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1 Basics of Wavelets

The first theoretical results in wavelets are connected with continuous wavelet decomposifigrfarud-
tions and go back to the early 1980s. Papers of Metlet. (1982) and Grossmann and Morlet (1985) were
among the first on this subject.

Letv, (), a € R\{0},b € R be a family of functions defined as translations and re-scales of a single
functiony(x) € La(R),

1 z—b
wb(T) = . 1
Yos(a) JW’() ®
1

Normalization by | ensures thafjy, ;(z)|| is independent o, andb. The functiony (calledthe

la

wavelet functioror the mother wavelgis assumed to satisfy treimissibility condition,
U 2
Cy = / de < 00, (2)
R |

whereU(w) = [ 1(z)e "*“dax is the Fourier transformation af(x). The admissibility condition (2)
implies

0=T(0) = /w(x)dx

Also, if [¢(z)dz =0and (1 + |z|*)|¢(z)|dx < oo for somea > 0, thenCy, < oo.
Wavelet functions are usually normalized to “have unit energy”, i®q,,(z)|| = 1.
For anylL, function f(z), the continuous wavelet transformation is defined as a function of two variables

CWT (a.) = {f.v0s) = [ Fe)dup(@)da.
Here the dilation and translation parameterandb, respectively, vary continuously ovB\ {0} x R.

Resolution of Identity. When the admissibility condition is satisfied, i.€, < oo, itis possible to find the
inverse continuous transformation via the relation knowreaslution of identityr Calderon’s reproducing
identity,

1

@)= o [ OV sl buste)

2

a

If a is restricted toR™, which is natural since. can be interpreted as a reciprocal of frequency, (2)
becomes

sz/ooom(j)Pdw<oo, 3)
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and theresolution of identityelation takes the form

1 o [ 1
flx) = Cw/—oo/o CWTf(a,b)¢a7b(x)gda db. 4)

Next, we list a few important properties of continuous wavelet transformations.

Shifting Property. If f(x) has a continuous wavelet transformation
CWT f(a,b), theng(z) = f(xz—p) has the continuous wavelet transformation7 ,(a, b) = CWT f(a, b—

B3).
Scaling Property. If f(z) has a continuous wavelet transformation
CWT ¢(a,b),theng(z) = % f (%) has the continuous wavelet transformation7 ,(a, b) = CWT f (%, 2).
Both the shifting property and the scaling property are simple consequences of changing variables under
the integral sign.

Energy Conservation.From (4),
S 1 0 e’} 1
2 2
/_Oolf(:c)l dr = o /_oo /0 CWT 4(a.b)|* —da db.

Localization. Let f(x) = §(z — o) be the Dirac pulse at the poing. Then,CWT f(a,b) = ﬁzp("”f’;b).

Reproducing Kernel Property. Define K(u,v;a,b) = (¢4, %ap). Then, if F(u,v) is a continuous
wavelet transformation of (x),

1 e [oe 1
F = — K sa,b)F(a,b)—da db
(u,v) ey /—oo/o (u,v;a,b)F(a, )a2 a db,

i.e., K is a reproducing kernel. The associated reproducing kernel Hilbert space (RKHS) is defined as a
CWT image ofL, (R) —the space of all complex-valued functiafi®n R? forwhichciw 17 I | F(a, b)|2%

is finite.

Characterization of Regularity. Let [(1+ |z|) |[¢(z)| dz < oo and let®(0) = 0. If f € C*(Holder space

with exponenty), then

ICWT t(a,b)| < Cla|*H/2. (5)
Conversely, if a continuous and bounded functfosatisfies (5), thert € C*

Example 1.1 Mexican hat or Marr’'s wavelet. The function

@) = gl = (1= a?)e 2

is a wavelet [known as the “Mexican hat” or Marr’'s wavelet.
By direct calculation one may obtadty, = 2.
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Figure 1: Critical Sampling iR x R* half-plane ¢ = 277 andb = k 27).

Example 1.2 Poisson wavelet. The functiony:(z) = —(14 £ )+ 1 is a wavelet [known as the Poisson
wavelet. The analysis of functions with respect to this wavelet is related to the boundary value problem of

the Laplace operator.

The continuous wavelet transformation of a function of one variable is a function of two variables.
Clearly, the transformation is redundant. To “minimize” the transformation one can select discrete values of
a andb and still have a transformation that is invertible. However, sampling that preserves all information
about the decomposed function cannot be coarser thasmitloal sampling.

The critical sampling (Fig. 1) defined by

a=27b=k2"7, jkeZ, (6)

will produce the minimal basis. Any coarser sampling will not give a unique inverse transformation; that
is, the original function will not be uniquely recoverable. Moreover under mild conditions on the wavelet
functiont, such sampling produces an orthogonal bégis. (z) = 27/%)(27x — k), j, k € Z}.

There are other discretization choices. For example, seleating 277, b = k will lead to non-
decimated (or stationary) wavelets. For more general sampling, given by

a=ay’, b=kboay’, jk € Z, ag > 1,by >0, @)

numerically stable reconstructions are possible if the systejp, j, k € Z} constitutes a frame. Here

. — kb —J ) .
Vjk(z) = a{)/z (0 (x_?ao> = aé/zw(a‘ém —kb),

g
is (1) evaluated at (7).
Next, we consider wavelet transformations (wavelet series expansions) for valuasdifgiven by (6).

An elegant theoretical framework for critically sampled wavelet transformatibdalkat’'s Multiresolution
Analysis(Mallat, 87; 89a, 89b, 98).



1.1 Multiresolution Analysis

A multiresolution analysis (MRA) is a sequence of closed subspéges € Z in Ly (R) such that they lie
in a containment hierarchy

i CVaCVaCVyCViCVaC e, 8)

The nested spaces have an intersection that contains the zero function only and a union that i€d&nse in

Vi = {0}, G;V; = La(R).

[with A we denoted the closure of a sé}. The hierarchy (8) is constructed such thatW(ijspaces are
self-similar,

f(2x) € V;iff f(x) € Vp. 9)

and (i) there exista scaling functionp € V;; whose integer-translates span the space

Vo = {f € La(R)| f(z) =Y cxole - k)},
k

and for which the sefé(e — k), k € Z} is an orthonormal basfs.

Mild technical conditions og are necessary for future developments. It can be assumefdgiiajdz >
0. Later, we will prove that this integral is in fact equal to 1. SingeC V1, the functiong(z) € V; can be
represented as a linear combination of functions figmi.e.,

$(x) =D hi V20(2x — k), (10)

kEZ

for some coefficientdy, k € Z. This equation is called th&caling equatior{or two-scale equation) and it
is fundamental in constructing, exploring, and utilizing wavelets.

