Dynamic Linear Production Games under Uncertainty

Alejandro Toriello

Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Joint work with N.A. Uhan (USNA)
Partially supported by NSF - CMMI 1265616

University of Chicago, Booth School of Business
Operations/Management Science Workshop
December 3, 2013
Motivation

California cut flower industry (Nguyen/Toriello/Dessouky/Moore 13)

• In 1960’s, California controlled 2/3 of U.S. cut flower market.
 • Still accounts for most (4/5) of U.S. production.

• Today, South America (mostly Colombia) has 3/4 of market.
 • California down to 1/5.

• Many causes: Cheap labor, trade agreements, ...
 • **Major factor:** Consolidation facility for South American blooms in Miami allows for economies of scale in transportation.
 • Often cheaper per unit to ship flowers from Bogotá than from Santa Barbara!
Motivation
California cut flower industry (Nguyen/Toriello/Dessouky/Moore 13)

• A similar consolidation center in California could significantly reduce transportation costs.
 • Could cut costs by 1/3 if all California growers participate.

• Political/industry momentum building for consolidation; issue deemed existential by some in industry.
 • Results presented before U.S. Congress.
 • Application submitted to USDOT for discretionary grant.

• Looming question: How would such a center be administered? How would costs be fairly split in an ongoing basis?
Outline

Introduction

Static Allocations

Game Definition and Dynamic Allocation

Ongoing & Future Work
Cost Allocation in OR/MS Models
Cooperative games and the core

- **Players**: $N = \{1, \ldots, n\}$, e.g. retailers or producers.
- **Cost function**: $w : 2^N \to \mathbb{R}$, e.g. joint venture cost when some subset of players cooperates.
- **Goal**: Assuming all players in N cooperate, find a cost allocation $\chi \in \mathbb{R}^N$ that splits cost “fairly.”
- **Some attractive properties**:
 - Efficiency: $\sum_N \chi_i = w(N)$ ("balanced budget").
 - Stability: $\sum_U \chi_i \leq w(U)$ for all $U \subseteq N$.
 - Computational efficiency: E.g. computed in poly-time w.r.t. n.
Cost Allocation in OR/MS Models
Cooperative games and the core

- Core (Gillies 59): Set of efficient, stable allocations,

\[\{ \chi \in \mathbb{R}^N : \sum_N \chi_i = w(N); \sum_U \chi_i \leq w(U), U \subset N \}. \]

No player or coalition can do better by \textit{defecting}.

- Many other concepts available if core is empty, e.g. \(\alpha \)-core, \(\varepsilon \)-core, nucleolus, Shapley value, ...

- The core is a widely applied cost allocation concept for OR/MS models.
 - Game with non-empty core may indicate cooperation in this setting is possible or likely.
Some Application Examples
Production, inventory and supply chain management

• Inventory centralization.
 • Chen (09), Chen/Zhang (09), Hartman/Dror (96,05), Hartman/Dror/Shaked (00), Montrucchio/Scarsini (07), Müllер/Scarsini/Shaked (02), Özen/Fransoo/Norde/Slikker (08), Slikker/Fransoo/Wouters (05)

• Economic lot-sizing
 • Chen/Zhang (06), Gopaladesikan/Uhan/Zou (12), van den Heuvel/Borm/Hamers (07)

• Inventory routing
 • Özener/Ergun/Savelsbergh (13)

• Joint replenishment
 • He/Zhang/Zhang (12), Zhang (09)
Linear Production Games

Owen (75)

\[w(U) = \min cx \]
\[\text{s.t. } Ax = \sum_{i \in U} d^i \]
\[x \geq 0 \]

Theorem

*If \(\lambda \) is dual optimal for \(w(N) \),

\[\chi_i = \lambda d^i, \quad i \in N \]

is in the core of \(w \).

Proof.

strong duality \(\Rightarrow \) efficiency \quad weak duality \(\Rightarrow \) stability
Linear Production Games
Owen (75)

- Many applications, particularly in network optimization.
 - Assignment (Shapley/Shubik 71), max flow (Kalai/Zemel 82), min cost spanning tree (Granot/Huberman 81), network synthesis (Tamir 91).

- Connections to other games.
 - Facility location (Goemans/Skutella 04), TSP (Toriello/Uhan 13), general combinatorial optimization (Deng/Ibaraki/Nagamochi 99).

