2.

For ease of discussion, we denote the right-hand-side of the inequality by

r ≡ b
∑n

i=1
ai

2 c and the upper bound on coefficients by B ≡ 10n/2.
Rather than a standard branch-and-bound framework, Chvátal considered

a slight generalization, a class of algorithms that he called recursive algorithms.
These have the capabilities of branching, fathoming, dominance, and improving
the current solution. In particular, branching is performed on a single variable,
though the selection of branching variable and the process of exploring nodes
may be arbitrary. In terms of branch-and-bound, dominance allows the removal
of a node if there is another node with the same set of fixed variables that has—
considering only the fixed variables—at least as much slack in the constraint
and at least as good an objective value. For a precise definition of this class of
algorithms, see [1].

We will present our results using the language of branch-and-bound, though
our results do apply to Chvátal’s class of recursive algorithms.

Theorem 1 (Chvátal) With probability converging to 1 as n → ∞, every
recursive algorithm (as described in the previous paragraph) operating on an
instance of (1) will create at least 2n/10 nodes in the process of solving.

For a knapsack problem with constraint
∑n

i=1 aixi ≤ b, a cover is a set
C ⊆ {1, . . . , n} such that

∑
i∈C ai > b. A minimal cover is a cover C such

that no subsets of C are covers. A minimal cover C defines the following cover
inequality, which is a valid inequality for the knapsack problem:

∑

i∈C

xi ≤ |C| − 1.

Although cover inequalities are not facet-defining in general, they can be
strengthened to form facet-defining inequalities through a process called lifting.
We will consider a special case of a lifted cover inequality called a simple lifted
cover. Given a cover C, a simple lifted cover inequality has the form

∑

i∈C

xi +
∑

i/∈C

αixi ≤ |C| − 1,

The values αi are called lifted coefficients and are determined through a process
called sequential lifting. See Gu et al.[3] or Wolsey [8] for discussions of lifted
cover inequalities. Here we describe the process briefly for simple lifted cover
inequalities.
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Definition 2 The sequential lifting process for simple cover inequalities is as
follows. Let C be the cover. Let the indices not in C be ordered arbitrarily
i1, i2, . . . , im.

1. Initialize K = ∅, a = 1.

2. Let j = ia.

3. Determine lifted coefficient αj as follows:

αj = |C| − 1−max

{∑

i∈C

xi +
∑

k∈K

αkxk : x ∈ S, xj = 1

}
, (2)

where S is the set of feasible integer solutions to the original knapsack
problem.

4. Set K = K ∪ {j}, and a = a + 1.

5. If a ≤ m, return to Step 2.

Note that αj ≤ |C| − 1. Also note that by induction, (2) shows that αj is
integer for all j.

Gu et al. [4] considered the use of simple lifted cover inequalities on knapsack
problems. They showed that branch-and-cut using simple lifted cover inequal-
ities requires an exponential number of nodes for the following set of knapsack
instances, parametrized by scalar n and vectors δ and ξ:

max
∑12n

j=1(2θ − ξj)xj +
∑20n

12n+1(3θ − ξj)xj

s.t.
∑12n

j=1(2 · 2n − δj)xj +
∑20n

j=12n+1(3 · 2n − δj)xj ≤ 6n · 2n

x ∈ {0, 1}20n,

(3)

where n ≥ 10, θ = (60n · 2n)20n+1, δj ∈ {1, . . . , b2n−1/3nc} for all 1 ≤ j ≤ 20n,
and ξj ∈ {1, . . . , 2n} for all 1 ≤ j ≤ 20n.

Like system (1), system (3) requires large coefficients. Note that (3) can be
viewed as perturbations of the underlying instance given when δj = ξj = 0 for
all j.

We consider the same random instances as Chvátal but with the presence
of simple lifted cover inequalities. We assume that all simple lifted cover in-
equalities are present, so our results represent the best possible performance of
a branch-and-cut algorithm.

