ISYE8843 Final
Jinyu Li

1. Question 1

I use Bayesian Wavelet Shrinkage to denoise. I choose a simple signal as following:

\[t = \text{linspace}(0, 1, 1024); \]
\[\text{sig} = (\sin(5\pi t) + 2.0 \cos(10\pi t) + 3.0 \sin(15\pi t)) \cdot \exp(-t); \]

The noise I add has different size, as 0.2, 0.4 and 0.6:

\[\text{sigma} = 0.2 \cdot n; \quad \% \, n = 1:3 \]
\[\text{randn('seed',1)} \]
\[\text{sign} = \text{sig} + \text{sigma} \cdot \text{randn(size(sig))}; \]

1.1 Matlab code

% Bayesian Wavelet Shrinkage
clear all
close all
% (i) Make a Signal on [0,1]
t = linspace(0,1,1024);
sig = (\sin(5\pi t) + 2.0 \cos(10\pi t) + 3.0 \sin(15\pi t)) \cdot \exp(-t);
% and plot it
figure(1)
plot(t, sig)

for n = 1: 3
% (ii) Add noise of size n*0.2. Make sure the noise is fixed
% by fixing the seed
sigma = 0.2 * n;
randn('seed',1)
sign = sig + sigma * randn(size(sig));

% (iii) plot the noisy signal here.
figure(n+1)
subplot(2,1, 1)
plot(t, sign)

% (iv) Take the filter H, in this case this is SYMMLET 4
filt = [-0.07576571478934
 -0.02963552764595 ...
 0.49761866763246
 0.80373875180522 ...]
% (v) Transfer the signal in the wavelet domain.
% Choose L=8, eight levels of decomposition

sw = dwtr(sign, 5, filt);

% At this point you may view the sw. Is it disbalanced?
% Is it decorrelated?

%(vi) Let's now apply Bayesian Shrinkage.
% Assume that the likelihood of a detail wavelet coefficient is normal (theta, sigma^2) and that the prior on theta
% is also normal (0, tau^2). The Bayes rule is:
% tau^2/(tau^2 + sigma^2) d. Take $tau^2=0.01$ and $sigma^2=0.1$.
swt = sw;
swt(2^5+1:end) = swt(2^5+1:end).*0.01/0.11;
%swt = swt.*0.01/0.11;

% (vii) Return now thresholded object back to the time domain. Of course with the same filter and L.

a=idwtr(swt,5, filt);

% (viii) Check if made a good estimate...

subplot(2,1,2);
plot(t, a, '-');
end

1.2 Output Result
The original signal:
The noise signal with noise size 0.2, and the denoised signal.

The noise signal with noise size 0.4, and the denoised signal.
As we see, all the denoised signals have nearly the same structure, and are similar to the original signal. The effect of Bayesian Wavelet Shrinkage is good for such signal.
2. Question 2

2.1 Exact Calculating

\[P(J_1, M | B_1) = \frac{1}{P(B_1)} \cdot P(B_1, J_1, M_1) \]
\[= \frac{1}{P(B_1)} \sum_{E, A} P(B_1, E, A, J_1, M_1) \]
\[= \frac{1}{P(B_1)} \sum_{E, A} P(B_1)^\ast P(E)^\ast P(A | B_1, E)^\ast P(J_1 | A)^\ast P(M_1 | A) \]
\[= \sum_{A} P(J_1 | A)^\ast P(M_1 | A)^\ast \left(\sum_{E} P(E)^\ast P(A | B_1, E) \right) \]

\[\sum_{E} P(E)^\ast P(A | B_1, E) = P(E_0)^\ast P(A | B_1, E_0) + P(E_1)^\ast P(A | B_1, E_1) \]
\[= 0.998 * 0.06 + 0.002 * 0.05 \]
\[= 0.05998 \]

\[\sum_{E} P(E)^\ast P(A | B_1, E) = P(E_0)^\ast P(A | B_1, E_0) + P(E_1)^\ast P(A | B_1, E_1) \]
\[= 0.998 * 0.94 + 0.002 * 0.95 \]
\[= 0.94002 \]