- Much subsequent study.
 - Flåm (02), Granot (86), Samet/Zemel (84), van Gellekom/Potters/Reijnierse/Engel/Tijs (00).
Static Allocations: What can go wrong

A lot-sizing example

- Players are retailers or producers facing uncertain demand.
- Scenario tree T dictates, for scenarios $t \in T$, probabilities and corresponding realizations of
 1. linear ordering cost c_t,
 2. holding cost h_t, and
 3. each player i’s demand d^t_i.
- $w(U)$ is optimal expected cost of meeting demand for coalition U over horizon given by T.
- Static approach: Allocate optimal expected cost up front.
\(\chi = \{30, 31, 22\} \)

1: \(c_1 = 2, h_1 = 1 \)
\(d^1 = (4, 4, 4) \)

2: \(c_2 = 1, h_2 = 1 \)
\(d^2 = (4, 3, 7) \)

3: \(c_3 = 6, h_3 = 1 \)
\(d^3 = (4, 5, 1) \)

4: \(c_4 = 6, h_4 = 1 \)
\(d^4 = (4, 5, 7) \)

5: \(c_5 = 2, h_5 = 1 \)
\(d^5 = (4, 3, 1) \)

6: \(c_6 = 4, h_6 = 1 \)
\(d^6 = (4, 3, 1) \)
\(\chi = (30, 31.5, 22.5) \)
\(\chi^1 = (19.3, 20.3, 14.4) \)

1: \(c_1 = 2, h_1 = 1 \)
\(d^1 = (4, 4, 4) \)

2: \(c_2 = 1, h_2 = 1 \)
\(d^2 = (4, 3, 7) \)

3: \(c_3 = 6, h_3 = 1 \)
\(d^3 = (4, 5, 1) \)

4: \(c_4 = 6, h_4 = 1 \)
\(d^4 = (4, 5, 7) \)

5: \(c_5 = 2, h_5 = 1 \)
\(d^5 = (4, 3, 1) \)

6: \(c_6 = 4, h_6 = 1 \)
\(d^6 = (4, 3, 1) \)
\[\chi^1 = (19.3, 20.3, 14.4) \]

1: \(c_1 = 2, h_1 = 1 \)
\[d^1 = (4, 4, 4) \]

2: \(c_2 = 1, h_2 = 1 \)
\[d^2 = (4, 3, 7) \]

3: \(c_3 = 6, h_3 = 1 \)
\[d^3 = (4, 5, 1) \]

4: \(c_4 = 6, h_4 = 1 \)
\[d^4 = (4, 5, 7) \]

5: \(c_5 = 2, h_5 = 1 \)
\[d^5 = (4, 3, 1) \]

6: \(c_6 = 4, h_6 = 1 \)
\[d^6 = (4, 3, 1) \]

\[\text{inv.} = (4, 3, 3) \]
Static Allocations: What can go wrong

A lot-sizing example

- Static allocation covers expected cost, not guaranteed to match realized cost.
- Unrealistic to expect full payment of multi-period, ongoing endeavor up front.
 - More problematic in infinite horizons and/or when discounting.
- Even core allocations vulnerable to defections mid-way through horizon.
 - Cannot fix with naive, proportional “on-the-fly” allocations.
 - Must account for players’ division of jointly produced resources.
Dynamic Cooperative Games

• Active research area in last decade.
 • Avrachenkov/Cottatellucci/Maggi (13), Elkind/Pasechnik/Zick (13), Gale (78), Habis/Herings (10), Kranich/Perea/Peters (05), Lehrer/Scarsini (13), Petrosjan (02), Predtetchinski (07), Predtetchinski/Herings/Peters (02,04)

• Limited related discussions in OR/MS literature.
 • Chen/Zhang (09), Flåm (02), Nagarajan/Sošić (07), Özener/Ergun/Savelsbergh (13)
Dynamic Cooperative Games

Definition (Strong Sequential Core)

Set of dynamic allocations satisfying:

1. **Stage-wise efficiency**: Costs are covered exactly, as they are incurred.

2. **Time-consistent stability**: At any point in time, any coalition’s expected allocation from that point forward does not exceed its expected cost if defecting.

- Definition taken from Kranich/Perea/Peters (05).
- Conditions imply their static counterparts.
- Other related concepts studied, e.g. *weak* sequential core.
Game Setup and Parameters

- Scenario tree T; each scenario t has
 - a parent $a(t)$, representing the immediate past,
 - children D_t, the possible immediate future, and
 - probability p_t of occurring.

