Bayes Optimality of Wavelet-Based Discrimination

Woojin Chang, Seong-Hee Kim, and Brani Vidakovic
Seoul University and Georgia Institute of Technology

ISBA 2004
Viña del Mar, Chile
May 25, 2004
Overview

- Talk about classifying Y into one of two classes labeled by 0 or 1, by taking into account predictor X.
- Definitions and Notation. Bayes Discriminators
- Wavelet-Based Approximation
- Bayes Optimality (or IL_2-Consistency) of the Wavelet-based Classifier.
- Simulations and Paper Production Example
Definitions

- \((X, Y) \in \mathbb{R}^d \times \{0, 1\}\).

 \[\mu(A) = P(X \in A), \quad A \in \mathcal{B}; \quad \eta(x) = P(Y = 1|X = x) = E(Y|X = x).\]

- Pair \((\mu, \eta)\) uniquely determines joint distribution of \((X, Y)\).

- Any function \(g : \mathbb{R}^d \rightarrow \{0, 1\}\) is a classifier.

 - Bayes Classifier: \(g^*(x) = 1(\eta(x) > 1/2)\).

- \(L(g) = P(g(X) \neq Y)\). [Error, Risk, Misclassification Probability]

- Result: \((\forall g) \ L(g^*) \leq L(g)\). \(L^* = L(g^*)\) Bayes Error [Risk, Probability].
Definitions, contd

Assume density of X exists, $X \sim f$. Let f_0 and f_1 be class-conditional densities, i.e., densities for $X|Y = 0$ and $X|Y = 1$.

Let $\pi = P(Y = 1)$ and $1 - \pi = P(Y = 0)$ be class-probabilities.

Function $\alpha(x) = \pi f_1(x) - (1 - \pi) f_0(x)$ has representation $(2\eta(x) - 1)f(x)$.

Bayes Classifier: $g^*(x) = 1(\alpha(x) > 0)$.

- $L^* = 1/2 - 1/2E(|2\eta(X) - 1|)$
- $L^* = \int((1 - \pi)f_0 \land \pi f_1)dx$
- $\pi = 1/2$, $L^* = 1/2 - 1/4\int |f_0(x) - f_1(x)| \, dx$
Definitions, contd

- $D_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ training set. Let X be a new observation.
- $g_n(X) = g_n(X, D_n)$, a sequence of classification rules.
- $L_n = P(Y \neq g_n(X, D_n)|D_n)$.

$I E_n = P(Y \neq g_n(X))$ determined by distribution (X, Y) and classifier g_n.

Classifier g_n is consistent (weakly): $\lim_{n \to \infty} I E_n = L^*$.

Classifier g_n is consistent (strongly): $\lim_{n \to \infty} L_n = L^*$, a.s.

- Devroye, Györfi, Lugosi (1996)
Fourier Series Classifiers

- Assume \(f \in L_2. \) \(f \in L_2 \Rightarrow \alpha = \pi f_1 - (1 - \pi) f_0 \in L_2. \)
- Fourier Series Classifier: Classify \(X = x \) to be in class 0 if
 \[\sum_{j=1}^{k_n} a_{n,j} \psi_j(x) < 0. \]
 \([\alpha(x) = \sum_{j=1}^{\infty} a_j \psi_j(x)] \)
- Trigonometric basis, Legendre polynomials, Hermite functions, Laguerre basis.
- Wavelets?

Benefits of Wavelets: Locality, Fast Calculation of Fourier Coefficients \(a_{n,j} \), Control of smoothness.

Consistency result uses \(|\psi_j(x)| \leq B. \) ⊙⊙ ⊰⊱
Wavelets

- Multiresolution analysis (MRA) generated by the function \(\phi \). Functions \(\phi_{J,k}(x) = 2^{J/2} \phi(2^J x - k), \ k \in Z \) span \(V_J \), a subspace of \(\mathbb{I}L_2 \). The subspaces \(V_J \) are nested, i.e., \(V_J \subset V_{J+1} \).

- Wavelets \(\psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k), j, k \in Z \) span detail subspaces \(W_j = V_{j+1} \ominus V_j \). If \(\alpha \in \mathbb{I}L_2 \),
 \[
 \alpha(x) = \sum_{k \in Z} c_{J,k} \phi_{J,k}(x) + \sum_{j \geq J} \sum_{k \in Z} d_{j,k} \psi_{j,k}(x).
 \]

- A raw wavelet-based linear classifier, \(\hat{g}_J \), is defined as
 \[
 \hat{g}_J(x) = 1(\hat{\alpha}_J(x) > 0),
 \]
 where \(\hat{\alpha}_J(x) \) is an estimator of the projection of \(\alpha \) on \(V_J \), i.e., an estimator of \(\alpha_J(x) = \sum_{k \in Z} c_{J,k} \phi_{J,k}(x) \).
The coefficients
\[c_{J,k} = \int_R (2\eta(x) - 1) f(x) \phi_{J,k}(x) \, dx = E[(2\eta(X) - 1)\phi_{J,k}(X)] \]
are estimated by their empirical counterpart
\[\hat{c}_{J,k}^n = \frac{1}{n} \sum_{i=1}^{n} (2Y_i - 1) \phi_{J,k}(X_i). \]

\[\hat{\alpha}_{n,J}(x) = \sum_k \hat{c}_{J,k}^n \phi_{J,k}(x) \]
\[\hat{g}_{n,J}(x) = 1(\hat{\alpha}_{n,J}(x) > 0). \]

Let \(\hat{L}_n(J) = P(Y \neq \hat{g}_{n,J}(X, D_n)|D_n) \) be the error probability of \(\hat{g}_{n,J} \).