The central result of this paper is the following:

Theorem 3 With probability going to 1, every branch-and-bound algorithm that
branches on variables operating on an instance of (1) with the addition of all
simple lifted cover inequalities will create at least 2n/30 branch-and-bound nodes
in the process of solving.
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Section 2 presents several properties that an instance of (1) possesses with
probability going to 1. The fact that they occur with probability going to 1 is
proved in Section 3. Section 4 proves that any instance possessing the properties
will require an exponential number of branch-and-bound nodes, which leads to
the proof of Theorem 3. Conclusions appear in Section 5.

2 Properties of the random instances

For convenience in later discussion, let the knapsack coefficients be labeled so
that a1 ≤ a2 ≤ · · · ≤ an. As before, we denote the upper bound of the dis-
tribution of coefficients by B ≡ 10n/2 and the right-hand-side of the knapsack
inequality by r ≡ b 1

2

∑
aic.

Let δ > 0 be a constant that will be chosen later. We consider instances
that possess the following properties:

1. For every q such that n
100 ≤ q ≤ 99n

100 , the qth smallest coefficient, aq,
satisfies aq < q

n+1B(1 + δ).

2. The right-hand-side of the knapsack constraint, r ≡ b 1
2

∑
aic, satisfies

nB

4
(1− δ) < r <

nB

4
(1 + δ).

3. All covers include at least 7 variables with coefficients larger than 3
5B.

We will refer to these as Properties 1, 2, and 3, respectively.

3 Instances possess the properties with proba-
bility going to 1

In this section we show that Properties 1, 2, and 3 are satisfied by an instance
of (1) with probability going to 1 as n increases. We actually prove a slightly
stronger type of convergence: with probability 1, the properties are eventually
satisfied as n increases.

Let Yn be a random variable following the empirical measure defined by
the random sample coefficient values a1 . . . an. (The empirical measure assigns
mass 1/n to each value ai : i = 1 . . . n.) Note that E[Yn] is the sample mean,∑n

i=1 ai/n, and more generally E[Yn|Yn ≤ v] is the average value of those coef-
ficients less than or equal to v.

Lemma 4 Let δ > 0, c > 0, and 0 < t < 1 be arbitrary constants. Let aq be
the qth smallest coefficient, and let Yn be as defined just above. Almost surely
as n →∞, for every q such that cn < q < (1− c)n, the following three relations
hold:

q

n + 1
B(1− δ) < aq ≤ q

n + 1
B(1 + δ),
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B

2
(1− δ) < E[Yn] <

B

2
(1 + δ),

tB

2
(1− δ) < E[Yn|Yn ≤ tB] <

tB

2
(1 + δ).

Proof: Let X be a random variable with uniform distribution U(0, 1). Then a
random variable for a coefficient in an instance of (1) can be generated by the
transformation dBXe.

Let U(t) be the cdf for X. Given a sample size n, consider the empirical
measure cdf Un(t), which is the number of samples less than or equal to t divided
by n. The Glivenko-Cantelli theorem states that Un(t) converges uniformly and
almost surely to U(t) [7]. That is, as n →∞,

sup
t
|Un(t)− U(t)| → 0 a.s.

By definition, and by the stated transformation, aq ≤ q
n+1B(1 + δ) iff

Un(b q
n+1B(1 + δ)c/B) ≥ q/n. Similarly, aq > q

n+1B(1 − δ) iff Un(b q
n+1B(1 −

δ)c/B) < q/n. The first relation now follows from Un(t) → U(t) = t ∀0 < t <
1 a.s.

For the second and third relations, let Xn be a random variable governed by
Un. Then E[Xn] is the mean value of the sample. By the uniform convergence of
Glivenko-Cantelli, E[Xn] → E[X] and for all t > 0, E[Xn|Xn ≤ t] → E[X|X ≤
t] = t/2, almost surely. This follows from the continuity of the conditional mean
functional because E[X|X ≤ t] = (1/t)

∫ t

0
(1− U(t))dt.

