Problem 1
Consider a game where a coin is tossed independently again and again. Every time the coin turns up heads, which happens with probability \(p \in (0, 1) \), the player wins a dollar. Whenever the coin turns up tails, the player loses all his earnings to that point. Let \(X_n(\omega) \) denote the player’s accumulated earnings after the \(n \)th toss.

1. Show that \(X : \Omega \to \{0, 1, 2, \ldots\}^\infty \) is a Markov chain, and write down its transition probabilities. \textbf{Answer:} Consider any history \((i_0, i_1, \ldots, i_n)\). Then
\[
P[X_{n+1} = 0|X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = p[\text{coin turns up tails on throw } n + 1] = 1 - p = P[X_{n+1} = 0|X_n = i_n]
\]
(in the case with \(X_{n+1} = 0 \), the transition probability does not even depend on the current state \(i_n \).) Also,
\[
P[X_{n+1} = i_n + 1|X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = p[\text{coin turns up heads on throw } n + 1] = p = P[X_{n+1} = i_n + 1|X_n = i_n]
\]
Also, for all \(j \notin \{0, i_n + 1\}\),
\[
P[X_{n+1} = j|X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = 0 = P[X_{n+1} = j|X_n = i_n]
\]
Transition matrix
\[
P = \begin{bmatrix}
1 - p & p & 0 & 0 & \cdots \\
1 - p & 0 & p & 0 & \cdots \\
1 - p & 0 & 0 & p & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

2. Show that the Markov chain is irreducible. \textbf{Answer:} Consider any two states \(i, j \in \{0, 1, 2, \ldots\} \). We have to show that there is \(n \in \{0, 1, 2, \ldots\} \) such that \(p_{i,j}^{(n)} > 0 \). If \(i = j \), then \(p_{i,j}^{(0)} = 1 > 0 \). If \(i < j \), then \(p_{i,j}^{(j-i)} = p^{j-i} > 0 \). If \(i > j \), then \(p_{i,j}^{(j+1)} = (1 - p)p^j > 0 \).
3. Calculate the expected hitting time \(\mathbb{E}_i[\tau_i(1)] \) for each \(i \). **Answer:** Note that to go from state \(i \) to state \(i \) in one or more steps, the process has to go from state \(i \) to state 0 and then from state 0 to state \(i \). Thus

\[
\mathbb{E}_i[\tau_i(1)] = \mathbb{E}_i[\tau_0(1)] + \mathbb{E}_0[\tau_i(1)]
\]

Starting in state \(i \), \(\tau_0(1) \) is geometrically distributed with mean \(\frac{1}{1 - p} \), that is,

\[
\mathbb{E}_i[\tau_0(1)] = \frac{1}{1 - p}
\]

Starting in state 0, let \(L_n := \tau_0(n) - \tau_0(n - 1), n = 1, 2, \ldots \), denote the length of excursion \(n \) of the process until it reaches state 0 again. Note that \(\{L_n\} \) is an iid sequence, and that the expected length of an excursion until it returns to state 0 is

\[
\mathbb{E}[L_n] = \mathbb{E}_0[\tau_0(1)] = \frac{1}{1 - p}
\]

Let \(N := \inf\{n : L_n > i\} \) denote the number of the first excursion from state 0 to reach state \(i \). Note that \(N \) is a stopping time with respect to \(\{L_n\} \). The probability that an excursion reaches state \(i \) before it returns to state 0 is \(p^i \), and thus \(\mathbb{E}[N] = 1/p^i \). It follows from Wald’s Identity that

\[
\mathbb{E} \left[\sum_{n=1}^{N} L_n \right] = \mathbb{E}[N] \mathbb{E}[L_n] = \frac{1}{(1 - p)p^i}
\]

Also

\[
\mathbb{E} \left[\sum_{n=1}^{N} L_n \right] = \mathbb{E}_i[\tau_i(1)] + \mathbb{E}_0[\tau_0(1)]
\]

\[
\Rightarrow \mathbb{E}_i[\tau_i(1)] = \mathbb{E}_i[\tau_0(1)] + \mathbb{E}_0[\tau_i(1)]
\]

\[
= \mathbb{E} \left[\sum_{n=1}^{N} L_n \right] = \frac{1}{(1 - p)p^i}
\]