ADD BASES FORYV;.

ANY L, can be projected ol

In the wavelet literature, the reader may encounter an indexing of the multiresolution subspaces, which
is the reverse of that in (8),

-CWVhcVicWCcV 4 CVaC---. (11)

FORM OF ¢ ().

!ltis possible to relax the orthogonality requirement. It is sufficient to assume that the system of fufi¢tiensk), k € Z}
constitutes a Riesz basis fb.



Theorem 1.1 For the scaling function it holds

/JR é(z)dz =

®(0) = 1,

or, equivalently,

where® (w) is Fourier transformation of, [, ¢(z)e™“*dx.

The coefficients:,, in (10) are important in connecting the MRA to the theory of signal processing. The
(possibly infinite) vectoh = {h,,, n € Z} will be called awavelet filter.It is a low-pass (averaging) filter
as will become clear later by considerations in the Fourier domain.

To further explore properties of multiresolution analysis subspaces and their bases, we will often work
in the Fourier domain. Define the functiom, as follows:

mo(w) H(w). (12)

fz _ka:ﬁ

keZ

The function in (12) is sometimes called tihansfer functiorand it describes the behavior of the associated
filter h in the Fourier domain. Notice that the function, is periodic with the perio@n and that the filter
taps{h,, n € Z} are the Fourier coefficients of the functiéh(w) = /2 mq(w).

In the Fourier domain, the relation (10) becomes

o= (5)2(3). w9

where®(w) is the Fourier transformation @f(x). Indeed,

O(w) = /OO P(z)e”“dx
= Z\@hk /_OO (2 — k)e “Tdx
_ hk: o ikw/2 / b(2 i(2x— k)w/Qd( — k)

sk ’““ ()
)
By iterating (13), one gets
- (3) e
n=1

which is convergent under very mild conditions on rates of decay of the scaling fungtidhere are
several sufficient conditions for convergence of the product in (14). For instance, the uniform convergence
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on compact sets is assured if (i (w) = 1 and (i) |mo(w) — 1| < C|w|, for some positive”’ ande. See
also Theorem 1.2.

Next, we prove two important properties of wavelet filters associated with an orthogonal multiresolution
analysispormalizationandorthogonality.

Normalization.

> he=V2. (15)

keZ

Proof:

/¢($)d$ = \@Z hk/gb(Zm—k:)d:E
k
= V2> Iy ;/gi)(Qx — k)d(2z — k)
k

V2

Since [ ¢(z)dz # 0 by assumption, (15) follows.
This result also follows fromny(0) = 1.

Orthogonality. For anyl € Z,

> hphp_o = 6. (16)
k
Proof: Notice first that from the scaling equation (10) it follows that
o@)ple—1) = V2 Mo~ k)é(x 1) (17)
k
= V2 mor—k) V2 D hmo(2(x —1) - m).
k m

By integrating the both sides in (17) we obtain

& = 2 zk: hy, [Zm: hm% / (22 — k)p(2x — 21 — m) d(2z)
= > ) hihmOrorim

k m
= Z hihg—o.
k

The last line is obtained by taking= 2[ 4+ m.



An important special case is= 0 for which (16) becomes

d hp=1 (18)
k

One consequence of the orthogonality condition (16) is the following: the convolution oftfiltgth
itself, f = h « h, is ana trous?

The fact that the systefw(e — k), k € Z} constitutes an orthonormal basis gy can be expressed in
the Fourier domain in terms of eith@f(w) or mg(w).

(@) In terms of®(w):

> [®(w+2nl)]? = 1. (19)

l=—00

By the[PAR] property of the Fourier transformation and theperiodicity ofe™* one has

5 = /R b(2)3z — R)da
1

= — [ ®(w)P(w)e“Fdw
2 R

1 2w X

= — > 1®(w + 2nl) P dw. (20)
271' 0 [

The last line in (20) is the Fourier coefficiemt in the Fourier series decomposition of

F@) = 3 [@(w+2m)

l=—0c0

Due to the uniqueness of Fourier representatiffn;) = 1. As a side results, we obtain thé@{27n) =
0,n # 0,and)_ ¢(z —n) = 1. The last result follows from inspection of coefficierjsin the Fourier
decomposition o}, ¢(x — n), the serie$ ", cxe?™=. Since this function is 1-periodic,

L = /01 <Z o(x — n)) e 2T g — /OO d(x)e 2" dy = B(21k) = o .-

Remark 1.1 Utilizing the identity (19), any set of independent functions spaniind ¢(z — k), k € Z},
can be orthogonalized in the Fourier domain. The orthonormal basis is generated by integer-shifts of the
function

O (w)
VIR 0w+ 2m) 2

This normalization in the Fourier domain is used in constructing of some wavelet bases.

F-1

(21)

2The attributea trous (Fr.) ( = with holes) comes from the properf, = d,, i.e., each tap on even positionfris 0, except
the tapfo. Such filters are also called half-band filters.



(b) In terms ofmy :

]mo(w)|2 + |mo(w + 71')|2 =1. (22)

Since} ;° _ |®(2w + 2I7)|? = 1, then by (13)

z Imo(w + 17) || ®(w + ) |2 = 1. (23)

l=—00

Now split the sum in (23) into two sums — one with odd and the other with even indices, i.e.,

o

L= > Imo(w + 2km)P|@(w + 2km) > +
k=—o00
> Imolw + (2k + 1)m) 2|@(w + (2k + 1)) 2
k=—o00

To simplify the above expression, we use relation (19) an@thperiodicity ofmg(w).

1= |mo(@)]” Y [®(w+2km)|* + [mo(w +m)> Y [®((w+ ) + 2km)[”

k=—00 k=—o00

= [mo(w)[® + [mo(w + ).