From the transformation that generates coefficients, B · E[Xn] ≤
∑

i
ai

n =
E[Yn] ≤ 1 + B · E[Xn]. Since E[Xn] converges to 1

2 almost surely, this implies
that with probability 1, for all δ > 0, (1 − δ)(B/2) ≤ E[Yn] ≤ (1 + δ)(B/2)
eventually as n →∞. This gives the second relation.

To generalize to the third relation, E[Yn|Yn ≤ tB] = E[dBXne|dBXne ≤
tB] = E[dBXne|BX ≤ btBc] ≤ 1 + E[BXn|BXn ≤ tB]. Combining this with
E[Xn|Xn ≤ t] → t/2 a.s. gives the right hand inequality, and the left hand
inequality derivation is very similar.

The first relation of Lemma 4 proves Property 1 by taking c = 1
100 .

Lemma 5 Property 2: For any constant δ > 0, the right-hand-side of the knap-
sack constraint, r ≡ b 1

2

∑
aic, almost surely satisfies

nB

4
(1− δ) < r <

nB

4
(1 + δ),

eventually as n →∞.

Proof: From Lemma 4, we know that for arbitrary δ′ > 0, B
2 (1−δ′) < E[Yn] <

B
2 (1 + δ′) almost surely as n →∞. Since r = bn

2 E[Y ]c, this directly gives

bnB

4
(1− δ′)c ≤ r <

nB

4
(1 + δ′).
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Given δ, we select δ′ < δ such that nB
4 (1− δ) < nB

4 (1− δ′)− 1 holds eventually
as n →∞.

The next lemma states that the sum of all the coefficients less than 3
5B is

not enough to form a cover with probability going to 1. This is used in Lemma 7
to show that there are some large coefficients in any cover.

Lemma 6 There exists a constant δ1 > 0 such that for all 0 < δ < δ1, the
following relation holds almost surely as n →∞:

∑

{i:ai≤ 3
5 B}

ai <
nB

4
(1− δ).

Proof: The given sum is equivalent to E[Yn|Yn ≤ 3
5 ] times the number of

coefficients no more than 3
5 . The first relation of Lemma 4 shows that for all

δ′ > 0, almost surely no more than ( 3
5 + δ′)n coefficients are in the summation.

Set t = 3
5 and use the third relation in Lemma 4 to conclude that for sufficiently

large n and small δ′,

∑

{i:ai≤ 3
5 B}

ai < (
3
5

+ δ′)n
3
5

B

2
(1 + δ′) <

10
50

nB(1 + δ′) =
nB

5
(1 + δ′).

By choosing δ′ small enough, clearly there exists δ1 > 0 such that nB
5 (1 +

δ′) < nB
4 (1− δ1), which proves the lemma.

Lemma 7 Property 3: Eventually, all covers have at least 7 coefficients greater
than 3/5, with probability 1.

Proof: Using Lemma 6, we see that there must be at least one coefficient
greater than 3/5. In fact, by considering the proof of Lemma 6, we see that the
gap between the two quantities is almost surely

nB

4
(1− δ)− nB

5
(1 + δ) = Ω(nB),

if 0 < δ < 1
9 is constant.

Since coefficients are bounded by B, this proves that Ω(n) coefficients greater
than 3/5 are needed in order to form a cover. In particular, almost surely as
n →∞ we have at least 7 such coefficients.

Theorem 8 Let 0 < δ < δ1 be constant, where δ1 is a constant satisfying
Lemma 5. Then with probability 1 as n →∞, an instance of (1) eventually has
Properties 1, 2, and 3.

Proof: By Lemmas 4, 5, and 6, each of the three properties eventually holds
with probability 1. The intersection of this finite number of events also eventu-
ally holds with probability 1.
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4 Instances that satisfy the properties require
exponential trees

In this section, we show that instances possessing properties 1, 2, and 3 will
require an exponential number of branch-and-bound nodes to solve. Together
with Theorem 8, this will prove Theorem 3.

