ISyE 6664
Stochastic Optimization
Fall 2007

Administrative Info

Instructor: Anton J. Kleywegt
Office: Groseclose 409
Office hours: Tuesday, Thursday 4:30–6:00
e-mail: Anton.Kleywegt@isye.gatech.edu
WWW URL: http://www.isye.gatech.edu/faculty/Anton_Kleywegt
Phone: 894-4323
Fax: 894-0390

Class Room: IC 207
Class Times: Tuesday, Thursday 1:35–2:55

Description:
The course covers a variety of topics in stochastic optimization. To begin with, some approaches to optimization with uncertainty are illustrated. This course focuses on the stochastic optimization approach. Some topics in static (single stage) stochastic optimization are covered. Thereafter the course covers dynamic (multi-stage) stochastic optimization. This includes a brief overview of two-stage and multistage stochastic programs. Thereafter we move on to the dynamic programming (Markov decision process) approach, covering both finite and infinite horizon problems. Some results that apply particularly to deterministic DP are developed along the way. Special topics include problems with imperfect state information, and approximation methods for large-scale problems. Several computational techniques and applications are presented.

Objectives of the course are

• to develop an understanding of the types of problems for which a stochastic optimization approach is useful;
• to understand the fundamental role of the process by which information becomes available in stochastic optimization problems;
• to develop insight in structural characteristics of problems that are important for understanding and computation;
• to become familiar with a variety of stochastic optimization algorithms and the issues involved in their implementation;
• to understand the limitations of these algorithms, and to become familiar with some approximation methods for dealing with large-scale problems.
Prerequisites:
Previous exposure to real analysis will be important (concepts such as supremum, infimum, convergence, contraction mapping). Calculus, linear algebra, and basics of optimization and Markov chains. Programming skills will help for the optional problems.

Textbook:


References:


### Topics Covered:
- Approaches to Optimization with Uncertainty
- Static (Single-Stage) Stochastic Optimization
- Dynamic (Multi-Stage) Stochastic Optimization
  - Finite Horizon Problems
    * Two-stage Stochastic Programs
    * Multi-stage Stochastic Programs
    * Stochastic Dynamic Programming
  - Infinite Horizon Problems
    * Discounted Objective
    * Long-run Average Cost Objective
- Special Topics
  - Imperfect State Information (Partially Observed) Problems
  - Dynamic Programming Approximation Methods
- Applications: Shortest Path Problem and extensions, Resource Allocation, Inventory Control, Portfolio Selection, Multi-armed Bandit, Computer Chess

### Grading:
Grades will be assigned as follows:
- Homework: 30%
- Midterm exam: 30%
- Final exam: 40%

### Homework:
Homework will be assigned approximately once every two weeks. You should start working on each homework early, that way you will have time to ask questions in class before the homework is due. Late homework will be accepted only in case of unavoidable occurrences, such as illness or death in the family. You are encouraged to discuss homework and learn from each other, but each person must submit his/her own work, unless the homework
specifically indicates that you should work in groups. Any queries on homework grades must be submitted in writing to the instructor, together with the homework in question.

**Exams:**
Exams will cover material discussed in class, as well as reading assignments and homeworks. The exams will be comprehensive. The midterm exam is scheduled for Thursday October 11, 2007, in class. The midterm exam will be closed book. Any queries on exam grades must be submitted in writing to the instructor, together with the exam in question. Missing an exam will be accommodated only in case of unavoidable emergencies, and the instructor must be notified of the emergency as soon as possible. If you cannot take an exam at the designated time or in the designated way, you should make alternative arrangements with the instructor as soon as possible.

**Academic Honor Code:**
It is your responsibility to familiarize yourself with the Georgia Tech Honor Code. Specifically, you must do your own work in all homework and exams; when homework is specifically assigned as group homework you may and should work with the other members of your group.