Whenever a sequence of subspaces satisfies MRA properties, there exists (though not unique) an or-
thonormal basis fokx(R),

(@) = 20/ 2p(20x — k), j,k € Z} (24)

such that{y;(x), j-fixed, k € Z} is an orthonormal basis of the “difference spa¥é; = V;; © V. The
functiony(x) = voo(x) is called avavelet functioror informally the mother wavelet

Next, we detail the derivation of a wavelet function from the scaling function. Sifcg € V; (because
of the containmentV, C 1), it can be represented as

Y(@) =Y gk V20 (2 — k), (25)
keZ
for some coefficientg;, k € Z.
Define
) = o= 3 gremh. (26)
V2 g
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By mimicking what was done witimg, we obtain the Fourier counterpart of (25),

(w) = mi(5)0(5). (27)

The space$ly andV} are orthogonal by construction. Therefore,

Oz/w(x)qﬁ(x—k)da: = / O (w)e“Fdw
1

= o J, Z (w + 2I7)®(w + 27)e™* dw.
™

l=—00

By repeating the Fourier series argument, as in (19), we conclude

i U(w + 20m)®(w + 2lm) = 0.

l=—00

By taking into account the definitions efy andm,, and by mimicking the derivation of (22), we find

my (w)mo(w) +mi(w + m)mo(w + ) = 0. (28)

From (28), we conclude that there exists a functi¢@) such that

(m1(w), mi(w+m)) = Aw) (mg(w +7), —mo(w) ) ) (29)

By substituting = w + 7 and by using th@n-periodicity ofmg andm,, we conclude that

Mw) = —Aw+m), and (30)
AMw) is 2m-periodic

Any function \(w) of the forme*™S(2w), whereS is anlLy ([0, 27]), 27-periodic function, will satisfy
(28); however, only the functions for whigh(w)| = 1 will define an orthogonal basig;;, of Ly (R).
To summarize, we choos€w) such that

(i) A(w) is 2m-periodic,
(i) Mw) = —A(w + ), and
(i) Mw)? =1
Standard choices fox(w) are—e~* e~ ande™; however, any other function satisfying (i)-(iii) will

generate a valigh;. We choose to define:; (w) as

my(w) = —e “mg(w + 7). (31)

9



since it leads to a convenient and standard connection between thefiiadg.
The form ofm; and the equation (19) imply tht)(e — k), k € Z} is an orthonormal basis fa#.
Since|m; (w)| = |mo(w + )|, the orthogonality condition (22) can be rewritten as

[mo (W) + ma(w)[* = 1. (32)

By comparing the definition afi; in (26) with

mi(w) = —e *“— itk

we relateyg,, andh,, as

9gn = (_1)n hlfn- (33)

In signal processing literature, the relation (33) is known agjttegrature mirror relationand the filtersh
andg asquadrature mirror filters.

Remark 1.2 Choosing\(w) = €™ leads to the rarely used high-pass filtgr = (—1)""' h_;_,. Itis
sometimes convenient to defipg as(—1)"hi_,+ s, Wherel is a “shift constant.” Such re-indexing gf
affects only the shift-location of the wavelet function.

1.2 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets have tremendous educational
value. Here we illustrate some of the relations discussed in the Section 1.1 using the Haar wavelet. We start
with ¢(x) = 1(0 < = < 1) and pretend that everything else is unknown.

The scaling equation (10) is very simple for the Haar case. By inspection of simple graphs of two scaled
Haar wavelet®(2x) and¢(2z + 1) stuck to each other, we conclude that the scaling equation is

o(z) = ¢(2z)+ (22 —1)

1 1
— ﬁﬁ(ﬁ@x) + ﬁ\/%(m - 1), (34)

which yields the wavelet filter coefficients:

ho=hy =

Sl

Now, the transfer functions become

10



and
 — . 1 1 . 1— —iw
() = —e ™ molw ) = —e <2 - 2> =
Notice thatmg(w) = |mg(w)]e¥@) = cos ¥ - e~iw/2 (aftercosx = %) Sincep(w) = —%, Haar's

wavelet hadinear phase,.e., the scaling function is symmetric in the time domain. The orthogonality
condition|mg(w)|? + |m1(w)|? = 1 is easily verified, as well.
Relation (27) becomes

v (5) e (5) e ()

and by applying the inverse Fourier transformation we obtain

P(x) = o(2z) — (22 — 1)

in the time-domain. Therefore we “discovered” the Haar wavelet funetioRrom the expression fon;
or by inspecting the representatiompfz) by ¢(2x) and¢(2x — 1), we “conclude” thayy = —g—1 = %

The Haar basis is not an appropriate basis for all applications for several reasons. The building blocks in
Haar’s decomposition are discontinuous functions that obviously are not effective in approximating smooth
functions. Although the Haar wavelets are well localized in the time domain, in the frequency domain they

decay at the slow rate @¥(2).

1.3 Daubechies’ Compactly Supported Wavelets

Daubechies was first to construct compactly supported orthogonal wavelets with a preassigned degree of
smoothness. Here we present the idea of Daubechies, omitting some technical details. Detailed treatment of
this topic can be found in the monograph Daubechies (1992), Chapters 6 and 7.

Suppose that) hasN (> 2) vanishing moments, i.ef z"¢(xz)dz = 0, n = 0,1,...,N — 1. The
mo(w) has the form:

mo(w) = <“§M>Nﬁ<w>, (35)

where £(w) is a trigonometric polynomial. Indeed, singehas N vanishing moments, thewr(™) (0) =
0,n=0,1,...,N — 1. By differentiating (27), we get

[m1(w)®w)] ™, =0, n=0,1,...,N — 1.

Since®(0) = 1, it follows thatm\™ (0) or, equivalentlyn{” () = 0, for n = 0,1,...,N — 1. Thus,
mo(w) has to be as in (35).

11



In terms of
2 g w\N 2
Mo(w) = lmo(w)P? = (cos?3) " - [L@)[*,

the orthogonality condition (22) becomes

Mg(w)+M0(w—|—7r) = 1. (36)

|L(w)|? is a polynomial incosw. It can be re-expressed as a polynomialin= sin? $ sincecosw =
1—2sin? 5. This re-expression is beneficial since we can use some standard results in theory of polynomials,
to specify|£(w)|?. Denote this polynomial by>(sin? ). In terms of the polynomiaP the orthogonality
condition (36) becomes

1=—y)NPy) +y"P(1—y) =1, (y:siHZ%) (37)

By Bezout's result (outlined below), there exists a unique solution of the functional equation (37). It can
be found by the Euclidean algorithm since the polynomials y)"¥ andy™ are relatively prime.

Lemma 1.1 (Bezout) Ifp; andp- are two polynomials of degree, andns, respectively, with no common
zeroes, then there exist unique polynomigland g, of degreen, — 1 andn, — 1, respectively, so that

p1(x)qi(x) + pa(x)ga(x) = 1.

For the proof of the lemma, we direct the reader to Daubechsl§9-170). The unique solution of (37)
with degreeleg(P(y)) < N —1is

N—

[y

N+k—1
k—o< +k )y"i y=sin2§7 (38)

and since it is positive fog € [0, 1], it does not contradict the positivity Of (w)|?.