This section is split into three stages. Section 4.1 presents results on the
lifted coefficients in any cover. Section 4.2 uses these results to prove a central
lemma about the form of lifted cover inequalities. Section 4.3 uses the lemmas
to prove Theorem 3.

4.1 Lifted coefficients are small

In this section we prove that lifted coefficients have value 0, 1, or 2, with at
most a small number of coefficients with value 2. For the first lemma, recall
from (1) that aj is the knapsack coefficient of variable xj , which corresponds to
lifted coefficient αj .

Lemma 9 Consider the lifting process of Definition 2. In step 3 of the process,
if the lifted coefficient is αj, then the corresponding knapsack coefficient aj must
be at least as large as the optimal objective value of the following IP.

C is the cover set, and K is as defined in Definition 2. There are binary
variables xi and yi for each i ∈ C ∪K and a single continuous variable ∆. We
continue to use r ≡ b 1

2

∑n
i=1 aic.

max
∑

i∈C∪K aiyi + ∆
s.t.

∑
i∈C xi +

∑
k∈K αkxk = |C| − 1

∆ = r −∑
i∈C∪K aixi

∆ ≥ 0∑
i∈C yi +

∑
k∈K αkyk = αj − 1

yi ≤ xi ∀i ∈ C ∪K
xi, yi ∈ {0, 1} ∀i ∈ C ∪K

(4)

Note that ∆ is in fact constrained to be integer since all coefficients and
variables are integer.
Proof: We will think of the binary variable vectors x and y as representing
subsets of the original variables. For example, to represent the cover set C with
x, we would set xi = 1 for i ∈ C and xi = 0 otherwise.

First note that the IP is always feasible. To see this, let x represent the
cover set C less any one element, so that the first equality of (4) is satisfied.
Such a set x cannot violate the original knapsack constraint, so ∆ as defined in
the second equality must be nonnegative, satisfying the third constraint. Let y
represent any subset of x of size αj−1. Since αj ≤ |C|−1 by Definition 2, such
subsets exist. This value for y satisfies the fourth and fifth constraints in (4),
so the solution is feasible.
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Assume the lemma is not true, so that aj is smaller than the optimal ob-
jective value to (4). Let (x∗, y∗, ∆∗) be an optimal solution to (4) and let
z∗ = x∗ − y∗. Note that z∗ ∈ {0, 1}n, since y∗i = 1 implies x∗i = 1.

Define z̃ by z̃j = 1, z̃i = z∗i for all i ∈ C ∪K, and z̃i = 0 otherwise.
Consider z̃ in light of the maximization in (2). We have

n∑

i=1

aiz̃i = aj+
∑

i∈C∪K

aiz
∗
i = aj+

∑

i∈C∪K

aix
∗
i−

∑

i∈C∪K

aiy
∗
i = aj+r−∆∗−

∑

i∈C∪K

aiy
∗
i .

Since aj <
∑

i∈C∪K aiy
∗
i + ∆∗ by assumption, this gives

∑n
i=1 aiz̃i < r. There-

fore, z̃ satisfies the knapsack constraint and z̃ ∈ S.
The value of the maximization in (2) is given by

∑

i∈C

z̃i +
∑

k∈K

αkz̃k =
∑

i∈C

z∗i +
∑

k∈K

αkz∗k =
∑

i∈C

x∗i +
∑

k∈K

αkx∗k −
∑

i∈C

y∗i −
∑

k∈K

αky∗k

= |C| − 1− (αj − 1) = |C| − αj .

This proves that αj ≤ |C| − 1− (|C| − αj) = αj − 1. This contradiction proves
the lemma.

Lemma 10 For instances that possess Property 3, all simple lifted cover in-
equalities will have αi ≤ 2 for all i.

Proof: Assume that αj ≥ 3. Let x be defined by the original cover, and let y
represent the set containing the two largest coefficients from the cover. Let these
two coefficients be ak and al. These values of x and y satisfy (4), so the objective
value ak +al +∆ gives a lower bound on the optimum. By Property 3 we know
that ak and al are greater than 3

5B, so we conclude that aj > 6
5B + ∆ > 6

5B.
But this is impossible, so the lemma is proved by contradiction.

