Cooperative Traveling Salesman Games with Asymmetric Arc Costs

Alejandro Toriello

Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Joint work with N.A. Uhan (USNA)
Partially supported by NSF - CMMI 1265616

University of Michigan
Industrial & Operations Engineering
November 8, 2013
Outline

Introduction

TSP Formulation and Relaxations

Cost Allocation

Extension to Network Design Games

Conclusions
Motivation

How much does each retailer pay for the truck?

- Important question when retailers/suppliers are small and independent.
Motivation

How much does each retailer pay for the truck?

• Important question when retailers/suppliers are small and independent.
Motivation

How much does each retailer pay for the truck?

- Important question when retailers/suppliers are small and independent.
Cooperative Cost Game

- Players: $N = \{1, \ldots , n\}$; e.g. retail locations.

- Cost function: $C : 2^N \rightarrow \mathbb{R}$; e.g. cost of visiting some subset from depot.

- Goal: Cost allocation $\chi \in \mathbb{R}^N$ that splits cost “fairly.”

Some attractive properties:

- Efficiency: $\chi(N) := \sum_N \chi_i = C(N)$ (“balanced budget”).
- Stability: $\chi(S) \leq C(S')$ for all $S \subseteq N$.
- Computational efficiency: Computed in poly-time w.r.t. n.
The Core

- **Core (Gillies 59):** Set of efficient, stable allocations,

\[
\{\chi \in \mathbb{R}^N : \chi(N) = C(N); \chi(S) \leq C(S), S \subseteq N\}.
\]

No player or coalition can do better by leaving.

- **\(\alpha\)-Core (Faigle/Kern 93):** Allocations are stable but \(\alpha\)-budget-balanced, i.e.

\[
\chi(N) \geq \alpha C(N), \quad \alpha \in (0, 1].
\]

If stability implies budget deficit, external party (e.g. government) may have to subsidize cooperation.

- Many other concepts available if core is empty, e.g. \(\varepsilon\)-core, nucleolus, Shapley value, ...
TSP Games

- TSP Game: \(C(S) \) is cost of optimal TSP tour through \(S \cup \emptyset \).
 - Assume arc costs are non-negative, satisfy triangle inequality: \(c_{ij} + c_{jk} \geq c_{ik} \).

- Faigle/Fekete/Hochstättler/Kern (98):
 - TSP games can have empty core for \(n \geq 6 \).
 - Allocation in \(\frac{2}{3} \)-core for symmetric costs, using LP relaxation.

- Bläser/Shankar Ram (08): Allocation in \(\Omega\left(\frac{1}{\log n}\right) \)-core for asymmetric costs.

- Our contribution:
 - Allocation in \(\Omega\left(\frac{\log \log n}{\log n}\right) \)-core for asymmetric costs, generalizing Faigle et al (98).
 - Simplified proof using linear production games (Owen 75).
 - Example that shows more is possible.
Asymmetric TSP Formulations

\[C(S) = \min \ cx \]

s.t. \[x(\delta^+_S(i)) = 1, \quad i \in S \cup 0 \] (enter once)

\[x(\delta^-_S(i)) = 1, \quad i \in S \cup 0 \] (exit once)

\[x(\delta^+_S(U)) \geq 1, \quad \emptyset \neq U \subsetneq S \cup 0 \] (subtour elimination)

\[x \text{ binary,} \]

where \[\delta^+_S(U) = \{(i, j) : i \in U, j \in S \cup 0 \setminus U\}. \]
Asymmetric TSP Formulations

\[C_{LP}(S) = \min cx \]

s.t. \[x(\delta^+(i)) = 1, \quad i \in S \cup 0 \quad \text{(enter once)} \]
\[x(\delta^-(i)) = 1, \quad i \in S \cup 0 \quad \text{(exit once)} \]
\[x(\delta^+_S(U)) \geq 1, \quad \emptyset \neq U \subsetneq S \cup 0 \quad \text{(subtour elimination)} \]
\[x \geq 0 \]

Theorem (A/G/M/OG/S 10)

\[C_{LP}(S) = \Omega \left(\frac{\log \log n}{\log n} \right) C(S) \]