Remark: If the degree of a solution is not required to be minimal then any other polynaptigl =
P(y) + y™“R(3 — y) whereR is an odd polynomial preserving the positivity @f will lead to a different
solution formg(w). By choosingR # 0, one can generalize the standard Daubechies family, to construct
symmlets, complex Daubechies wavelets, coiflets, etc.

The function|mg(w)|? is now completely determined. To finish the construction we have to find its
square root. A result of Riesz, known as #pectral factorization lemmanakes this possible.

Lemma 1.2 (Riesz) LetA be a positive trigonometric polynomial with the propeAy—x) = A(z). Then,
A is necessatrily of the form

M
A(z) = Z Uy, COS M.
m=1

1 vme™® such that|B(z)|* =
A(z). If the coefficients.,, are real, thenB can be chosen so that the coefficientsare also real.

In addition, there exists a polynomia of the same ordeB(z) = SV

12



We first representZ(w)|? as the polynomial

a N-1
0 2 :

? + af COSk W,
k=1

by replacingsin? ¥ in (38) by 1=«
An auxiliary polynomialPy4, such that£(e=*)|? = |Ps(e~™)], is formed.
If 2z =e"™, thencosw = Z+§_l and one such auxiliary polynomial is

1

Z a|k‘ZN_1+k. (39)

Pa(z) =
k=1—-N

N =

SincePa(z) = 22N 2P4(L), the zeroes oP4 (=) appear in reciprocal pairs if real, and quadruglesz;, PRl

[t}
if complex. Without loss of generality we assume thatz; andr; lie outside the unit circle in the complex
plane. Of course, themj‘l,zj‘1 andrj‘1 lie inside the unit circle. The factorized polynomigl can be
written as

I
1 1
Pa(z) = san-1 [H( — i)z~ >]
J
[[G-z)GE-z)E—2CE-7] . (40)
j=1
Herery,ro,...,ry are real and non zero, ang, . .., zy are complex] + 2J = N — 1.

The goal is to take a square root frgil4(z)| and the following simple substitution putB4(z)| in a
convenient form.

Sincez = e =™, we replacg(z — z;)(z — z; )| by |2;| |z — 2

2, and the polynomialP,| becomes

1 I J I J
slan-1l T 2 TG = T = 20 — 2
i=1 j=1

i=1 j=1

Now, £(w) becomes

I J
1 _ _o9 1
(g lav | [Tl T 12172
i=1 j=1
I J

A=) []G -2 - 2)l, 2= e, (41)

i=1 j=1

where the sign is chosen so thag(0) = £(0) = 1. Note thatdeg[P4(z)] = deg[|L(z)]?] = N — 1.
Finally, the coefficientsg, k1, ..., han_1 in the polynomialy/2 mg(w) are the desired wavelet filter
coefficients.

13
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Example 1.3 We will find mq for N = 2.
|IL(w)]? = i;(l) (2+Zfl) sin? %" =1+421=w — 14 1. cosw gives ag = 4 anda; = —1.
The auxiliary polynomialP, is

1
1

Pa(z) = B Z appz'
k=—1

1
= 5(—1+4Z—Z2>

= 5 (e-e+vB) (- @-v3).

One square root from the above polynomial is

\/;(’_1)2;\/3 (Z_(2+\/§)) = \}i 2—\/§(z—(2+\/§))
1

= 5((\/5—1)7:—(1—1-\/5))-

The change in sign in the expression above is necessary, since the expression should have the value of 1 at
z = 1 or equivalently atv = 0. Finally,

mo(w) = (HQ‘B_W)Q % (A= V3™ +(1+V3)

1<1+\/§ 34+V3 i 3—\/36—2w+1_\/§e—3w>

+ e 7+
V2 \ 42 4v2 4v2 42
Table 1 givesh-filters for DAUB2 - DAUB10 wavelets.

1.4 Regularity of Wavelets

There is at least continuum many different wavelet bases. An appealing property of wavelets is diversity
in their properties. One can construct wavelets with different smoothness, symmetry, oscillatory, support,
etc. properties. Sometimes the requirements can be conflicting since some of the properties are exclusive.
For example, there is no symmetric real-valued wavelet with a compact support. Similarly, there is no
C>°-wavelet function with an exponential decay, etc.

Scaling functions and wavelets can be constructed with desired degree of smoothness. The regularity
(smoothness) of wavelets is connected with the rate of decay of scaling functions and ultimately with the
number of vanishing moments of scaling and wavelet functions. For instance, the Haar wavelet has only the
“zeroth” vanishing moment (as a consequence of the admissibility condition) resulting in a discontinuous
wavelet function.

Theorem 1.2 is important in connecting the regularity of wavelets, the number of vanishing moments,
and the form of the transfer functiomy(w). The proof is based on the Taylor series argument and the
scaling properties of wavelet functions. For details, see Daubechies (1992), pp 153-155. Let

M, z/xkqﬁ(x)dx and N, = /ka(x)dx,

14



Table 1: Theh filters for Daubechies’ wavelets fd¥ = 2, ..., 10 vanishing moments.

k

DAUB2

DAUB3

DAUB4

0.482962913144534
0.836516303737808

? 0.332670552950082
D 0.806891509311093

0.2241438680420134 0.459877502118491

-0.129409522551260

4-0.135011020010254
-0.085441273882026
0.035226291885709

¥ 0.230377813308896
D 0.714846570552916
5 0.630880767929859
8-0.027983769416860
7-0.187034811719093
b 0.030841381835560

0.032883011666885

-0.010597401785069

O N N O & 1N F=FO

DAUBS

DAUBG6

DAUB7

O~NOO O P, WDNPOFTFINOOUM,WNEO

0.160102397974192
0.603829269797188
0.724308528437772
0.138428145901321
-0.242294887066380
-0.032244869584638

6 0.111540743350109
7 0.494623890398453

6 0.315250351709197
8-0.226264693965439
3-0.129766867567261

0.0775714938400454 0.097501605587323

-0.006241490212798
-0.012580751999081
0.003335725285473

3 0.027522865530305
0-0.031582039317486
8 0.000553842201161
0.004777257510945
-0.001077301085308

5 0.077852054085009
1 0.396539319481917

3 0.7511339080210954 0.729132090846235

b 0.469782287405193
8-0.143906003928565
0-0.224036184993875
D 0.071309219266830
¥ 0.080612609151083
0-0.038029936935014
5-0.016574541630666
5 0.012550998556099
5 0.000429577972921