\[P(J_1, M | B_1) = \sum_{A} P(J_1 | A)^\ast P(M_1 | A)^\ast \left(\sum_{E} P(E)^\ast P(A | B_1, E) \right) \]
\[= P(J_1 | A_0)^\ast P(M_1 | A_0)^\ast \left(\sum_{E} P(E)^\ast P(A | B_1, E) \right) + P(J_1 | A_1)^\ast P(M_1 | A_1)^\ast \left(\sum_{E} P(E)^\ast P(A | B_1, E) \right) \]
\[= 0.05 * 0.01 * 0.05998 + 0.9 * 0.7 * 0.94002 \]
\[= 0.5922 \]

2.2 Using Kevin Murphy’s BNT

2.2.1 Matlab code:

```matlab
N = 5;
dag = zeros(N, N);
B = 1; E = 2; A = 3; J = 4; M = 5;
false = 1; true = 2;
dag([B,E], A) = 1;
dag(A,[J,M]) = 1;
node_sizes = 2*ones(1, N);
bnet = mk_bnet(dag, node_sizes, 'names', {'B', 'E', 'A', 'J', 'M'});
%draw_graph(bnet.dag);
bnet.CPD{B} = tabular_CPD(bnet, B, [.999, .001]);
bnet.CPD{E} = tabular_CPD(bnet, E, [.998, .002]);
bnet.CPD{J} = tabular_CPD(bnet, J, [.95, .10, .05, .90]);
bnet.CPD{M} = tabular_CPD(bnet, M, [.99, .30, .01, .70]);
```
bnet.CPD{A} = tabular_CPD(bnet, A, [.999, .06, .05, .001, .94, .29, .95]);
engine = jtree_inf_engine(bnet);

% get p(M1 | B1)
evidence = cell(1,N);
evidence{B} = true;
[engine, loglik] = enter_evidence(engine, evidence);
marg = marginal_nodes(engine, M);
p_m1_b1 = marg.T(true)

evidence = cell(1,N);
evidence{M} = true;
evidence{B} = true;
[engine, loglik] = enter_evidence(engine, evidence);
marg = marginal_nodes(engine, J);
p_j1_m1b1 = marg.T(true)

p = p_m1_b1 * p_j1_m1b1

2.2.2 Output
P(M1|B1) = 0.6586
P(J1|M1,B1) = 0.8992
P(J1,M1|B1) = P(M1|B1) * P(J1|M1,B1) = 0.6586 * 0.8992 = 0.5922

2.3 Using WinBUGs

2.3.1 WinBUGs code
To Compute P(M1|B1)
model {
burglary ~ dcat(p.burglary[]);
earthquake ~ dcat(p.earthquake[]);
alarm ~ dcat(p.alarm[burglary,earthquake,]);
Marycalls ~ dcat(p.Marycalls[alarm,]);
Johncalls ~ dcat(p.Johncalls[alarm,])
}

DATA IN:
list(
burglary = 2,
p.burglary = c(0.999,0.001),
p.earthquake = c(0.998,0.002),
p.alarm = structure(Data = c(0.999, 0.001,
 0.71, 0.29,
 0.06, 0.94,
 0.05, 0.95). Dim = c(2,2)),
p.Marycalls = structure(Data = c(0.99, 0.01,
 0.30, 0.70). Dim = c(2,2)),
p.Johncalls = structure(Data = c(0.95, 0.05,
 0.10, 0.90). Dim = c(2,2)))
To compute $P(J1|M1,B1)$

```r
model {
  burglary ~ dcat(p.burglary[]);
  earthquake ~ dcat(p.earthquake[]);
  alarm ~ dcat(p.alarm[burglary, earthquake,]);
  Marycalls ~ dcat(p.Marycalls[alarm,]);
  Johncalls ~ dcat(p.Johncalls[alarm,]);
}
```

