1 Mortgage Basics

We adopt the following continuous-time notation. Let $LB(t)$ denote the outstanding loan balance at time t. Let $IP(t)$ and $PP(t)$ denote the interest and principal payments on the loan made at time t. The annual loan interest rate is i, and the (remaining) life of the loan is T. All of the continuous-time formulas have discrete-time counterparts, which we include as we go.

Let $c(t)$ denote the rate of cash flow paid to the mortgage holder (i.e. the bank). With an outstanding loan balance of $LB(t)$ at time t, in the next Δt units of time the bank increases the loan balance by $iLB(t)\Delta t$, the interest it expects the mortgagee to pay, but will subtract the payment $c(t)\Delta t$ it receives. Therefore, the change in loan balance from t to $t + \Delta t$ is

$$LB(t + \Delta t) - LB(t) = iLB(t)\Delta t - c(t)\Delta t,$$

which, as $\Delta t \to 0$, implies that

$$\frac{d}{dt}LB(t) = iLB(t) - c(t)$$

The solution to the differential equation (2) may be readily verified as

$$LB(t) = e^{it}\{LB(0) - \int_0^t e^{-is}c(s)ds\}. (3)$$

Note that we can “invert” (3) to reveal that

$$LB(0) = e^{-it}LB(t) + \int_0^t e^{-is}c(s)ds,$$

which merely states that present value of all cash the bank receives up to time t including repayment of the outstanding loan balance at time t (which pays off the loan) must equal the original loan balance, i.e., the bank is indifferent to these two cash flow streams.

A conventional fixed-rate mortgage requires the mortgagee to pay a fixed total payment of M per month for a duration of T years. In continuous-time, $c(s) = M$ and $LB(T) = 0$. Substituting these values into (4),

$$LB(0) = \int_0^T e^{-is}Mds = \frac{M}{i}(1 - e^{-iT})$$

1 Use the product rule of differentiation and the Fundamental Theorem of Calculus.
or that
\[M = \frac{iLB(0)}{1 - e^{-iT}} = \left(\frac{iLB(0)}{1 - (1 + i/12)^{-12T}} \right). \]
(6)

The value for \(M \) is, of course, equal to “Annual Equivalent” of \(LB(0) \) over \(12T \) monthly periods with a rate of interest of \(i/12 \) per month. Both the continuous-time and discrete-time formulas (the one in parentheses) represent the annual payment; to obtain the monthly payment, simply divide by 12.

After replacing \(c(s) = M \) in (3) with its solution (6), and performing a little algebra\(^2\)
\[LB(t) = LB(0) \left\{ \frac{1 - e^{-iT}}{1 - e^{-i(T-t)}} \right\}. \]
(7)

Observe that the expression in braces equals the proportion \(LB(t)/LB(0) \) of the original loan balance remaining, and \(T - t \) represents the time (or number of periods) remaining on the loan. This is a very useful fact to remember.

Remark 1. Suppose it is time \(t \) and we wish to take out a loan in the amount of \(LB(t) \) for a period of \(T - t \) at the same rate of interest \(i \). What would be the “new” (monthly) mortgage payment \(M_{t \rightarrow T} \)? Intuition suggests the process is regenerative, namely, the “process starts over” and this claim is easily verified. From (6) and (7),
\[M_{t \rightarrow T} = \frac{iLB(t)}{1 - e^{-i(T-t)}} = \frac{iLB(0)}{1 - e^{-iT}} = M. \]
(8)

We now proceed to calculate the principal and interest payments at time \(t \). The total payment
\[M = IP(t) + PP(t) \]
(9)
is the sum of the principal and interest payments, and since \(IP(t) = iLB(t) \),
\[PP(t) = M - iLB(t). \]
(10)

Since we now know how to compute \(M \) and \(LB(t) \) we can compute \(PP(t) \), too. However, we can do better. Since \(iLB(t) = IP(t) \) and \(c(t) = IP(t) + PP(t) \), it follows immediately from (2) that
\[\frac{d}{dt} LB(t) = -PP(t). \]
(11)

Now take the time derivative of both sides of (10) and use the identity (11) to obtain that
\[\frac{d}{dt} PP(t) = iPP(t), \]
(12)or that
\[PP(t) = PP(0)e^{it}. \]
(13)

\(^2\)To obtain the corresponding discrete-time formula simply replace \(e^{-ix} \) with \((1 + i/12)^{-12x}\), exactly as in (6).
This is not too surprising: we know the loan balance is decreasing exponentially, and this is solely due to the principal payments.