- Approach: Construct allocation from dual optimal solution of \(C_{LP}(N) \), which is poly-time solvable.
Asymmetric TSP Formulations

The Parsimonious Property

Lemma (Goemans/Bertsimas 93; Nguyen 11)

\[C_{LP}(S) = \min \ cx \]
\[s.t. \ x(\delta_S^+(i)) = x(\delta_S^-(i)), \quad i \in S \cup 0 \quad \text{(flow balance)} \]
\[x(\delta_S^+(U)) \geq 1, \quad \emptyset \neq U \subsetneq S \cup 0 \quad \text{(subtour elimination)} \]
\[x \geq 0. \]

- Intuition: Min-cost fractional Eulerian graphs are automatically \textit{parsimonious}; i.e. degrees as small as possible.
Asymmetric TSP Formulations

A new relaxation

Lemma

\[C_{LP}(S) = \min cx \]

\[s.t. \quad x(\delta_S^+(i)) = 1, \quad i \in S \]

\[x(\delta_S^-(i)) = 1, \quad i \in S \]

\[x(\delta_S^+(U)) \geq 1, \quad \emptyset \neq U \subseteq S \]

\[x \geq 0. \]

- Restrict constraints to players (ignore depot).

Proof sketch.

\[C_{LP} = \text{parsimonious LP} \leq \text{new LP} \leq C_{LP}. \]
Detour to Linear Production Games

Owen (75)

\[\tilde{C}(S) = \min cx \]

s.t. \(Bx = \sum_{j \in S} b^j \)

\[Dx \geq \sum_{j \in S} d^j \]

\[x \geq 0 \]

Theorem

If \(\lambda, \mu \) are dual optimal for \(=, \geq \) constraints in \(\tilde{C}(N) \),

\[\chi_i = b^i \lambda + d^i \mu, \quad i \in N \]

is in the core of \(\tilde{C} \).

Proof.

strong duality \(\Rightarrow \) efficiency, \quad weak duality \(\Rightarrow \) stability.
C_{LP} is a Linear Production Game

Lemma

\[C_{LP}(S) = \min cx \]
\[s.t. \ x(\delta^+_N(i)) = \sum_{j \in S} b^j_i, \quad i \in N \]
\[x(\delta^-_N(i)) = \sum_{j \in S} b^j_i, \quad i \in N \]
\[x(\delta^+_N(U)) \geq \sum_{j \in S} d^j_{i,U}, \quad \emptyset \neq U \subseteq N, \quad i \in U \]
\[x \geq 0, \]

where \[b^j_i = \begin{cases} 1, & i = j \\ 0, & \text{o.w.} \end{cases}, \quad d^j_{i,U} = \begin{cases} 1, & i = j \\ 0, & \text{o.w.} \end{cases}. \]

- Idea: Replicate subtour constraints but only “activate” those for players in coalition \(S \).
- Reminiscent of prize-collecting TSP (Balas 89).
Cost Allocation

• Recall “unreplicated”, player-only formulation:

\[C_{LP}(N) = \min cx \]
\[\text{s.t. } x(\delta^+_N(i)) = 1, \ i \in N \]
\[x(\delta^-_N(i)) = 1, \ i \in N \]
\[x(\delta^+_N(U)) \geq 1, \ \emptyset \neq U \subseteq N \]
\[x \geq 0. \]

Theorem

If (i) \((\lambda^+, \lambda^-)\), \(\mu\) are dual optimal for \(=, \geq\) constraints and (ii) for each \(i \in U\) we give player “weights” \(\gamma_{i,U} \geq 0\) with \(\sum_{i \in U} \gamma_{i,U} = 1\),

\[\chi_i = \lambda^+_i + \lambda^-_i + \sum_{U \ni i} \gamma_{i,U} \mu_U \]

is in the core of \(C_{LP}\), and thus in the \(\Omega\left(\frac{\log \log n}{\log n}\right)\)-core of \(C\).
Cost Allocation

Proof.
The “replicated” LP has $|U|$ copies of each subtour constraint, so we can divide the unreplicated constraint’s multiplier μ_U among U’s players any way we wish. The proof then follows from Owen’s argument.