DATA IN:

```r
list(
  Marycalls = 2, burglary = 2,
  p.burglary = c(0.999, 0.001),
  p.earthquake = c(0.998, 0.002),
  p.alarm = structure(.Data = c(0.999, 0.001, 0.71, 0.29, 0.06, 0.94, 0.05, 0.95), .Dim = c(2, 2, 2)),
  p.Marycalls = structure(.Data = c(0.99, 0.01, 0.30, 0.70), .Dim = c(2, 2)),
  p.Johncalls = structure(.Data = c(0.95, 0.05, 0.10, 0.90), .Dim = c(2, 2))
)
```

INTIS:

```r
list(
  Johncalls = 1, earthquake = 1, alarm = 1)
```

2.3.2 Output

$P(M1|B1) = 0.663$

<table>
<thead>
<tr>
<th>node</th>
<th>mean</th>
<th>sd</th>
<th>MC error</th>
<th>2.50%</th>
<th>median</th>
<th>97.50%</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marycalls</td>
<td>1.663</td>
<td>0.4727</td>
<td>0.004821</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1001</td>
<td>10000</td>
</tr>
</tbody>
</table>

$P(J1|M1,B1) = 0.902$

<table>
<thead>
<tr>
<th>node</th>
<th>mean</th>
<th>sd</th>
<th>MC error</th>
<th>2.50%</th>
<th>median</th>
<th>97.50%</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johncalls</td>
<td>1.902</td>
<td>0.2976</td>
<td>0.002765</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1001</td>
<td>10000</td>
</tr>
</tbody>
</table>

$P(J1,M1|B1) = P(M1|B1) \times P(J1|M1,B1) = 0.663 \times 0.902 = 0.5980$
3. Question 3

3.1 Exact Posterior Computation

\[P(\tau, \lambda, \mu, Y) = \prod_{i=1}^{n} P(Y_i | \mu, \Lambda) \cdot P(\lambda) \cdot \prod_{i=1}^{n} P(Y_i | \tau, \Lambda) \cdot P(\mu) \cdot P(\tau) \]

\[= \left(\prod_{i=1}^{n} \left(\frac{\lambda^Y_i e^{-\lambda} \Gamma(\alpha_\lambda)}{\gamma_i^Y} \right) \right) \cdot \beta_\tau^{\alpha_\tau} \cdot \mu^{\alpha_\mu} \cdot \frac{1}{n} \]

So, the posteriors are:

\[P(\tau = k | \lambda, \mu, Y) \propto \left(\sum_{i=1}^{k} Y_i \right)^{\alpha_\tau - 1} \cdot e^{-k \lambda} \cdot (n-k)^{\alpha_\mu - 1} \cdot e^{-\mu \beta_\mu} \]

It should be normalized to get the sum probability 1 as

\[\sum_{k=1}^{n} P(\tau = k | \lambda, \mu, Y) = 1 \]

So, I get the normalization factor as

\[\sum_{k=1}^{n} \left(\sum_{i=1}^{k} Y_i \right)^{\alpha_\tau - 1} \cdot e^{-k \lambda} \cdot (n-k)^{\alpha_\mu - 1} \cdot e^{-\mu \beta_\mu} \]

3.2 MCMC Implementation

By ignoring constant terms the probability \(P(\tau = k | \lambda, \mu, Y) \) is simplified as:

\[P(\tau = k | \lambda, \mu, Y) \sim \left(\sum_{i=1}^{k} Y_i \right)^{\alpha_\tau - 1} \cdot e^{-(k \lambda + \beta_\mu)} \]

\[\sim \text{gamma} \left(\sum_{i=1}^{k} Y_i, \alpha_\tau, \tau + \beta_\mu \right) \]

\[P(\mu | \lambda, Y) \sim \left(\sum_{i=1}^{n} Y_i \right)^{\alpha_\mu - 1} \cdot e^{-(n-k) \beta_\mu} \]

\[\sim \text{gamma} \left(\sum_{i=1}^{n} Y_i, \alpha_\mu, (n-k) + \beta_\mu \right) \]