-0.001801640704047

0.000353713799974

OroT & W0 O &~ W OO F WIS

DAUBS

DAUB9

DAUB10

el ol el
SREBowwow~ouobrwNr o>

B R R R e
o ~NoO N

=
(]

0.054415842243107
0.312871590914316
0.675630736297321
0.585354683654223
-0.015829105256372
-0.284015542961581
0.000472484573903
0.128747426620482
-0.017369301001810
-0.044088253930797
0.013981027917399
0.008746094047406
-0.004870352993451
-0.000391740373376
0.000675449406450
-0.000117476784124

D 0.038077947363888

8 0.604823123690254
D 0.657288078051429
4 0.133197385824968
5-0.293273783279337
D-0.096840783223068
3 0.148540749338104
0 0.030725681479315
0-0.067632829061359
5 0.000250947114827

0-0.004723204757752
0-0.004281503682464
6 0.001847646883056
8 0.000230385763523
-0.000251963188942
0.000039347320316

1 0.026670057900548

5 0.2438346746126514 0.188176800077648

8 0.527201188931628
8 0.688459039453546
1 0.281172343660698
2-0.249846424327104
0-0.195946274377324
D 0.127369340335694
3 0.093057364603514
1-0.071394147166380
3-0.029457536821884

5 0.0223616621236844 0.033212674059315

8 0.003606553566951
6-0.010733175483327
¥ 0.001395351747051
2 0.001992405295184
8-0.000685856694959
3-0.000116466855129

0.000093588670320

-0.000013264202894

OT O N WO NN W0 N O0Toro N NN O w oo NN OO«
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be thekth moments of the scaling and wavelet functions, respectively.

Theorem 1.2 Letyi.(z) = 2//2¢(272 — k), j, k € Z be an orthonormal system of functionglin(R),

Ch

[Y(x)| < Wa

a> N,

andy € CN~1(R), where the derivativeg*)(z) are bounded fok < N — 1.
Then,) has N vanishing moments,

N,=0, 0<k<N-—1.

If, in addition,

Co

2 a>N
(1+ Jz])e

()] <

then, the associated functieny(w) is necessarily of the form

mo(w) = (HQ)N L) (42)

where. is a2r-periodic, CN~!-function.
The following definition of regularity is often used,

Definition 1.1 The multiresolution analysis (or, the scaling function) is said torbegular if, for any
a € 7,

C

oW (@) <
|91 ()] TG
fork=0,1,...,r.

The requirement that possessed’ vanishing moments can be expressed in termb,ofy, or equiv-
alently, in terms of the filteh.
Assume that a wavelet functiaf(x) hasN vanishing moments, i.e.,

Npy=0,k=0,1,...,N — 1. (43)

By basic property of Fourier transformations, the requirement (43) corresponds to

k
CY) g k=01, N-1,
dw* w=0
which implies
m (@) lomo =mP(0) =0, k=0,1,..., N — 1. (44)



It is easy to check that in terms of, relation (44) becomes

m{(W) |oer =m{P (1) =0, k=0,1,..., N — 1. (45)
The argument is inductive. The case= 0 follows from ¥ (0) = m4(0)®(0) [(27) evaluated ab = 0]
and the fact tha®(0) = 1. Sincel’(0) = $m/ (0)¥(0) + £m4(0)¥’(0) it follows thatm/ (0) = 0, as well.

Then,mgN_l)(O) = 0 follows by induction.

The conditionmgk) (0)=0, k=0,1,..., N — 1 translates to a constraint on the wavelet-filter coeffi-
cients
> nFgn=> (-1)"n*hy, =0, k=0,1,...,N - 1L (46)
nel nez

How smooth are the wavelets from the Daubechies family? There is an apparent trade-off between the
length of support and the regularity index of scaling functions. Daubechies (1988) and Daubechies and
Lagarias (1991, 1992), obtained regularity exponents for wavelets in the Daubechies family.

Let ¢ be the DAUBN scaling function. There are two popular measures of regularity 8obolev and
Holder regularity exponents. Lety, be the supremum gf such that

/ (1 + [w])?B(w) dw < o0,

and letay be the exponent of thedtder spac&C™» to which the scaling function belongs.

Table 2: Sobolew}, and Hlder oy regularity exponents of Daubechies’ scaling functions.

N 1 2 3 4 5 6 7 8 9 10
'y 05 1 1415 1.775 2.096 2.388 2.658 2914 3.161 3.402
aN 0.550 0.915 1.275 1.596 1.888 2.158 2.415 2.661 2.902

The following result describes the limiting behavioraf.

Theorem 1.3

log 3 In N
li =N|1- —).
Nose MY < 210g2>+0( N )

From Table 2, we see that DAUB4 is the first differentiable wavelet, sincel. More precise bounds
onay Yyield thatyp from the DAUB3 family is, in fact, the first differentiable scaling functien (= 1.0878),
even though it seams to have a peak at 1. See also Daubechies (1992), page 239, for the discussion.

Remark 1.3 the Sobolev and lder regularities are related, thus, Theorem 1.3 holds for the expaient
as well.
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1.5 Approximations and Characterizations of Functional Spaces

Any L, (R) function f can be represented as

flx) = dptji(a),
7.k

and this unique representation corresponds to a multiresolution decompasition= @3> ___ W;. Also,

j=—o0

for any fixedj, the decompositiofiLy (R) = Vj, @ EB}";jO W; corresponds to the representation

F@) =" ciorbion(@) + DD djthr(z). (47)
k Jj2jo k
The first sum in (47) is an orthogonal projecti®p of f onVj,.
In general, it is possible to boun®;, f — f|| = ||(I — P, ) f]| if the regularities of functiong’ and¢
are known.

When bothf and¢ haven continuous derivatives, there exists a constasuch that

(T = B3 flley < C - 2770 ]I,

A range of important function spaces can be fully characterized by wavelets. We list a few characteri-
zations. For example, a functighbelongs to the BElder spacé&’® if and only if there is a constarit such
that in anr-regular MRA ¢ > s) the wavelet coefficients satisfy

(1) lejorl < C,
(i) |djxl <C-2796%2) j> o ke, (48)

A function f belongs to the SoboléW;(RR) space if and only if

> ldil? - (1+2%°%) < 0.
ik

Even the general (non-homogeneous) Besov spaces, can be characterized by moduli of the wavelet
coefficients of its elements. For a giverregular MRA withr > max{o, 1}, the following result (see
Meyer 1992, page 200) holds

Theorem 1.4 LetI; be a set of indices so thét);, i € I;} constitutes an o.n. basis of the detail spéicg
There exist two constants’ > C' > 0 such that, for every exponente [1, o], for eachj € Z and for

every elemenf(x) = Zielj dii(x) in W,
1/p
Cllflly < 2722797 [ X7 1dilP | < C'l|flp-

’iEIj
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The following characterization of Bes@®f , spaces can be obtained directly from this result. If the MRA
has regularity- > s, then wavelet bases are Riesz bases for &llp, ¢ < 00, 0 < 0 < 1.