Alternative approach to determine \(\mathbb{E} \left[\sum_{n=1}^{N} L_n \right] \) (implicitly it still uses the fact that \(N \) is a stopping time with respect to \(\{L_n\} \)): Starting in state 0, call an excursion a successful excursion if it reaches state \(i \), which happens with probability \(p^i \), and an unsuccessful excursion otherwise, which happens with probability \(1 - p^i \). Note that

\[
\mathbb{E}[L_n] = \frac{1}{1 - p}
\]

\[
\Rightarrow \mathbb{P}[\text{successful excursion}]\mathbb{E}[L_n|\text{successful excursion}]
\]

\[
+ \mathbb{P}[\text{unsuccessful excursion}]\mathbb{E}[L_n|\text{unsuccessful excursion}] = \frac{1}{1 - p}
\]

\[
\Rightarrow p^i \left(i + \frac{1}{1 - p} \right) + (1 - p^i) \mathbb{E}[L_n|\text{unsuccessful excursion}] = \frac{1}{1 - p}
\]
\[\Rightarrow \mathbb{E}[L_n|\text{unsuccessful excursion}] = \frac{\frac{1}{1-p} - p^i (i + \frac{1}{1-p})}{1 - p^i} \]
\[= \frac{1 - p^i (i(1 - p) + 1)}{(1 - p)(1 - p^i)} \]

Thus, by conditioning on whether the first excursion is a success or not,

\[\mathbb{E} \left[\sum_{n=1}^{N} L_n \right] = \mathbb{P}[\text{first excursion successful}] \mathbb{E} \left[\sum_{n=1}^{N} L_n | \text{first excursion successful} \right] \]
\[+ \mathbb{P}[\text{first excursion unsuccessful}] \mathbb{E} \left[\sum_{n=1}^{N} L_n | \text{first excursion unsuccessful} \right] \]
\[= p^i \mathbb{E}[L_n | \text{successful excursion}] \]
\[+ (1 - p^i) \left(\mathbb{E}[L_n | \text{unsuccessful excursion}] + \mathbb{E} \left[\sum_{n=1}^{N} L_n \right] \right) \]
\[= p^i \left(i + \frac{1}{1-p} \right) + \frac{1 - p^i (i(1 - p) + 1)}{(1 - p)(1 - p^i)} + \mathbb{E} \left[\sum_{n=1}^{N} L_n \right] \]
\[\Rightarrow p^i \mathbb{E} \left[\sum_{n=1}^{N} L_n \right] = p^i \left(i + \frac{1}{1-p} \right) + \frac{1 - p^i (i(1 - p) + 1)}{1-p} = \frac{1}{1-p} \]
\[\Rightarrow \mathbb{E} \left[\sum_{n=1}^{N} L_n \right] = \frac{1}{(1-p)p^i} \]

4. Classify the Markov chain. **Answer:** The Markov chain is irreducible (one class) and positive recurrent.

Problem 2
Show that in an irreducible discrete time Markov chain with \(N \) states, it is possible to go from any state to any other state in \(N \) steps or less. **Answer:** Consider any states \(i, j \in S \).

The Markov chain being irreducible implies that there is \(n \) such that \(p_{ij}^{(n)} > 0 \). Note that

\[p_{ij}^{(n)} := \mathbb{P}[X_n = j | X_0 = i] \]
\[= \frac{\mathbb{P}[X_0 = i, X_n = j]}{\mathbb{P}[X_0 = i]} \]
\[= \sum_{k_1,\ldots,k_{n-1}\in S} \frac{\mathbb{P}[X_0 = i, X_1 = k_1, \ldots, X_n = j]}{\mathbb{P}[X_0 = i]} > 0 \]