Matlab code

```matlab
clear all
close all
```
NN = 10000;
burn_in = 1000;
bin = 100;

minedata = [4,5,4,1,0,4,3,4,0,6,3,3,4,0,2,6,3,3,5,4,5,3,1,4,4,1,5,5,3,...
 4,2,5,2,2,3,4,2,1,3,2,2,1,1,1,3,0,0,1,0,1,1,0,0,3,1,0,3,2,...
 2,0,1,1,0,1,0,0,0,2,1,0,0,0,1,1,0,2,3,3,1,1,2,1,1,1,1,...
 2,4,2,0,0,0,1,4,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1];

% randomly select the initial value
tau_old = 1;
lamda_old = 1;
mu_old = 1;

% randomly select the parameter
alpha_lamda = 1;
alpha_mu = 1;
beta_lamda = 1;
beta_mu = 1;

taus = [];
lamdas = [];
mus = [];

% Update parameters
for nn = 1: NN
 for k = 1: length(minedata)
 p_tau(k) = exp(-(lamda_old-mu_old)*k)*((lamda_old/mu_old)^sum(minedata(1:k)));
 end
 p_tau_norm = sum(p_tau);
 p_tau = p_tau/p_tau_norm;
 u = rand(1);
 t = 0;
 index = 1;
 for k = 1: length(minedata)
 t = t + p_tau(k);
 p_tau_sum(k) = t;
 if(t >= u)
 index = k;
 break;
 end
 end
 tau_new = index;
end
\[\lambda_{\text{new}} = \text{rand_gamma}(\alpha_{\lambda} + \text{sum}(\text{minedata}(1:\tau_{\text{new}})), \beta_{\lambda} + \tau_{\text{new}});\]
\[\mu_{\text{new}} = \text{rand_gamma}(\alpha_{\mu} + \text{sum}(\text{minedata}((\tau_{\text{new}}+1):length(p_{\tau}))), \beta_{\mu} + (\text{length}(p_{\tau})-\tau_{\text{new}}));\]
\[\tau_{\text{old}} = \tau_{\text{new}};\]
\[\lambda_{\text{old}} = \lambda_{\text{new}};\]
\[\mu_{\text{old}} = \mu_{\text{new}};\]
\[\text{taus} = [\text{taus}, \tau_{\text{new}}];\]
\[\text{lamdas} = [\text{lamdas}, \lambda_{\text{new}}];\]
\[\text{mus} = [\text{mus}, \mu_{\text{new}}];\]
end

% Plot the traces
figure(1);
subplot(3, 1, 1);
plot((burn_in:NN), \text{taus}(\text{burn_in:NN}));
ylabel('\tau');
subplot(3,1,2);
plot((burn_in:NN), \text{lamdas}(\text{burn_in:NN}));
ylabel('\lambda');
subplot(3,1,3);
plot((burn_in:NN), \text{mus}(\text{burn_in:NN}));
ylabel('\mu');

% Plot the histograms
figure(2);
subplot(3,1,1);
hist(\text{taus}(\text{burn_in:NN}), \text{bin});
ylabel('\tau');
subplot(3,1,2);
hist(\text{lamdas}(\text{burn_in:NN}), \text{bin});
ylabel('\lambda');
subplot(3,1,3);
hist(\text{mus}(\text{burn_in:NN}), \text{bin});
ylabel('\mu');

disp('mean of \tau');
mean(\text{taus}(\text{burn_in:NN}))
disp('mean of \lambda');
mean(\text{lamdas}(\text{burn_in:NN}))
disp('mean of \mu');
mean(\text{mus}(\text{burn_in:NN}))
3.3 Output

The trace

The histogram
mean of tau
ans =40.0933

mean of lamda
ans =3.0607

mean of mu
ans =0.9246

3.4 Discussion

τ(mean) = 40.0933
λ(mean) = 3.0607
μ(mean) = 0.9246

The mean of τ is about 40. That is to say, around 1890, there is a change point of the accident numbers. λ and μ are the expectation accident numbers before and after that change point. As we can see, from their mean values, before that change point, the accident number is about 3. After that change point, the accident number is less than 1.