- At t, each player i has
 - an initial state vector $s_{i}^{a(t)}$,
 - actions x_{i}^t with costs c_{i}^t,
 - a fixed resource or demand vector d_{i}^t,
 - an ending state vector s_{i}^t with costs h_{i}^t, determined by $s_{i}^{a(t)}$, x_{i}^t, d_{i}^t.
Game Setup and Parameters

• If a coalition $U \subseteq N$ decides to cooperate, each scenario’s ending state is determined by the linear dynamics

$$\sum_{i \in U} A^t_i x^t_i + \sum_{i \in U} B^t_i s^t_{i(a(t) - \sum_{i \in U} C^t_i s^t_i} = \sum_{i \in U} d^t_i,$$

where matrices A^t_i, B^t_i, C^t_i have appropriate dimension.

• We do not assume the s^t_{i}’s are uniquely determined; players may have to choose a set of feasible ending states.
 • E.g. in lot-sizing, players can assign ownership of inventory as they wish.
Game Formulation

Dynamic linear production game under uncertainty

- Assuming scenario \(r \in \mathcal{T} \) realizes and incoming states are \(\hat{s}^a(r) \), if coalition \(U \) forms they solve

\[
\begin{align*}
\omega_r(U, \hat{s}^a(r)) := \\
\min_{x,s} \sum_{t \in \mathcal{T}_r} p_{t|r} \sum_{i \in U} (c^t_i x^t_i + h^t_i s^t_i) \\
\text{s.t.} \quad \sum_{i \in U} A^r_i x^r_i - \sum_{i \in U} C^r_i s^r_i = \sum_{i \in U} d^r_i - \sum_{i \in U} B^r_i \hat{s}^a_i(r), \\
\sum_{i \in U} A^t_i x^t_i + \sum_{i \in U} B^t_i s^a_i(t) - \sum_{i \in U} C^t_i s^t_i = \sum_{i \in U} d^t_i, \quad t \in \mathcal{T}_r \setminus r, \\
x^t_i \geq 0, s^t_i \geq 0, \quad i \in U, t \in \mathcal{T}_r.
\end{align*}
\]

- Note dependence on current scenario and incoming state.
Game Formulation

Dynamic linear production game under uncertainty

- Dual formulation:

\[
\begin{align*}
\omega_r(U, \hat{s}^a(r)) &= \\
\max_{\lambda} \quad & \sum_{t \in T_r} \lambda^t \sum_{i \in U} d_i^t - \lambda^r \sum_{i \in U} B_i^r \hat{s}_i^a(r) \\
\text{s.t.} \quad & \lambda^t A_i^t \leq p_{t|r} c_i^t, \quad i \in U, t \in T_r, \\
& \sum_{\tau \in D_t} \lambda^\tau B_i^\tau - \lambda^t C_i^t \leq p_{t|r} h_i^t, \quad i \in U, t \in T_r.
\end{align*}
\]
Dynamic Allocation

- Allocation χ^t_i: Player i pays this if scenario t is realized.

Definition (Strong Sequential Core)

For an optimal solution (\hat{x}, \hat{s}) of $w_1(N, \hat{s}^0)$, an allocation χ satisfying:

1. Stage-wise efficiency: For any scenario t,
 \[
 \sum_{i \in N} \chi^t_i = \sum_{i \in N} (c^t_i \hat{x}^t_i + h^t_i \hat{s}^t_i).
 \]

2. Time-consistent stability: For any scenario r and coalition U,
 \[
 \sum_{t \in T_r} \sum_{i \in U} \ p^t_{|r} \chi^t_i \leq w_r(U, \hat{s}^a(r)).
 \]
Dynamic Allocation

Theorem
If (\hat{x}, \hat{s}) and $\hat{\lambda}$ are respectively primal and dual optimal for $w_1(N, \hat{s}^0)$, the allocation

$$\hat{\chi}_i^t := \frac{1}{p_t} \left(\hat{\lambda}^t (d_i^t - B_i^t s_i^{a(t)}) + \sum_{\tau \in D_t} \hat{\lambda}^\tau B_i^\tau s_i^\tau \right), \quad i \in N, t \in T$$

is in the strong sequential core.

- Based on optimal dual prices, this allocation
 1. pays for current demand/resources
 2. minus a credit based on previous activity,
 3. and pays for the ending state.
Dynamic Allocation

Proof sketch.

1. Stage-wise efficiency: Follows from complementary slackness and primal feasibility of \((\hat{x}, \hat{s})\).

2. Time-consistent stability: Follows from dual feasibility of \(\hat{\lambda}\).

- Proof similar in spirit to Owen (75), though slightly more complicated.
Dynamic Allocation

Additional properties

• The allocation $\hat{\chi}$ requires access only to primal and dual optimal solutions.
 • Requires no additional effort once optimization is carried out.