Lemma 11 For instances that possess Property 3, the number of indices for
which αi = 2 in any simple lifted cover inequality is no more than 3.

Proof: Consider IP (4) of Lemma 9. We will consider lower bounds on the
objective value. In this case the αj value is 2, so y represents a set containing
a single variable, either from the cover set or one with a lifted coefficient of 1.

Assume for a contradiction that there are at least four lifted coefficients with
value 2 and that the first four are αi1 , αi2 , αi3 , and αi4 .

For αi1 , let x(1) be given by the variables in the cover C with the |C| − 1
largest coefficients ai. Clearly this leads to a feasible solution (x(1), y(1), ∆(1))
to (4). Let the 7 largest coefficients in C be k1, k2, . . . , k7. These must exist by
Property 3.

Consider αi2 . We construct a feasible solution x(2) by “trading” indices k1

and k2 for i1. Specifically, construct x(2) by setting x
(2)
i1

= 1, x
(2)
k1

= 0, x
(2)
k2

= 0,

and x
(2)
i = x

(1)
i for all other indices i. To see that x(2) satisfies the first equality
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in (4), note that we have replaced two variables from the cover with αi1 = 2.
Any choice of a single variable for y from x(2) other than i1 leads to a feasible
system. The value for ∆ is given by

∆(2) = r−
∑

aix
(2)
i = r−

∑
aix

(1)
i + ak1 + ak2 − ai1 = ∆(1) + ak1 + ak2 − ai1 .

By Property 3, the two coefficients ak1 and ak2 are each over 3
5B while ai1 is

most B, so ∆(2) > ∆(1) + 3
5B + 3

5B −B = ∆(1) + 1
5B.

For αi3 , we construct a solution x(3) by “trading” the next two largest coeffi-
cients, k3 and k4, for αi2 . That is, let x

(3)
i2

= 1, x
(3)
k3

= 0, x
(3)
k4

= 0, and x
(3)
i = x

(2)
i

for all other i. This leads to a feasible solution as before, and by Property 3,
∆(3) > ∆(2) + 1

5B > ∆(1) + 2
5B.

Finally, for αi4 , we construct x(4) by removing k5 and k6 and adding i3. By
Property 3, ∆(4) > ∆(1) + 3

5B. In the objective of (4), y represents a single
variable in the set represented by x. We can choose xk7 , which is at least 3

5B

by Property 3. Therefore we have shown that ai4 > ∆(1) + 3
5 + 3

5 > 6
5 . This is

impossible, which proves that we cannot have four lifted coefficients with value
2.

4.2 The ratio of cover size to sum of coefficients

In this section, we present the key lemma leading to the proof of Theorem 3.

Lemma 12 There exists δ2 > 0 such that for every instance that satisfies Prop-
erties 1, 2, and 3 with 0 < δ < δ2, every simple lifted cover inequality satisfies

|C|−1

|C|+
∑

i/∈C
αi

> 3
5 .

Proof: Based on Property 2 and the upper bound of B on coefficients, we
need at least n

4 (1 − δ) > n
5 variables to form a cover. Consider a simple lifted

cover constraint and let T be the set of variables with non-zero coefficients. Let
t = |T |, so we know n

5 ≤ t ≤ n.
For a given t, we wish to consider the minimum value of |C|−1

|C|+
∑

αi
. The

denominator is between t and t + 3, since at most 3 variables have αi = 2 and
no values of αi are higher. For the numerator, we would like to know how small
the cover itself can be.

Since the lifted cover inequality is a valid inequality, it must be the case that
no feasible solution to the knapsack problem has more than |C| − 1 variables
from T , so any set U ⊂ T, |U | ≥ |C| must satisfy

∑
i∈U ai > r. We get a lower

bound on the size of |C| by considering the variables in T with the smallest
coefficients and determining the number of them that it takes to exceed r. For
fixed t, we want the lowest of these lower bounds. This occurs when T contains
the variables with the t highest coefficients overall.

