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Abstract

We construct a simple example, surely known to Harry Kesten, of an R-

transient Markov chain on a countable state space S∪{δ} where δ is absorbing.

The transition matrix K on S is irreducible and strictly substochastic. We

determine the Yaglom limit, that is, the limiting conditional behavior given

non-absorption. Each starting state x ∈ S results in a different Yaglom limit.

Each Yaglom limit is an R−1-invariant quasi-stationary distribution where R

is the convergence parameter of K. Yaglom limits that depend on the starting

state are related to a nontrivial R−1-Martin boundary.
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The long run is a misleading guide

to current affairs. In the long run we

are all dead. Economists set

themselves too easy, too useless a

task if in tempestuous seasons they

can only tell us that when the storm

is past the ocean is flat again.

John Maynard Keynes

1. Introduction

A gambler is pitted against an infinitely wealthy casino. The gambler enters the

casino with x > 0 dollars. With each play, the gambler either wins a dollar with

probability b where 0 < b < 1/2 or loses a dollar. The gambler continues to play for

as long as possible. What can be said about her fortune after many plays given that

she still has at least one dollar?

Seneta and Vere-Jones [26] answered this question with the following probability

distribution π∗:

π∗(y) =
1− ρ
a

y

(√
b

a

)y−1
for y = 1, 2, . . . (1)

where a = 1− b and ρ = 2
√
ab. Let Xn be her fortune after n plays. Notice that her

fortune alternates between being odd and even. For n large, Seneta and Vere-Jones

proved that

Px{Xn = y | Xn ≥ 1} ≈


π∗(y)
π∗(2N) for y even and x+ n is even

π∗(y)
π∗(2N−1) for y odd and x+ n is odd

where N := {1, 2, . . .} and Px means that we also condition on X0 = x ∈ N. The

probability π∗ assigns to the even and odd natural numbers is denoted by π∗(2N) and

π∗(2N− 1), respectively.

The gambler’s ruin problem and the Seneta–Vere-Jones’ result are beautiful, but

the even/odd periodicity obscures our main point. To remove this distraction, assume

the gambler starts with an even number of dollars 2x, and consider the Markov chain
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X0, X2, X4, . . . The transition matrix for this chain restricted to even states that are

strictly positive is aperiodic, and

lim
n→∞

P2x{X2n = y | X2n ≥ 1} =
π∗(y)

π∗(2N)
for y ∈ 2N.

Notice that this limiting conditional distribution does not depend on the starting

state 2x. Whether this holds true in general for irreducible, aperiodic sub-Markov

chains is, or was, an open question. There is neither a proof1 that if the limiting

conditional distributions starting from different states exist, they must be equal, nor

an example showing that they might not be. This paper fills that gap. We construct an

example where every starting state x leads to a different limiting conditional behavior

πx.

More precisely, consider a sub-Markov chain X0, X1, . . . on a countably infinite

state space S. By a sub-Markov chain, we mean that the one-step transition matrix

K between states in S is substochastic; that is, K(x, S) :=
∑
y∈S K(x, y) ≤ 1. Strictly

substochastic means that there is at least one row x such that K(x, S) < 1. The missing

mass can be thought of as representing a transition to an absorbing state δ 6∈ S. K

is irreducible if for any x, y ∈ S, there exists an n = n(x, y) such that Kn(x, y) > 0

where Kn is the matrix of n-step transition probabilities. K is aperiodic if d = 1 where

d = gcd{n > 0 : Kn(x, x) > 0}, which does not depend on x when K is irreducible. If

d > 1, then K is periodic with period d.

We construct examples where every starting state x leads to a different limiting con-

ditional distribution πx even though the transition matrix is irreducible and aperiodic.

That is,

Px{Xn = y | Xn ∈ S} → πx(y) for y ∈ S, (2)

but πx is different for every x ∈ S.

The paper is organized as follows. The first several subsections of section 2 define

some standard terms. In subsection 2.4 we define a limiting condition distribution—

called the Yaglom limit—for the aperiodic case. Our definition is slightly unusual since

we explicitly allow the possible dependence upon the starting state by including the

1This is not exactly true; see the second paragraph of Section 4 of [15].
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starting state x in the r.h.s. of (5). We prove several basic results that follow from the

existence of a Yaglom limit in the aperiodic case for a fixed starting state x. Although

Kesten’s strong ratio limit property (SRLP) may not hold, we show that a generalized

strong ratio limit property (GSRLP) holds when a Yaglom limit exists for each starting

state—though each Yaglom limit may be different.

