ISyE 8872 Topics in Nonlinear Optimization

Fall 2001

Assignment 2

Issued: August 28, 2001

Due: September 4, 2001

Problem 1
If you need additional assumptions for a result to hold, then state those assumptions, and motivate why the assumptions are needed.

1. Consider \(f, g: \mathcal{X} \to \mathbb{R} \). Show that

 \[
 \inf_{x \in \mathcal{X}} f(x) + \inf_{x \in \mathcal{X}} g(x) \leq \inf_{x \in \mathcal{X}} \{ f(x) + g(x) \}
 \]

 Give an example where strict inequality holds.

2. Consider \(f: \mathcal{X} \to \mathbb{R} \) and \(g: \mathcal{Y} \to \mathbb{R} \). Show that

 \[
 \inf_{x \in \mathcal{X}} f(x) + \inf_{y \in \mathcal{Y}} g(y) = \inf_{x \in \mathcal{X}, y \in \mathcal{Y}} \{ f(x) + g(y) \}
 \]

3. Consider \(f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \). Show that

 \[
 \inf_{x \in \mathcal{X}} \{ \inf_{y \in \mathcal{Y}} f(x, y) \} = \inf_{y \in \mathcal{Y}} \{ \inf_{x \in \mathcal{X}} f(x, y) \} = \inf_{x \in \mathcal{X}, y \in \mathcal{Y}} f(x, y)
 \]

4. Consider \(f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \). Show that

 \[
 \sup_{x \in \mathcal{X}} \{ \inf_{y \in \mathcal{Y}} f(x, y) \} \leq \inf_{y \in \mathcal{Y}} \{ \sup_{x \in \mathcal{X}} f(x, y) \}
 \]

 Give an example where strict inequality holds.

Problem 2
For each of the following statements, either prove the statement or give a counterexample:

1. Let \(L_1, L_2 \) be two linear subspaces in \(V \). Then \(L_1 \cup L_2 \) is a linear subspace in \(V \).

2. Let \(A_1, A_2 \) be two affine manifolds in \(V \). Then \(A_1 \cup A_2 \) is an affine manifold in \(V \).

3. Let \(C_1, C_2 \) be two convex sets in \(V \). Then \(C_1 \cup C_2 \) is a convex set in \(V \).

4. Let \(K_1, K_2 \) be two cones in \(V \). Then \(K_1 \cup K_2 \) is a cone in \(V \).

5. Let \(\{ L_\alpha \subseteq V : \alpha \in S \} \) be an arbitrary collection of linear subspaces \(L_\alpha \) in \(V \). Then \(\bigcap \{ L_\alpha \subseteq V : \alpha \in S \} \) is a linear subspace in \(V \).

6. Let \(\{ A_\alpha \subseteq V : \alpha \in S \} \) be an arbitrary collection of affine manifolds \(A_\alpha \) in \(V \). Then \(\bigcap \{ A_\alpha \subseteq V : \alpha \in S \} \) is an affine manifold in \(V \).
(7) Let \(\{ C_\alpha \subseteq V : \alpha \in S \} \) be an arbitrary collection of convex sets \(C_\alpha \) in \(V \). Then \(\bigcap \{ C_\alpha \subseteq V : \alpha \in S \} \) is a convex set in \(V \).

(8) Let \(\{ K_\alpha \subseteq V : \alpha \in S \} \) be an arbitrary collection of cones \(K_\alpha \) in \(V \). Then \(\bigcap \{ K_\alpha \subseteq V : \alpha \in S \} \) is a cone in \(V \).

(9) Let \(\{ K_\alpha \subseteq V : \alpha \in S \} \) be an arbitrary collection of convex cones \(K_\alpha \) in \(V \). Then \(\bigcap \{ K_\alpha \subseteq V : \alpha \in S \} \) is a convex cone in \(V \).

(10) A cone \(K \subseteq V \) is convex if and only if \(K + K \subseteq K \).

(11) A set \(K \subseteq V \) is convex if and only if \(K + K \subseteq K \).

(12) A set \(K \subseteq V \) is a linear subspace if and only if \(K \) is a convex cone and \(-K \subseteq K \).

(13) Let \(\{ L_i \subseteq V_i : i \in \{1, \ldots, n\} \} \) be a collection of linear subspaces. Then the Cartesian product \(L_1 \times \cdots \times L_n \) is a linear subspace in \(V_1 \times \cdots \times V_n \).

(14) Let \(\{ A_i \subseteq V_i : i \in \{1, \ldots, n\} \} \) be a collection of affine manifolds. Then the Cartesian product \(A_1 \times \cdots \times A_n \) is an affine manifold in \(V_1 \times \cdots \times V_n \).

(15) Let \(\{ C_i \subseteq V_i : i \in \{1, \ldots, n\} \} \) be a collection of convex sets. Then the Cartesian product \(C_1 \times \cdots \times C_n \) is a convex set in \(V_1 \times \cdots \times V_n \).

(16) Let \(\{ K_i \subseteq V_i : i \in \{1, \ldots, n\} \} \) be a collection of cones. Then the Cartesian product \(K_1 \times \cdots \times K_n \) is a cone in \(V_1 \times \cdots \times V_n \).

(17) Let \(\{ L_i \subseteq V : i \in \{1, \ldots, n\} \} \) be a collection of linear subspaces in \(V \), and \(c_1, \ldots, c_n \in F \). Then the direct sum \(c_1 L_1 + \cdots + c_n L_n \) is a linear subspace in \(V \).

(18) Let \(\{ A_i \subseteq V : i \in \{1, \ldots, n\} \} \) be a collection of affine manifolds in \(V \), and \(c_1, \ldots, c_n \in F \). Then the direct sum \(c_1 A_1 + \cdots + c_n A_n \) is an affine manifold in \(V \).

(19) Let \(\{ C_i \subseteq V : i \in \{1, \ldots, n\} \} \) be a collection of convex sets in \(V \), and \(c_1, \ldots, c_n \in \mathbb{R} \). Then the direct sum \(c_1 C_1 + \cdots + c_n C_n \) is a convex set in \(V \).

(20) Let \(\{ K_i \subseteq V : i \in \{1, \ldots, n\} \} \) be a collection of cones in \(V \), and \(c_1, \ldots, c_n \in \mathbb{R} \). Then the direct sum \(c_1 K_1 + \cdots + c_n K_n \) is a cone in \(V \).

Problem 3

Assume that \(L \subseteq V \) is a linear subspace and \(A \subseteq V \) is an affine manifold. Show that:

(1) for any \(x^0 \in V \), the set \(L + x^0 \) is an affine manifold;

(2) for any \(x^0 \in A \), the set \(A - x^0 \) is a linear subspace which does not depend on \(x^0 \).

(3) \(A \) is a linear subspace if and only if \(0 \in A \).