We will show that even in this case, at least 3/5 of the coefficients are needed
in the cover. Assume that the coefficients are indexed so that a1 ≤ a2 ≤ · · · ≤
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an. Then we are considering the coefficients an−t+1, an−t+2, . . . , an−d 2
5 te, and

their sum,

X ≡
n−d 2

5 te∑
q=n−t+1

aq. (5)

By Property 1, the qth smallest coefficient is no more than q
n+1B(1 + δ),

for n
100 ≤ q ≤ 99n

100 . Let Y be the contribution to the sum from values of q
outside this range. The contribution to Y from values of q < n

100 is at most
n

100

(
B

100 + 1
)
(1 + δ), while the contribution from the values of q > 99n

100 is at
most n

100B. Thus,

Y <
n

100
B +

n

100

(
B

100
+ 1

)
(1 + δ) <

n

100

(
101B

100
+ 1

)
(1 + δ).

Using the bounds on aq, we have

X ≤ Y +
n−d 2

5 te∑
q=n−t+1

q

n + 1
B(1 + δ)

= Y +
B

n + 1
(1 + δ)

n−d 2
5 te∑

q=n−t+1

q

= Y +
B

n + 1
(1 + δ)

1
2
(n− t + 1 + n− d2

5
te)(t− d2

5
te)

≤ Y +
B

2(n + 1)
(1 + δ)(2n + 1− 7

5
t)(

3
5
t)

By taking the derivative with respect to t, we find that this value is maxi-
mized when t = 5

7n + 5
14 , at which point we have

X ≤ Y +
B

2(n + 1)
(1 + δ)

3
7
(n +

1
2
)2

≤ Y +
3
14

B(n +
1
2
)(1 + δ)

≤ n

100

(
101B

100
+ 1

)
(1 + δ) +

3
14

B(n +
1
2
)(1 + δ).

We need to show that X < r. By Property 2, that is equivalent to

n

100

(
101B

100
+ 1

)
(1 + δ) +

3
14

B(n +
1
2
)(1 + δ) <

nB

4
(1− δ). (6)

Since n
100

(
101B
100 + 1

)
+ 3

14B(n + 1
2 ) < nB

4 for sufficiently high n, we can choose
δ′ > 0 such that (6) holds for all 0 < δ < δ′.

The one other requirement on δ is that it be less than δ1 from Theorem 8.
Therefore, we choose δ2 < min{δ′, δ1} and have proved the lemma.

Lemma 12 has given the final condition on the choice of δ for Properties 1, 2,
and 3 from Section 2. Specifically, we choose 0 < δ < δ2 so that all the previous
lemmas will hold.
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4.3 Chvátal’s class of problems requires an exponential
tree even in the presence of simple lifted cover in-
equalities

We are now ready to prove Theorem 3. In part this is based on Chvátal’s proof.
The key additional idea comes from Lemma 12.
Proof of Theorem 3: We claim that if no more than n/30 variables are fixed
by branching, then the LP solution of the resulting node cannot be fathomed.

Chvátal [1] proved that with probability going to 1 the following properties
hold:

4.
∑

i∈I ai ≤ r whenever |I| ≤ n/10.

5. There is no set I ⊂ {1, 2, . . . , n} such that
∑

i∈I ai = r.

By Theorem 8, Properties 1, 2, and 3 also hold with probability going to 1.
By Property 4, fixing at most n/30 < n/10 variables leaves the LP relaxation

feasible. We will show that the LP relaxation with probability going to 1 has
optimal objective value r. Then by Property 5, the node cannot be fathomed.

We claim that by setting all unfixed variables to 11
20 , the left-hand-side sum of

the knapsack constraint will exceed r and no simple lifted cover constraints will
be violated. Reducing the value of some of the unfixed variables will then give
a feasible fractional solution with left-hand-side sum—and therefore objective
value—of r exactly.