In subsection 2.4 we turn our attention to periodic Yaglom limits where K is periodic

with period d > 1. Many of our examples, e.g., the gambler’s ruin problem, are

periodic. The definition of a periodic Yaglom limit is given in (11) and again the

possible dependence on the starting state is explicit. In addition, the definition includes

the sequence of subsets of the state space that the process cycles through. A periodic

Yaglom limit requires that d different limits hold. After proving some basic properties

that follow from the existence of a periodic Yaglom limit, we establish a series of results

that greatly simplify the process of establishing a periodic Yaglom limit.

Section 3 describes a duality between t-invariant measures and t-harmonic functions

related to reversibility. A more general such duality is described in subsection 5.5.

Section 4 describes an idea that allows a variety of useful identities to be derived.

Section 5 contains a variety of examples including our primary example dubbed the

“hub-and-two-spoke example.” The hub-and-two-spoke example provides an excellent

medium for exploring the connections between Martin boundary theory—particularly,

the ρ-Martin entrance boundary theory—and Yaglom limits that may depend on the

initial state.

Instead of reading section 2 next, we encourage the reader to look at the definitions

of a Yaglom limit (5) and a periodic Yaglom limit (11) and then immediately jump

to the hub-and-two-spoke example in section 5. Theorem 1 shows that the periodic

Yaglom limit of the hub-and-two-spoke example depends on the initial state. This

and the other examples will motivate the results in the sections initially skipped. We

refer back to the results in the skipped sections as we need them when analyzing the

examples.
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2. Characterizing Yaglom limits

Throughout, we assume that K is an irreducible, substochastic matrix. Our goal in

this section is to characterize the Yaglom limits (2) as quasi-stationary distributions

for both the aperiodic and periodic cases.

Let ζ be the exit time from S, also known as the time of absorption. Notice that

Px{Xn ∈ S} = Kn(x, S) = Px{ζ > n},

and, since δ is absorbing

Px{Xn = y | Xn ∈ S} =
Kn(x, y)

Kn(x, S)
for all y ∈ S.

From Scheffé’s Theorem [2, Theorem 16.11], (2) implies convergence in total variation.

We frequently appeal to the corollary of Scheffé’s Theorem to conclude that

Ex[f(Xn) | Xn ∈ S]→ πxf :=
∑
y∈S

πx(y)f(y).

whenever f is a bounded function on S.

2.1. Quasi-stationary distributions

We think of a distribution π as a nonnegative row vector with elements π(y) for

y ∈ S that sum to π(S) ≤ 1. For π to be a quasi-stationary distribution, we need

π(S) = 1, and

Pπ{Xn = y | Xn ∈ S} = π(y) for all n ≥ 0 (3)

where Pπ is the distribution of the chain when X0 is given the distribution π. Irre-

ducibility implies that a quasi-stationary distribution for K must be strictly positive.

If K is also strictly substochastic, then 0 < Pπ{X1 ∈ S} < 1. We will use the

abbreviation QSD for quasi-stationary distribution, and QSDs for the plural.

2.2. Invariant and excessive measures and QSDs

If we set n = 1 in (3) and multiply both sides by t := Pπ{X1 ∈ S}, we have πK = tπ

where 0 < t ≤ 1. If K is strictly substochastic, the factor t shrinks π to account for

the missing mass. Thus, π is a positive left eigenvector for the eigenvalue t and will be

called a t-invariant QSD. Similarly, a measure σ on S is t-invariant if 0 ≤ σ(x) < ∞
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for all x ∈ S and σK = tσ. If If 0 ≤ σ(x) < ∞ for all x ∈ S and σK ≤ tσ then σ

is t-excessive. It follows from irreducibility that a non-degenerate t-invariant measure

with t > 0 must be strictly positive. Invariant measure means the same as 1-invariant

measure.