Thus there is a sequence of states \(i = k_0, k_1, \ldots, k_{n-1}, k_n = j \in S \) such that

\[\mathbb{P}[X_0 = i, X_1 = k_1, \ldots, X_{n-1} = k_{n-1}, X_n = j] = \mathbb{P}[X_0 = i] p_{k_0,k_1} p_{k_1,k_2} \cdots p_{k_{n-2},k_{n-1}} p_{k_{n-1},k_n} > 0 \]
Suppose any state repeats in this sequence, say $k_l = k_m$ with $l < m$. Then all the states between k_l and k_m can be eliminated from the sequence:

$$P_{k_0, k_1} \cdots P_{k_{l-1}, k_l} P_{k_m, k_{m+1}} \cdots P_{k_{n-1}, k_n} \geq P_{k_0, k_1} P_{k_1, k_2} \cdots P_{k_{n-2}, k_{n-1}} P_{k_{n-1}, k_n} > 0$$

By induction, all duplicated states can be eliminated from the sequence. Because the Markov chain has N states, the resulting sequence has N or fewer states. The Markov chain can go from state i to state j along the resulting sequence of states in N steps or less.

Problem 3

For a discrete time Markov chain $X : \Omega \mapsto \mathcal{S}^\infty$, use only basic identities in probability and the Markov property

$$P[X_{n+1} = j|X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = P[X_{n+1} = j|X_n = i_n] = p_{i_n, j}$$

for all histories (i_0, i_1, \ldots, i_n) and all j, to prove that

$$P[X_n = j|X_{n_1} = i_1, \ldots, X_{n_k} = i_k] = P[X_n = j|X_{n_k} = i_k]$$

for all states i_1, \ldots, i_k and all j, whenever $n_1 < n_2 < \cdots < n_k < n$. **Answer:** First show that

$$P[X_{n+1} = k_1, \ldots, X_{n+m} = k_m|X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i]$$

$$= P[X_{n+1} = k_1, \ldots, X_{n+m} = k_m|X_n = i]$$

for all states $i_0, \ldots, i_{n-1}, i, k_1, \ldots, k_m$.

$$P[X_{n+1} = k_1, \ldots, X_{n+m} = k_m|X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i]$$

$$= \sum_{i_0, \ldots, i_{n-1} \in \mathcal{S}} \frac{P[X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i, X_{n+1} = k_1, \ldots, X_{n+m} = k_m]}{P[X_n = i]}$$

$$= \sum_{i_0, \ldots, i_{n-1} \in \mathcal{S}} \frac{P[X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i]P[X_{n+1} = k_1|X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i]}{P[X_n = i]}$$

$$\times \cdots \times \frac{P[X_{n+m} = k_m|X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i, X_{n+1} = k_1, \ldots, X_{n+m-1} = k_{m-1}]}{P[X_n = i]}$$

$$= \sum_{i_0, \ldots, i_{n-1} \in \mathcal{S}} \frac{P[X_0 = i_0, \ldots, X_{n-1} = i_{n-1}, X_n = i]}{P[X_n = i]} p_{i_1, k_1} p_{k_1, k_2} \cdots p_{k_{m-1}, k_m}$$

$$= \frac{P[X_n = i]}{P[X_n = i]} p_{i_1, k_1} p_{k_1, k_2} \cdots p_{k_{m-1}, k_m}$$

$$= p_{i, k_1} p_{k_1, k_2} \cdots p_{k_{m-1}, k_m}$$
Next consider the result to be shown.

\[
\mathbb{P}[X_n = j | X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k] = \frac{\mathbb{P}[X_n = j, X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k]}{\mathbb{P}[X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k]}
\]

\[
= \sum_{j_0^{(1)} \cdots j_k^{(n_k-1)}} \mathbb{P}[X_0 = j_0^{(1)}, \ldots, X_{n_k} = i_k] \\
\times \mathbb{P}[X_{n_1} = j_1^{(1)}, \ldots, X_{n_2-1} = j_1^{(n_2-1)}, X_n = j | X_0 = j_0^{(1)}, \ldots, X_{n_k} = i_k] \\
\times \mathbb{P}[X_{n_1} = j_1^{(1)}, \ldots, X_{n_2-1} = j_1^{(n_2-1)}, X_n = j | X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k]
\]