• At an encountered scenario t, need only information related to t and its children.
 • Localized information need amenable to special-purpose methods, when available.
Infinite-Horizon Game

- Same construction can define an infinite-horizon game.
 - \(\mathcal{T} \) has infinite height, but need every scenario to have finitely many children.
 - Assume optimal solutions have finite cost, e.g. via discounting.
 - Minor additional technical conditions.

Theorem

Under these conditions, the dynamic allocation \(\hat{\chi} \) is in the strong sequential core of the infinite-horizon dynamic linear production game under uncertainty.

Proof sketch.

Follows from finite case and strong duality, complementarity results of Romeijn/Smith (98) for countably infinite LP’s.
Infinite-Horizon Game

Another lot-sizing example (Romeijn/Smith 98)

- Deterministic, infinite-horizon version of linear lot-sizing model.

\[
\begin{align*}
\min_{x,s} & \quad \sum_{t=1}^{\infty} \sum_{i \in N} (c^t x^t_i + h^t s^t_i) \\
\text{s.t.} & \quad \sum_{i \in N} x^1_i - \sum_{i \in N} s^1_i = \sum_{i \in N} d^1_i, \\
& \quad \sum_{i \in N} x^t_i + \sum_{i \in N} s^{t-1}_i - \sum_{i \in N} s^t_i = \sum_{i \in N} d^t_i, \quad t = 2, \ldots \\
& \quad x^t_i \geq 0, s^t_i \geq 0, \quad i \in N, \quad t = 1, \ldots .
\end{align*}
\]
Infinite-Horizon Game
Another lot-sizing example (Romeijn/Smith 98)

- Dual of lot-sizing problem is

\[
\max_{\lambda} \sum_{t=1}^{\infty} \lambda^t \sum_{i \in N} d_i^t \\
\text{s.t. } \lambda^t \leq c^t \quad \text{for } t = 1, \ldots \\
\phantom{\text{s.t. } } \lambda^{t+1} - \lambda^t \leq h^t \quad \text{for } t = 1, \ldots
\]

- Dual optimal solution is

\[
\hat{\lambda}^1 = c^1 \\
\hat{\lambda}^{t+1} = \min\{c^{t+1}, h^t + \hat{\lambda}^t\}, \quad t = 1, \ldots
\]

i.e. pick cheaper of two options, produce now or hold over from last period.
Infinite-Horizon Game

Another lot-sizing example (Romeijn/Smith 98)

- Extreme primal optimal solutions exhibit replenishment interval structure.
- Dynamic allocation is

\[\hat{\chi}_i^t = \hat{\lambda}^t (d_i^t - \hat{s}_i^{t-1}) + \hat{\lambda}^{t+1} \hat{s}_i^t. \]

In period \(t \), player \(i \) pays \(\hat{\lambda}^t \) for each unit of his demand, minus incoming inventory (paid previously), and pays \(\hat{\lambda}^{t+1} \) per unit of ending inventory.
Conclusions

- Many cooperative endeavors in OR/MS applications must be carried out over a horizon of multiple periods, perhaps indefinitely.
 - Static cost allocation concepts not adequate.

- Introduced dynamic linear production games under uncertainty, which can model many such applications.
 - Constructed allocation in *strong sequential core*, the natural generalization of the core.

- More generally, hope to introduce notions of stage-wise efficiency and time-consistent stability to dynamic, cooperative OR/MS models.
Ongoing Work

Non-linear models

• Of course, many models require non-linearity in cost or structure.
 • But general concept still applies.

• Toriello/Uhan (13): Constructed dynamic allocation in strong sequential core for deterministic lot-sizing model with concave order costs.
 • Construction leverages previous work on static allocations (Chen/Zhang 06, Gopaladesikan/Uhan/Zou 12).
 • Similar approach may work in other applications.
Ongoing Work

Risk aversion

- Models allocating uncertain costs usually assume objective of minimizing expected costs, i.e. assume players and coalitions are risk-neutral.
 - Can we incorporate different attitudes towards risk?
 - Require employing multi-period risk measures.

- Our construction and proof do not carry over even to min-max (most risk-averse) case.
 - Different coalitions may see different scenarios as worst cases.
Ongoing Work

Risk aversion

- Uhan (13): Core allocations for two-stage linear programming game, where each player’s objective is a coherent risk measure.
 - Requires more general, Pareto definition of stability.
 - “Core equivalence” between original game and static, deterministic game defined by risk measures.

- Unclear which risk measures can be employed in multi-period settings.
 - Even coherent risk measures problematic.