Problem 1
Program the conjugate gradient algorithm. Use your program to minimize the function
\[f(x) := \frac{1}{2} x^T Ax - b^T x \]
where \(A \in \mathbb{R}^{n \times n} \) is the Hilbert matrix with entries \(A_{i,j} = 1/(i + j - 1) \) and \(b = (1, 1, \ldots, 1) \). Use initial point \(x^0 = 0 \). Run the algorithm for dimensions \(n = 5, 10, 15, 20 \). Stop when \(\|\nabla f(x_k)\|_\infty \leq 10^{-6} \). Plot a graph of \(\|\nabla f(x_k)\|_\infty \) versus iteration index \(k \), and a graph of the distance \(\|x_k - x^*\|_2 \) between the iterate \(x_k \) and the optimal solution \(x^* \) versus iteration index \(k \), for each dimension. Interpret the results.

Problem 2
Show that if \(d^0, d^1, \ldots, d^{k-1} \in \mathbb{R}^n \) are linearly independent, and \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) is strongly convex quadratic, then \(h: \mathbb{R}^k \rightarrow \mathbb{R} \) given by \(h(y) := f(x^0 + y_0 d^0 + \cdots + y_{k-1} d^{k-1}) \) is also strongly convex quadratic.

Problem 3
Conjugate gradient methods use directions \(d^0, d^1, \ldots, d^{n-1} \in \mathbb{R}^n \) (for most iterations) generated as follows:
\[d^0 = -\nabla f(x^0) \]
\[d^{k+1} = -\nabla f(x^{k+1}) + \beta_{k+1} d^k \]
The Fletcher-Reeves method chooses
\[\beta_{k+1}^{FR} := \frac{\nabla f(x^{k+1})^T \nabla f(x^{k+1})}{\nabla f(x^{k+1})^T \nabla f(x^k)} \]
The Polak-Ribiére method chooses
\[\beta_{k+1}^{PR} := \frac{\nabla f(x^{k+1})^T (\nabla f(x^{k+1}) - \nabla f(x^k))}{\nabla f(x^{k+1})^T \nabla f(x^k)} \]
The Hestenes-Stiefel method chooses
\[\beta_{k+1}^{HS} := \frac{\nabla f(x^{k+1})^T (\nabla f(x^{k+1}) - \nabla f(x^k))}{(\nabla f(x^{k+1}) - \nabla f(x^k))^T d^k} \]
Show that when \(f \) is a quadratic function, and exact line search is done, then the three methods are the same.
Problem 4
Consider a symmetric positive definite matrix $Q \in \mathbb{R}^{n \times n}$, and the associated norm $\|x\|_Q := \sqrt{x^T Q x}$. Consider Q-conjugate directions $d_0, d_1, \ldots, d_{n-1} \in \mathbb{R}^n$ generated from linearly independent vectors $p_0, p_1, \ldots, p_{n-1} \in \mathbb{R}^n$. Show that, for each $k = 1, \ldots, n-1$, $d_k = p_k - \hat{p}_k$, where \hat{p}_k is the projection of p_k onto the subspace spanned by p_0, \ldots, p_{k-1} (or the subspace spanned by d_0, \ldots, d_{k-1}) with respect to the $\| \cdot \|_Q$-norm, that is,

$$
\hat{p}_k = \arg\min \{\|p_k - p\|_Q : p \in [p_0, \ldots, p_{k-1}] \}
$$

That is, d_k is the part of p_k that remains after we subtract the projection of p_k onto the subspace spanned by p_0, \ldots, p_{k-1}.