\[
= \sum_{j_0^{(1)} \cdots j_k^{(n_k-1)}} \left(\sum_{j_k^{(n_k-1)}} \mathbb{P}[X_{n_k} = i_k, X_{n_k+1} = j_k^{(1)}, \ldots, X_{n-1} = j_k^{(n_k-1)}, X_n = j] \right) \\
\times \mathbb{P}[X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k]
\]

\[
= \left(\sum_{j_0^{(1)} \cdots j_k^{(n_k-1)}} \mathbb{P}[X_0 = j_0^{(1)}, \ldots, X_{n_k} = i_k] \right) \\
\times \left(\sum_{j_k^{(n_k-1)}} \mathbb{P}[X_{n_k} = i_k, X_{n_k+1} = j_k^{(1)}, \ldots, X_{n-1} = j_k^{(n_k-1)}, X_n = j] \right) \\
\times \mathbb{P}[X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k]
\]

(note that the second sum does not depend on the variables in the first sum)

\[
= \mathbb{P}[X_{n_1} = i_1, X_{n_2} = i_2, \ldots, X_{n_k} = i_k] \times \frac{\mathbb{P}[X_{n_k} = i_k, X_n = j]}{\mathbb{P}[X_{n_k} = i_k]} \\
= \mathbb{P}[X_n = j | X_{n_k} = i_k]
\]

Problem 4

Suppose that $X : \Omega \mapsto S^\infty$ is a discrete time Markov chain with a countable state space S.
Let \(f : S \mapsto S \) be an arbitrary function. Let \(Y : \Omega \mapsto S^\infty \) be given by \(Y_n(\omega) := f(X_n(\omega)) \). Is \(Y \) a Markov chain? Prove or give a counterexample. If you give a counterexample, also give a sufficient condition on \(f \) for \(Y \) to be a Markov chain. Answer: No, not necessarily. Counterexample: Let \(X \) be a simple random walk on the integers with \(p = q = 1/2 \) and \(X_0 = 0 \). Let \(f(x) = \lfloor x \rfloor := \max\{x, 0\} \). Then

\[
P[f(X_2) = 0, f(X_3) = 0] = P[X_0 = 0, X_1 = -1, X_2 = -2, X_3 = -3] \]
\[
+ P[X_0 = 0, X_1 = -1, X_2 = -2, X_3 = -1]
+ P[X_0 = 0, X_1 = -1, X_2 = 0, X_3 = -1]
+ P[X_0 = 0, X_1 = 1, X_2 = 0, X_3 = -1]
= 4 \left(\frac{1}{2} \right)^3 = \frac{1}{2}
\]

and

\[
P[f(X_2) = 0] = P[X_0 = 0, X_1 = -1, X_2 = -2]
+ P[X_0 = 0, X_1 = -1, X_2 = 0]
+ P[X_0 = 0, X_1 = 1, X_2 = 0]
= 3 \left(\frac{1}{2} \right)^2 = \frac{3}{4}
\]

thus

\[
P[f(X_3) = 0|f(X_2) = 0] = \frac{P[f(X_2) = 0, f(X_3) = 0]}{P[f(X_2) = 0]} = \frac{1/2}{3/4} = \frac{2}{3}
\]

However,

\[
P[f(X_3) = 0|f(X_0) = 0, f(X_1) = 1, f(X_2) = 0] = P[f(X_3) = 0|X_0 = 0, X_1 = 1, X_2 = 0]
= P[X_3 = -1|X_0 = 0, X_1 = 1, X_2 = 0]
= P[X_3 = -1|X_2 = 0] = \frac{1}{2}
\]

Thus

\[
P[f(X_3) = 0|f(X_0) = 0, f(X_1) = 1, f(X_2) = 0] \neq P[f(X_3) = 0|f(X_2) = 0]
\]

If \(f \) is a one-to-one function, then \(Y \) is a Markov chain.