We are primarily interested in ρ-invariant QSDs where ρ = 1/R and R is the

(common) radius of convergence of the generating functions

Gx,y(z) :=
∑
n≥0

Kn(x, y)zn. (4)

Seneta [25, Theorem 6.1] has a proof that the radius of convergence of Gx,y(z) is

the same for every x, y and also that R < ∞. In addition, since K is substochastic,

1 ≤ R <∞. R is called the convergence parameter of K, and ρ = 1/R the convergence

norm or spectral radius. Either Gx,y(R) <∞ for all x, y, or Gx,y(R) =∞ for all x, y.

In the former case, K is said to be R-transient, and in the latter case, R-recurrent. The

R-recurrent case tends to be far more tractable since there is at most one ρ-invariant

measure.

K may have t-invariant QSDs for t 6= ρ. For example, a consequence of Theorem 4.2

in van Doorn and Schrijner [29] is that the gambler’s ruin problem described in the

Introduction has a unique t-invariant QSD for every t ∈ [ρ, 1). Our reason for focusing

on ρ-invariant QSDs is that Proposition 1 implies that only ρ-invariant QSDs can

describe the limiting conditional behavior when the initial distribution is concentrated

on a single state. If the initial distribution is allowed to have an infinite support, any

t-invariant QSD can be a limiting conditional distribution. However, we define Yaglom

limits only when the initial distribution is concentrated on a single state; consequently,

we can limit attention to ρ-invariant QSDs. We give examples where each starting

state x results in a different limiting conditional distribution chosen from an infinite

family of ρ-invariant QSDs.

Seneta and Vere-Jones [26] allow for the possibility that an irreducible, substochastic

matrix could have multiple ρ-invariant measures. The ρ-Martin entrance boundary

theory [8] describes the cone of such measures—more on that in subsubsection 5.2.11.

Nonetheless, we do not know of any earlier examples of Yaglom limits that depend on

the starting state.
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2.3. Harmonic and superharmonic functions

Analogous to t-invariant and t-excessive measures, we have t-harmonic and t-superharmonic

functions. A real-valued function h on S will be t-superharmonic if h ≥ 0 and Kh ≤ th.

To avoid continually writing “nonnegative,” we have included nonnegativity as part

of the definition of t-superharmonic. If in addition, Kh = th, then h is t-harmonic.

Due to irreducibility, a non-degenerate t-superharmonic function with t > 0 must be

strictly positive. Harmonic and superharmonic mean the same as 1-harmonic and

1-superharmonic, resp.

2.4. The aperiodic case

A proper probability distribution πx describes the limiting conditional behavior

starting from state x ∈ S if (2) holds, or equivalently,

Kn(x, y)

Kn(x, S)
→ πx(y) for all y ∈ S. (5)

where πx is a proper probability distribution on S. This is often referred to as πx being

the limiting conditional distribution or as being the Yaglom limit.

Lemma 1. Let K be irreducible, aperiodic, and substochastic. If πx is a Yaglom limit

as in (5), then the following hold:

lim
n→∞

Kn+1(x, S)

Kn(x, S)
= ρ (6)

lim
n→∞

Kn+1(x, y)

Kn(x, y)
= ρ for all y ∈ S. (7)

Remark 1. Recall that ζ is the exit time from S. If the initial distribution is a t-

invariant QSD, then ζ is a geometric random variable, and the conditional probability

of remaining in S for one more step is always t. Call Px{ζ > n+1 | ζ > n} the survival

probability at age n starting from state x. Thus, (6) states that the (one-step) survival

probability starting from state x is asymptotically ρ. Consequently, if πx in (5) is a

t-invariant QSD, then (6) implies t = ρ.

Remark 2. Kesten [18] proves (7) in Lemma 4 under a uniform aperiodicity assump-

tion. He also gives some of the earlier history of this result. Equation (6) can be proven

with an argument similar to Kesten’s proof of Lemma 4 assuming uniform aperiodicity

and the existence of a ρ-excessive probability measure µ (that is, µK ≤ ρµ) [10]. These
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results are quite general, and do not require a Yaglom limit to hold. If, however, a

Yaglom limit holds, then we have the following simple proof.