The estimator \(\hat{g}_{n,J}(x) \) is consistent \(\rightarrow \)
Theorem 1. Assume that the density for X, f, is compactly supported and belongs to L_{∞}. Let $J = J(n)$ be the multiresolution level depending on the sample size n in the sample $(X_1, Y_1), \ldots, (X_n, Y_n)$.

Let K be the number of coefficients $\hat{c}_{J,k}^n$ in $\hat{\alpha}_{n,J}(x)$. If

$$J \to \infty \quad \text{and} \quad \frac{K}{n} \to 0 \quad \text{as} \quad n \to \infty$$

then the wavelet-based classifier

$$\hat{g}_{n,J}(x) = 1(\hat{\alpha}_{n,J}(x) > 0)$$

is consistent, i.e.,

$$\lim_{n \to \infty} \mathbb{E} \hat{L}_n(J) = L^*.$$
Regularized Wavelet Classifier

\[\hat{\alpha}_{n,J}(x) = \sum_{k \in \mathbb{Z}} \hat{c}_{J,k}^{n} \phi_{J,k}(x) = \sum_{k \in \mathbb{Z}} \hat{c}_{J_0,k}^{n} \phi_{J_0,k}(x) + \sum_{J_0 \leq j < J} \sum_{k \in \mathbb{Z}} \hat{d}_{j,k} \psi_{j,k}(x) \]

- Regularized wavelet representation

\[\tilde{\alpha}_{n,J,\lambda}(x) = \sum_{k \in \mathbb{Z}} \hat{c}_{J_0,k}^{n} \phi_{J_0,k}(x) + \sum_{J_0 \leq j < J} \sum_{k \in \mathbb{Z}} d_{j,k}^{*} \psi_{j,k}(x) \]

\[d_{j,k}^{*} = (|\hat{d}_{j,k}| - \lambda)_+; \text{ universal threshold } \lambda = \sqrt{2 \log K} \hat{\sigma}. \]

- Regularized wavelet classifier

\[\tilde{g}_{n,J,\lambda} = 1(\tilde{\alpha}_{n,J,\lambda} > 0). \]

- Daubechies-Lagarias: Calculating \(\phi(x) \) and \(\psi(x) \) for any \(x \) and any ON wavelet basis.
Theorem 2. Let f, J and K be as in Theorem 1 and let J_0 be multiresolution level such that $J_0 < J$. Let K^* be number of coefficients in detail levels, $J_0 < j < J$. The regularized wavelet-based classifier $\tilde{g}_{n,J,\lambda} = 1(\tilde{\alpha}_{n,J,\lambda} > 0)$ is consistent if

$$K^*(J - J_0)(\max_{J_0 \leq j < J} d_{jk}^* \cdot 2) = o(1), \quad J, J_0 \to \infty,$$

and

$$\frac{K}{n} \to 0 \quad \text{as} \quad n \to \infty.$$
Empirical Optimality Measures.

Empirical errors of classifiers \(\hat{g}_{n,J} \) and \(\tilde{g}_{n,J,\lambda} \), based on training data set of size \(n \), and evaluated at data \(\{(X_j, Y_j), j = 1, \ldots, m\} \):

\[
\hat{L}_n(J, m) = \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}(\hat{g}_{n,J}(X_j) \neq Y_j),
\]

and

\[
\tilde{L}_n(J, m, \lambda) = \frac{1}{m} \sum_{j=1}^{m} \mathbf{1}(\tilde{g}_{n,J,\lambda}(X_j) \neq Y_j)
\]

Simulation Setup: various \(m \), Symmlet 8, \(J = 6 \) or 7, \(J_0 = 3 \), and \(\lambda \) universal threshold with the soft-shrinkage policy.
Simulated Data Example: 0 - 1 Discrimination

The training set, \(\{(X_i, Y_i), i = 1, \ldots, n\} \), \((n \text{ is even})\)

- The first half: \(X_i, i = 1, \ldots, \frac{n}{2} \) sampled from \(N(0, 1) \) distribution and \(Y_i = 0, \ i = 1, \ldots, \frac{n}{2} \).

- The second half: \(X_i, \ i = \frac{n}{2} + 1, \ldots, n \) sampled from \(N(2, 1) \) distribution and \(Y_i = 1, \ i = \frac{n}{2} + 1, \ldots, n \).