The functionf = >, cjor®jor(®) + 32555, 2ok dik¥jk(x) belongs taBy | space if its wavelet coeffi-
cients satisfy

1/p
(Sir) <
k
and

1/p

ZQJ(U+1/2*1/P)|di|P 7>
iGIj

. 1/
is an/, sequence, i.e[,zjzjo (2J(U+1/2—1/p)(zk |dj’k|p)1/p)‘q "
The results listed are concerned with global regularity. The local regularity of functions can also be

studied by inspecting the magnitudes of their wavelet coefficients. For more details, we direct the reader to
the work of Jaffard (1991) and Jaffard and Laurencot (1992).

1.5.1 Daubechies-Lagarias Algorithm

As a nice calculational example, we describe an algorithm for fast numerical calculation of wavelet values
at a given point, based on the Daubechies-Lagarias (Daubechies and Lagarias, 199bcabpglamidal
algorithm Thematlab routinesPhi.m andPsi.m in the Matlab sesction implement the algorithm.

The scaling function and wavelet function in Daubechies’ families have no explicit representations (ex-
cept for the Haar wavelet). Sometimes, it necessary to find values of DAUB functions at arbitrary points;
examples include calculation of coefficients in density estimation and non-equally spaced regression.

The Daubechies-Lagarias algorithm enables us to evajuane:) at a point with preassigned precision.

We illustrate the algorithm on wavelets from the Daubechies family; however, the algorithm works for all
orthoginal wavelet filters.

Let ¢ be the scaling function of the DAUB wavelet. The support af is [0,2N — 1]. Letz € (0,1),
and letdyad(x) = {dy,ds,...d,,...} be the set of 0-1 digits in the dyadic representatiorn: ofz =
P d;277). By dyad(z,n), we denote the subset of the firstigits from dyad(z), i.e., dyad(x,n) =
{d1,da,...dy}.

Leth = (hg, h1,...,han—1) be the wavelet filter coefficients. We build tWdN — 1) x (2N — 1)
matrices as:

To = (V2 hai—j—1)1<ij<on—1 and Ty = (V2 hai—j)1<ij<an—1- (49)

Then the local pyramidal algorithm can be constructed based on Theorem 1.5.
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Theorem 1.5

nh—>H;o Ty, - Tgy-- Ty, (50)
6(z) o) ... 6(x)
_ oz +1) oz +1) oz +1)
¢(x+2:N—2) dlx +2N —-2) ... ¢(x+2N-2)
The convergence dfTy, - Ty, - - - - - Ty, — Ta, - Ty, - --- - Ta, .|| tO zero, for fixedn, is exponential

and constructive, i.e., effective decreasing bounds on the error can be established.

Example 1.4 Consider the DAUB2 scaling functiod = 2). The corresponding filter is = (1;/‘/53, 34‘3/;, 34‘&/;, 14_\/\?) .
According to (49) the matricég, and7; are given as

1+4\/§ 0 0 3+4\/§ 1+4\/§ 0
Ty = 3—4\/§ 3+4\/§ 1+4\/§ and T, = 1—4\/3 3—4\/:’? 3+4\/§
0 174\/5 374\/5 0 0 174\/5

Let us evaluate the scaling function at an arbitrary pointasay0.45. Twenty “decimals” in the dyadic
representation of 0.45 argad(0.45,20) = {0,1,1,1,0,0,1,1,0,0,1,1,0,0, 1, 1, 0, 0, 1}.1n
addition to the value at 0.45, we get (for free) the values at 1.45 and 2.45 (the values 0.45, 1.45, and 2.45
are in the domain o#, the interval [0,3]). The valueg(0.45), ¢(1.45), and¢(2.45) may be approximated
as averages of the first, second, and third row, respectively in the matrix

0.86480582 0.86480459 0.86480336
H T; = | 0.08641418 0.08641568 0.08641719
i€dyad(0.45,20) 0.04878000 0.04877973 0.04877945

The Daubechies-Lagarias algorithm gives only the values of the scaling function. In applications, most
of the evaluation needed involves the wavelet function. It turns out that another algorithm is unnecessary,
due to the following result.

Theorem 1.6 Letx be an arbitrary real number, let the wavelet be given by its filter coefficients, and let
with2N — 1 be a vector defined as
u(e) = {(-=1)"" 2 h 9y i=0,...,2N - 2}

If for some: the indexi + 1 — |2x| is negative or larger tha N — 1, then the corresponding component
ofuis equal to O.
Let the vectow be
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1
v(z,n) = 1 H T;,
2N -1 i€dyad({2z},n)

wherel’ = (1,1,..., 1) is the row-vector of ones. Then,

V(@)= lim u@)v(z.n)

and the limit is constructive.
Proof of the theorem is a straightforward but somewhat tedious re-expression of (25).

1.5.2 Moment Conditions Determine Filters

We saw that the requirement that the wavelet function posséésemishing moments was expressed in
terms of®, my, or h.

Suppose that we wish to design a wavelet fiier {hy, ..., hony—1} only by considering properties of
its filter taps. Assume that

Nk—/ka(x)dm—o,fork:—(),l,...,N—l. (52)
R

As it was discussed in Section 1.1, some relevant properties of a multiresolution analysis can be ex-
pressed as relations involving coefficients of the filier
For example, the normalization property gave

2N—-1

> =2,
i=0
the requirement for vanishing momentsed to

2N—-1 _
> (-1)'Fhi=0,k=0,1,...,N -1,
=0
and, finally, the orthogonality property reflected to

2N—-1

> hihigor =0, k=0,1,...,N - L.
=0

That define2 N + 1 equations witl2 N unknowns; however the system is solvable since the equations
are not linearly independent. For example, the equation

ho —hi+hy —---—han_1 =0,

can be expressed as a linear combination of the others.
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Example 1.5 For N = 2, we obtain the system:

h0+h1+h2+h3:\/§
h§+hi+h3+h3=1
—hi+2hy —3h3 =0 s
hg ha + hi hg3 =0

i ili ioh. — 1+V3 p 343 1 3-3 _1-V3
which has the familiar SO|U.'[IOh0 =1 yhi = 1/2 Jho = 172 ,andhs = NI
For N = 4, the system is

(ho+hi+hy+hs+hy +hs+ heg+ hy =2
he+hi+h3+h3+hi+hi+hi+hi=1
ho —hi +ha —hz 4+ hs —hs +heg —h7 =0
hohga 4 h1hs + haohy + hghs + hahe 4+ hsh7 =0
hoh4 + h1hs + hohg + hsh7 =0
hohg + hih7 =0
Ohg — 1hy 4+ 2ho — 3hg + 4hg — Bhs + 6hg — Th7 =0
Ohg — 1hy + 4ho — 9h3 + 16hy — 25hs5 + 36hg — 49h7 = 0
Ohg — 1hy 4+ 8ho — 27h3 + 64h4 — 125hs 4+ 216hg — 343h7 = 0.