First we check that we can exceed r in the objective. Let F be the set of fixed
variables, so we are interested in

∑
i/∈F

11
20ai = 11

20

∑
i/∈F ai. Since the maximum

coefficient value is B, we have

n∑

i=1

ai ≥ 2r

∑

i/∈F

ai ≥ 2r −
∑

i∈F

ai

∑

i/∈F

ai ≥ 2r − n

30
B.

Using the lower bound for r from Property 2 gives that for any constant δ1 > 0,
the following holds with probability going to 1:

11
20

∑

i/∈F

ai ≥ 11
20

(
nB

2
(1− δ1)− nB

30

)
=

nB

4

(
11
10

(1− δ1)− 11
150

)
.

Choose δ1 > 0 and δ2 > 0 such that 11
10δ1+δ2 < 4

150 . Then δ1 < 10
11 · 4

150− 10
11δ2,

and

11
20

∑

i/∈F

ai ≥ nB

4

(
11
10

(1− δ1)− 11
150

)
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>
nB

4

(
11
10
− (

4
150

− δ2)− 11
150

)

=
nB

4
(1 + δ2) > r.

This shows that with probability going to 1, our fractional solution has objective
value r.

Next we check that no simple lifted cover inequalities are violated. Let an
inequality be specified by the sets C and K. From Lemma 11, we know that
with probability going to 1 at most 3 lifted coefficients have value 2. Then we
need to verify that ∑

i∈C

xi +
∑

i∈K

αixi ≤ |C| − 1. (7)

A worst-case assumption is that all fixed variables are fixed to 1 and that all of
them appear in an inequality, so we have

∑

i∈C

xi +
∑

i∈K

αixi ≤
∑

i∈C∪K

xi + 3 ≤ n

30
+ 3 + (|C|+ |K| − n

30
)
11
20

.

Lemma 12 showed that |C|−1

|C|+
∑

k∈K
αk

> 3/5 with probability going to 1 for

all simple lifted cover inequalities, from which we will use |K| < 2|C|
3 − 5

3 . Using
this in the previous equation, we wish to confirm

n

30
+ 3 + (

5
3
|C| − 5

3
− n

30
)
11
20

≤ |C| − 1

n

30
· 9
20

+ 4− 11
12

≤ |C|
12

.

Finally, we use the fact that |C| > n
4 (1−δ) > n

5 , with probability going to 1.
This gives

n

30
· 9
20

+ 4− 11
12

≤ n

60

4− 11
12

≤ n

600
.

This verifies that the original inequality (7) holds with probability going to 1.
Therefore, with probability going to 1 there are no violated inequalities.

Note that the conclusion applies to all simple lifted cover inequalities simul-
taneously. That is, we relied on Lemma 12, which applies to every simple lifted
cover inequality.

We have shown that with at most n/30 variables fixed, the LP relaxation
has optimal objective value r. Therefore, no such node can be fathomed. Since
we are branching on variables, there are at least 2n/30 such nodes in the branch-
and-bound tree, with probability going to 1.

The main idea of the proof is that as long as not too many variables are fixed,
the simple lifted cover inequalities do not prevent us from having all fractional
variables set to values strictly greater than 1/2.
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5 Conclusions

We have shown that for a particular class of random knapsack instances the
branch-and-bound tree will with probability going to 1 have an exponential
number of nodes even if every simple lifted cover inequality is applied. Since
the knapsack problem is NP-hard, it is not surprising that there exist knapsack
instances for which the branch-and-bound tree has exponential size. The fact
that almost every random instance as considered in this paper requires an ex-
ponential number of nodes even with a large number of cuts present is more
significant. Moreover, since cover inequality separation is NP-hard, even for
binary knapsack [6], complexity considerations would not necessarily lead one
to expect the result obtained here.

If this result is indicative of general branch-and-cut performance, it suggests
that while cutting planes may help reduce the number of nodes, the number
is still exponential most of the time. It is possible, however, that this result
is specific to the type of instance being considered and that branch-and-cut
algorithms perform better on other knapsack instances and other problems.
Whether or not this is true is an important open question.
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