- Significant freedom to design the allocation. E.g.,
 1. Uniform to all players: $\gamma_{i,U} = \frac{1}{|U|}$.
 2. Preferential order: Define ordering of N, set $\gamma_{i,U} = 1$ if i is minimal in U, 0 otherwise.
A Geometric Example

Jünger & Pulleyblank (93)
A Geometric Example

Cost Allocation

\[\chi_1 = \lambda_1^+ + \lambda_1^- + \frac{\mu_{12}}{2} \]
\[\chi_2 = \lambda_2^+ + \lambda_2^- + \frac{\mu_{12}}{2} \]
Extension to Network Design Games

- Strongly k-connected Eulerian graph game:

$$C_k(S) = \min cx$$

s.t. $x(\delta^+_S(i)) = k, \quad i \in S \cup 0$

$$x(\delta^-_S(i)) = k, \quad i \in S \cup 0$$

$$x(\delta^+_S(U)) \geq k, \quad \emptyset \neq U \subset S \cup 0$$

$$x \geq 0 \text{ integer.}$$

- Defines a min-cost graph with k arc-disjoint paths between any two players and to/from any player and the depot.
Extension to Network Design Games

- Undirected survivable network design game:
 - Player $i \in N$ has connectivity type $r_i \in \mathbb{Z}_+$.
 - Must have r_i edge-disjoint 0-i paths.
 - Must have $r_{ij} = \min\{r_i, r_j\}$ edge-disjoint i-j paths.
 - Some nodes $D \subseteq N \cup 0$ must be parsimonious.

$$C_{r,D}(S) = \min \ cx$$

s.t. $x(\delta_S(i)) = r_i, \quad i \in D \cap S \cup 0$

$$x(\delta_S(U)) \geq \max_{e \in \delta_S(U)} r_e, \quad \emptyset \neq U \subset S \cup 0$$

$$x \geq 0 \text{ integer,}$$

where $r_0 = \max_N r_i$ and $r_{0i} = r_i$ (Goemans/Bertsimas 93).

- Includes MST games, Steiner tree games, undirected edge-connectivity games, ...
Theorem
For both games given above:

1. The games defined by their LP relaxations can be formulated as linear production games.

2. Consequently, these games have allocations in their α-core, where the budget balance guarantee α is the integrality gap of these formulations.
We Can Do Better

A 1-2 TSP instance

\[\begin{align*}
\lambda_1^+ &= 1 \\
\lambda_1^- &= -1/2 \\
\lambda_2^+ &= 2 \\
\lambda_2^- &= -1/2 \\
\lambda_3^+ &= 3/2 \\
\lambda_3^- &= -1 \\
\mu_{23} &= 1/2 \\
\mu_{123} &= 3/2
\end{align*} \]

\[\begin{align*}
\chi_1 &= 1 \\
\chi_2 &= 9/4 \\
\chi_3 &= 5/4 \\
C(N) &= 5 \\
C_{LP}(N) &= 9/2 \\
\alpha &= 90\% \text{ ("uniform")}
\end{align*} \]

But...
We Can Do Better

A 1-2 TSP instance

\[\tilde{\chi}_1 = 1 \quad \tilde{\chi}_2 = 2 \quad \tilde{\chi}_3 = 2 \]

- This allocation is efficient and stable.
- Even worse: \(\sum_S \tilde{\chi}_i \leq C_{\text{LP}}(S) \) for \(S \subset N \).
 \(\Rightarrow \) Stable in the LP game!
Conclusions

Can we do this efficiently in general?

\[
\begin{align*}
\max & \quad \alpha \\
\text{s.t.} & \quad \alpha C(N) \leq \chi(N) \leq C(N) \\
& \quad \chi(S) \leq C_{\text{LP}}(S), \quad \emptyset \neq S \subset N
\end{align*}
\]

- Separation problem is “arc-fractional” prize-collecting TSP.

- Complexity unclear.
 - Set function neither sub- nor supermodular.
Conclusions

- Allocation is “fair” and computationally attractive.
 - Empirically, $C_{\text{LP}}(N)$ is very close to $C(N)$.

- Future work: Consider more complex replenishment situations, e.g. inventory routing.

- Contact:
 atoriello@isye.gatech.edu
 www.isye.gatech.edu/~atoriello3/