The above systems can easily be solved by a symbolic software package Blagiieasr Mathematica.

1.6 Discrete Wavelet Transformations

Discrete wavelet transformations (DWT) are applied to the discrete data sets to produce discrete outputs.
Transforming signals and data vectors by DWT is a process that resembles the fast Fourier transformation
(FFT), the Fourier method applied to a set of discrete measurements.

Table 3: The analogy between Fourier and wavelet methods

Fourier || Fourier Fourier | Discrete
Methods|| Integrals Series | Fourier Transformations
Wavelet | Continuous Wavelet| Discrete
Methods|| Wavelet Transformations Series | Wavelet TransformationL

Discrete wavelet transformations map data from the time domain (the original or input data, signal
vector) to the wavelet domain. The result is a vector of the same size. Wavelet transformations are linear
and they can be defined by matrices of dimensiomn if they are applied to inputs of size Depending on
boundary conditions, such matrices can be either orthogonal or “close” to orthogonal. When the matrix is
orthogonal, the corresponding transformation is a rotatidk’ispace in which the signal vectors represent
coordinates of a single point. The coordinates of the point in the new, rotated space comprise the discrete
wavelet transformation of the original coordinates.

Example 1.6 Let the vector bg 1,2} and letM (1, 2) be the point inR? with coordinates given by the data
vector. The rotation of the coordinate axes by an angfe cdn be interpreted as a DWT in the Haar wavelet
basis. The rotation matrix is

T s 11
W _ COS 1 Sin 1 _ \{i \/51
cosT —sinZ - ——= |’
4 4 V2 V2
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and the discrete wavelet transformation(af2)’ is W - (1,2) = (% —

, ). Notice thatthe energy
(squared distance of the point from the origin) is preservéd; 22 = (%)2 +(

M&E‘H

)2, sincelV is a rotation.

Example 1.7 Lety = (1,0,-3,2,1,0,1,2). If Haar wavelet is used, the valuggn) = y,, n =
0,1,...,7 are interpolated by the father wavelet, the vector represent the sampled piecewise constant func-
tion. It is obvious that such defingtibelongs to Haar’s multiresolution spakg

The following matrix equation gives the connection betwgemnd the wavelet coefficients (data in the
wavelet domain).

r 1 1 1 1
~ _ —  —= 5 0 —= 0 0 0 -~ _
1 f f i 0 _\/i 0 0 0 €00
0 292 22 3 Voo doo
P B I O G SO I I I
11 1 o —L 0 0
2 | _ |2z 22 2 V2 di1
1 55 "5 0 3 0 0 5 0 dao
0 — 40 1 0 0o —-L o da1
2v/2 2y/2 2 V2
1 119 -1 o o o0 L da2
2 22 22 : V2 das3
7l e 02 0 00 mgg T
The solution is -~ ~
[ coo ] V2
doo -V2
dio 1
dn | _ |
d20 V2
5
do1 ~ /2
da2 %
L das | 1
L V2
Thus,
fo= V20 30— V2 50+ 20— 121
1 5 1 1
bt 10— =114 =12 — —=_13. 52
\/i"(ﬂ 1,0 ﬁdj 1,1 \/ilb 1,2 \/ilﬂ 1,3 (52)
The solution is easy to verify. For example, wheg [0, 1),
fa)=v2- L —va i1 1+ Lol pip=1(=w)
2v2 2v2 V2 V2 o

Performing wavelet transformations by multiplying the input vector with an appropriate orthogonal ma-
trix is conceptually straightforward, but of limited practical value. Storing and manipulating transformation
matrices when inputs are lorfjg- 2000) may not even be feasible.

In the context of image processing, Burt and Adelson (1982a,b) developed orthogonal and biorthogonal
pyramid algorithms. Pyramid or cascade procedures process an image at different scales, ranging from fine
to coarse, in a tree-like algorithm. The images can be denoised, enhanced or compressed by appropriate
scale-wise treatments.
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Mallat (1989a,b) was the first to link wavelets, multiresolution analyses and cascade algorithms in a
formal way. Mallat’s cascade algorithm gives a constructive and efficient recipe for performing the discrete
wavelet transformation. It relates the wavelet coefficients from different levels in the transformation by
filtering with h andg. Mallat’s algorithm can be viewed as a wavelet counterpart of Danielson-Lanczos
algorithm in fast Fourier transformations.

Itis convenient to link the original signal with the space coefficients from the §gader someJ. Such
link is exact for interpolating wavelets (Haar, Shannon, some biorthogonal and halfband-filter wavelets) and
close to exact for other wavelets, notably coiflets. Then, coarser smooth and complementing detail spaces
are (Vy_1,Wy_1), (Vy_2,W;_9), etc. Decreasing the index Wi-spaces is equivalent to coarsening the
approximation to the data.

By a straightforward substitution of indices in the scaling equations (10) and (25), one obtains

¢j—1,(z) = Z hi—n¢ji(z) and 1y (x) = ng—2l¢jk(fﬂ)- (53)
kez kez

The relations in (53) are fundamental in developing the cascade algorithm.

Consider a multiresolution analysis- ¢ V;_1 C V; C V41 C ... . SinceV; = V;_1 & W;_q,
any functionv; € V; can be represented uniquely@g$z) = v;_1(z) + wj—1(x), wherev;_; € V;_; and
wj—1 € W;_1. Itis customary to denote the coefficients associated witliz) and ;. (x) by c;, andd;y,
respectively.

Thus,

vi(z) = ch,k¢j,k($)
2
= Z cj—110j-11(x) + Z dj_11%j-1,()
]

l
= vj_l(x) + wj_l(x).