- The validation set \(\{(X_j, Y_j), j = 1, \ldots, m\} \) is generated the same way.

- Empirical errors \(\hat{L}_n(J, m), \tilde{L}_n(J, m, \lambda) \) and the error of the logistic regression classifier,

\[
L_{n}^{\text{logit}}(m) = \frac{1}{m} \sum_{j=1}^{m} 1\left(1(f(X_j) > 0.5) \neq Y_j\right),
\]

where \(f \) is fitted logistic regression, are compared
Figure 1: (a) Noisy training data (b) Discriminator functions
Simulational Setup: $m = 200$ (training sample size), $J = 6$ (finest level of detail), and *Symmelet 8* (Daubechies’ least asymmetric 8-tap filter).

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{L}_n(6, 200)$</th>
<th>$\tilde{L}_n(6, 200, \lambda)$</th>
<th>$L_n^{\text{logit}}(200)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>0.272</td>
<td>0.182</td>
<td>0.178</td>
</tr>
<tr>
<td>200</td>
<td>0.200</td>
<td>0.179</td>
<td>0.174</td>
</tr>
<tr>
<td>400</td>
<td>0.187</td>
<td>0.174</td>
<td>0.171</td>
</tr>
<tr>
<td>800</td>
<td>0.169</td>
<td>0.163</td>
<td>0.163</td>
</tr>
<tr>
<td>2000</td>
<td>0.160</td>
<td>0.159</td>
<td>0.159</td>
</tr>
</tbody>
</table>
Simulated Data Example: 0 - 1 - 0 Discrimination

No automatic logistic regression classifier is possible.

Training data set: \(\{(X_i, Y_i), i = 1, \ldots, n\} \), \(n \) is a multiple of 3

- The first third of the data: \(X_i, i = 1, \ldots, \frac{n}{3} \) is generated from \(\mathcal{N}(-2, 1) \) distribution, with \(Y_i = 0, i = 1, \ldots, \frac{n}{3} \).

- The second third of the data: \(X_i, i = \frac{n}{3} + 1, \ldots, \frac{2n}{3} \) is generated from \(\mathcal{N}(0, 1) \) distribution, with \(Y_i = 1, i = \frac{n}{3} + 1, \ldots, \frac{2n}{3} \).

- The last third of the data: \(X_i, i = \frac{2n}{3} + 1, \ldots, n \) is generated from \(\mathcal{N}(2, 1) \) distribution, and \(Y_i = 0, i = \frac{2n}{3} + 1, \ldots, n \).

- The evaluation set \(\{(X_j, Y_j), j = 1, \ldots, m\} \) is generated in an analogous manner.

Simulational Setup: Symmlet 8, \(J = 7 \), soft with \(\lambda = \sqrt{2 \log K \hat{\sigma}}. \)
Figure 2: (a) Noisy training data
(b) Discriminator function
Average empirical errors using training data of size n, $J = 7$, and $m = 300$ training data pairs.

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{L}_n(7,300)$</th>
<th>$\tilde{L}_n(7,300,\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0.340</td>
<td>0.213</td>
</tr>
<tr>
<td>300</td>
<td>0.288</td>
<td>0.221</td>
</tr>
<tr>
<td>600</td>
<td>0.247</td>
<td>0.218</td>
</tr>
<tr>
<td>900</td>
<td>0.232</td>
<td>0.212</td>
</tr>
<tr>
<td>1200</td>
<td>0.214</td>
<td>0.202</td>
</tr>
</tbody>
</table>
Paper Production Process

- Data from Pandit and Wu (1993), size 100.
- B_t and S_t for $t = 1, 2, \ldots, 100$ are the basis weight and the stock flow rate at time t.

$$X_t = \hat{B}_t = 0.7B_{t-1} + 0.25S_{t-1}$$

$$Y_t = 1(39.5 \leq B_t \leq 40)$$

We have 99 data points (X_t, Y_t) from the given 100 values of B and S.

- Predict whether the future basis weight will be “good” or “bad”

- (X_t, Y_t)’s with odd t: training set

- The remaining even-index set: validation set.
The empirical error of the classifier, $\tilde{g}_{49,7,\lambda}$ is

$$\tilde{L}_{49}(7, 50, \lambda) = \frac{1}{50} \sum_{t=1}^{50} I(\tilde{g}_{49,7,\lambda}(X_{2t}) \neq Y_{2t}) = 0.18.$$
Conclusions

- Empirical Wavelet-Based Classifier is Consistent [its risk approaches the Bayes risk]

- Classification is a Trendy Topic: Data Mining, Pattern Recognition.

- Strong Consistency, Rates of Convergence, Multivariate.

- **Double Bayes**: Regularization achieved in Bayesian Fashion. Bayesian Wavelet Shrinkage [Ruggeri, Müller, Vannucci, Clyde, George, ...].

- Robustness: WRT Wavelet Basis, Choice of J, J_0.

- Combining classifiers, possibly **Triple Bayes**.

- Software Available [MATLAB].