Remark 2. To obtain the discrete-time value for \(PP(t) \) a one-period adjustment must take place, as follows. Now \(PP(0) = M - iLB(0) \), which exactly equals the first principal payment in discrete-time (replace \(i \) with \(i/12 \) since the time period is a month). So you can define \(PP(0) \) to be \(e^{-i} \) times the first discrete-time principal payment, or simply define it as \(PP(1)e^{-i(T-1)} \), for \(T \geq 1 \), where \(PP(1) \) equals the first principal payment in discrete-time.

We now address two practical questions often asked by a mortgagee:

1. “If I want to pay off my loan in \(S \) years, then how much more do I have to pay per month?” To answer this question, use (6); that is,

\[
M + A = \frac{e^{iLB(0)}}{1 - e^{-iS}},
\]

from which one may solve for \(A \).

2. “If I pay an additional \(A \) dollars per month, then how many years \(S \) will it take to pay off my loan?” To answer this question, use (5); that is,

\[
LB(0) = \frac{M + A}{i}(1 - e^{-iS}),
\]

from which one may solve for \(S \).

In both cases the \(M \) is calculated from (6) using \(T \) instead of \(S \) (and, of course, setting \(A = 0 \).)

2 Examples

Consider a 30-year, fixed-rate mortgage for 125,000 at 6.75%.

1. What is the monthly payment?

\[
M = \frac{(0.0675/12)(125,000)}{1 - (1 + 0.0675/12)^{-360}} = 810.75.
\]

The annual payment in continuous-time is 9720.55, which is 810.05 per month.

2. What is the loan balance after 10 years, 8 months?

The value for \(t \) is 128 with 232 payment periods remaining.

\[
\frac{LB(128)}{LB(0)} = \frac{1 - (1 + 0.0675/12)^{-232}}{1 - (1 + 0.0675/12)^{-360}} = 0.8392387,
\]

which implies the loan balance is 104,904.84. In continuous-time, the value for \(t \) is 10\(\frac{2}{3} \) with 19\(\frac{1}{3} \) years remaining. Thus, \(LB(10\frac{2}{3})/LB(0) = 0.839657 \), which implies the loan balance is 104,957.13.
3. Suppose the remaining duration of the loan is 19 years and 4 months. If we add 100 to our payment each month, then how quickly will the loan be paid off?

Let S denote the remaining life of the loan. We have

$$104,904.84 = \frac{910.75}{0.0675/12}[1 - (1 + 0.675/12)^{-S}],$$

which gives $S = 186.1012$ or 15.5084 years. In continuous-time, we have

$$104,957.13 = \frac{(910.05)(12)}{0.0675}(1 - e^{-0.0675S}),$$

which gives $S = 15.4996$ years.

4. Suppose the remaining duration of the loan is 19 years and 4 months. How much do we have to add to our monthly payment to pay off the loan in 10 years (or 120 payments periods)?

Let A denote the additional amount. We have

$$(M + A) = \frac{104,904.84(0.0675/12)}{1 - (1 + 0.675/12)^{-120}} = 1205.56,$$

which means that $A = 393.81$. In continuous-time, we have

$$(M + A) = \frac{104,957.13(0.0675/12)}{1 - e^{-0.0675(10)}} = 1202.79,$$

which means that $A = 392.74$.

3 Homework Problems

Consider a 15-year fixed-rate mortgage for 200,000 at 6.25%. In what follows, the first solution is the discrete-time answer while the solution in brackets is the continuous-time answer.

1. What is the monthly payment? $M = 1714.85$ [M = 1712.16]

2. What is the loan balance after 4 years, 3 months? $LB(51) = 160,792.27$ [LB(4.25) = 160,833.17]

3. Suppose the remaining duration of the loan is 10 years and 9 months. If we pay 2000 each month how quickly will the loan be paid off? Let S denote the remaining life of the loan. $S = 104.44$ months or 8.70 years [$S = 8.68$ years]

4. Suppose the remaining duration of the loan is 10 years, 9 months. How much do we have to add to our monthly payment to pay off the loan in 5 years? Let A denote the additional amount. $A = 1412.44$ [$A = 1409.01$]