By using the general scaling equations (53), orthogonality of; () and¢;_, ;(x) for any j andi, and
additivity of inner products, we obtain

Ci—11 = <Uj> ¢j—1,l>
= (v, hr-2udik)
%
= Z hi—21{vj, dj 1) (54)

k
= Z hi—21¢j k-
%

Slmllarly djfl,l = Zk 9k—21Cj k-
The cascade algorithm works in the reverse direction as well. Coefficients in the next finer scale corre-
sponding tol; can be obtained from the coefficients corresponding;tq and¥;_;. The relation
¢k = (v Gik)

= Y b bk + D dini(¥i-10 bik) (55)
1 z

= Z Cj—l,lhk—Ql + Z dj—l,lgk—2l7
l

l
describes a single step in the reconstruction algorithm.
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Example 1.8 For DAUB2, the scaling equation at integers is
3
> V2920 — k).
k=0

Recall thath = {hq, hy, ho, h3} = {1;/\/557 34_\/?’ 311%3, 14_\}/55}'

Sinced(0) = v/2hoo(0) andv/2hg # 1, it follows that¢(0) = 0. Also, ¢(3) = 0. For ¢(1) and$(2)

we obtain the system
s =L ] 00 ]

From), ¢(x — k) = 1 it follows that¢(1) + ¢(2) = 1. Solving for¢(1) and¢(2) we obtain

o) = Y3 andoz) = LY

Now, one can refine,

6(3) = SmvEe - =hovae() - Sai)
k

6(5) = SmvEs - 1) = hivEe) + havEo()
k

34V3 1-V3 3-V3 14V _

4 2 4 2 0
¢ <5> = 2o m2905 k) = hsv20(2) = 2

or i,
1 1 n
(0 <> = ng\f%b(*l — k) = h1V2¢(1) = e [9n = (=1)"h1-4]
k

D(0) = D aV26(0 - k) = g-2V26(2) + g1V26(1)
k

V3
47

= —haV2¢(1) =

etc.

1.6.1 Discrete Wavelet Transformations as Linear Transformations

The change of basis i, from By = {¢1x(x),k € Z} to Ba = {¢ok, k € Z} U {¢ox, k € Z} can be
performed by matrix multiplication, therefore, it is possible to define discrete wavelet transformation by
matrices. We have already seen a transformation matrix corresponding to Haar’s inverse transformation in
Example 1.7.
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Let the length of the input signal &, and leth = {h,, s € Z} be the wavelet filter and €V be an
appropriately chosen constant.

Denote byH), is a matrix of sizg2”/~* x 2/=k+1) k= 1,... with entries

he, s=(N—1)+ (i —1) —2(j — 1) modulo2’~*+1, (56)

at the position(s, j).

Note thatH}, is a circulant matrix, itgth row is 1st row circularly shifted to the right b(: — 1) units.
This circularity is a consequence of using thedulooperator in (56).

By analogy, define a matrig; by using the filterg. A version of G, corresponding to the already
defined H;, can be obtained by changirig by (—1)'hx41_;. The constantV is a shift parameter and

affects the position of the wavelet on the time scale. For filters from the Daubechies family, standard choice
for N is the number of vanishing moments. See also Remark 1.2.

The matrlx[ Gk ] is a basis-change matrix Y —**! dimensional space; consequently, it is unitary.
k

Therefore,
hos =G| g | = H v 6 G
and ) )
r= s Jmen= G5 6d
That implies,

Hy -H,=1, Gy-G) =1, Gy-H,=Hy -G, =0, andH}, - H, + G}, - Gy = I.

Now, for a sequencg the J-step wavelet transformationds= W - y, where

Hy
H -H
W1:|:G1:|7W2: [G2] 1:|7
Gy
Hj
AR
W3 = G -
G1

Example 1.9 Suppose that = {1,0,—3,2,1,0,1,2} andfilterish = (hg, h1, ha, h3) = (1;}/57 3:\/\/;, 34}?, 14‘%5) .
Then,J = 3 and matricedd;, andG}, are of dimensio23—F x 23—k+1,

[hy hy hs 0 0 0 0 ho
0 ho by hy hg 0 0 0
0 0 0 ho hi hy hs O
L hs 0 0 0 0 hy hi hy

[ —hy hy —ho O O O 0 hs
o 0 hy —hy hy —hg O 0 0

! 0 0 O hy —hy hi —hy O
| —hg 0 0 0 0 hy —hy M

H, =
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Since,

Hy-y = {2.19067,—-2.19067,1.67303,1.15539}
Gi1-y = {0.96593,1.86250,—0.96593,0.96593}.

Why = {2.19067, —2.19067, 1.67303, 1.15539 | 0.96593, 1.86250, —0.96593, 0.96593}.

Hy = hi ha hs ho] ng[hz hi —ho hs

| hs ho h1 ho —ho hs —ha hy |’

In this example, due to lengths of the filter and data, we can perform discrete wavelet transformation for two
steps only}V; andWs.

The two-step DAUB2 discrete wavelet transformatiory o
Wy -y = {1.68301,0.31699 | — 3.28109, —0.18301 | 0.96593, 1.86250, —0.96593,0.96593}, because

Hy Hy-y = Hy-{2.19067, —2.19067,1.67303,1.15539}
= {1.68301,0.31699}

Gy -Hi-y = Gi-{2.19067,—2.19067,1.67303,1.15539}
= {-3.28109, —0.18301}.

For quadrature mirror wavelet filtetsandg, we define recursively up-sampled filtdi%! andg["’
h[O] — h’ g[o} =g
hl = (72 WO gl =7 2] gl

In practice, the dilated filtds"] is obtained by inserting zeroes between the tape’in!l. Let H'"! andG /"’

be convolution operators with filtets™ andhl"), respectively. A non-decimated wavelet transformation,
NDWT, is defined as a sequential application of operators (convoluti#$)and GU! on a given time
series.

Definition 1.2 Leta?) = ¢(/) and
a0 — g0

bU-D — i)

The non-decimated wavelet transformationcof is b/~ b(/=2) b/ al/=J) for somej
{1,2,...,J} the depth of the transformation.

If the length of an input vectoe(”) is 27, then for any0 < m < J, a™ andb(™ are of the same
length. Letp;(x) = ¢;0(x) andwp;(z) = ;0(s). If the measurement sequeneé) is associated with the

function f(z) = 3", C](CJ)QZ)J(I' — 277k) then thekth coordinate ob?) is equal to

bk = /%(x — 277k f(x)d.
Thus, the coefficient;;, provides information at scal?’ 7 and locationk. One can think of a nondecimated
wavelet transformation as sampled continuous wavelet transformgtio, ﬁw (z=2)) fora =277, and

b=k.
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