Proof of Lemma 1. Since K(y, S) is a bounded function in y, we can use the corol-

lary to Scheffé’s Theorem to show that

Kn+1(x, S)

Kn(x, S)
=
∑
y∈S

Kn(x, y)

Kn(x, S)
K(y, S)

→
∑
y∈S

πx(y)K(y, S)

=: L ∈ (0, 1].

If we think of the l.h.s. of (5) as being of the form an/bn, we have just argued that

bn+1/bn → L. From (5), we know that (an+1/an)(bn/bn+1) → 1; hence, the ratios

an+1/an must also converge to L. To finish the proof, we need only show that L = ρ.

Since the root test is stronger than the ratio test, it follows that a
1/n
n → L. If K is

aperiodic, Theorem A of [30] implies that [Kn(x, y)]1/n → ρ. Since Kn(x, y) = an, we

know that L = ρ. �

Proposition 1. Let K be irreducible, aperiodic, and substochastic. If πx is a Yaglom

limit as in (5), then πx is a ρ-invariant QSD.

Proof. We essentially repeat the proof of Theorem 3.2 in [26]. Starting from (7),

ρ = lim
n→∞

∑
zK

n(x, z)K(z, y)

Kn(x, y)

= lim
n→∞

(
Kn(x, S)

Kn(x, y)

∑
z

Kn(x, z)

Kn(x, S)
K(z, y)

)

=
1

πx(y)

∑
z

πx(z)K(z, y).

In the last step, we used (5) twice, and we again used the corollary of Scheffé’s Theorem

to interchange the limit and sum since K(z, y) is a bounded function of z. �

2.4.1. Kesten’s strong ratio limit property (SRLP). For a nonnegative matrix K—not

necessarily substochastic—Kesten [18] defines the strong ratio limit property as the

existence of a strictly positive constant R, a strictly positive function h on S, and a
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strictly positive measure π on S such that

lim
n→∞

Kn+m(u, v)

Kn(x, y)
= R−m

h(u)π(v)

h(x)π(y)
for all states u, v, x, y and all m ∈ Z.

Our example in subsection 5.2 shows that an irreducible, aperiodic substochastic

matrix may not have Kesten’s strong ratio limit property. We are able to prove a

different property that our example does possess and will prove useful. Let us say that

a nonnegative matrix K has the generalized strong ratio limit property (GSRLP) if

there exists a strictly positive constant R, a strictly positive function h, and ρ-invariant

QSDs πx on S for every x ∈ S such that

lim
n→∞

Kn+m(u, v)

Kn(x, y)
= R−m

h(u)πu(v)

h(x)πx(y)
for all states u, v, x, y and all m ∈ Z. (8)

Much of the remainder of this subsection is closely related to the proof of Kesten’s

Theorem 2 [18].

IfK is substochastic, irreducible and (5) holds for a fixed state x0, thenKn(y, S)/Kn(x0, S)

is a bounded sequence in n for each y ∈ S. To see this, choose m so that Km(x0, y) > 0,

and then we have

Km(x0, y)
Kn(y, S)

Kn(x0, S)
≤ Kn+m(x0, S)

Kn(x0, S)
→ ρm using (6).

Since Kn(y, S)/Kn(x0, S) is bounded, we can choose a convergent subsequence N (y)

for each y, and define the subsequential limit

ĥ(y) := lim
n→∞
n∈N (y)

Kn(y, S)

Kn(x0, S)
for all y ∈ S. (9)

If (9) holds for all subsequences, that is , if

ĥ(y) = lim
n→∞

Kn(y, S)

Kn(x0, S)
for all y ∈ S (10)

then

ĥ(y)

ĥ(z)
= lim
n→∞

Kn(y, S)

Kn(z, S)
for all y, z ∈ S

and ĥ(x0) = 1.

Proposition 2. Let K be irreducible, aperiodic, and substochastic. If (5) holds for

every x ∈ S and (10) holds, then the generalized ratio limit property (8) holds, and ĥ

is ρ-superharmonic. If in addition the support of K(x, ·) is finite for every x ∈ S, then

ĥ is ρ-harmonic.
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Remark 3. The periodic example in subsection 5.3 can be modified to show that ĥ

may not be ρ-harmonic if the finite support assumption does not hold. The asymptotic

behavior of the survival probability relative to a reference state as in (9) play a key

role, and we use ĥ to designate this survival ratio.

Proof of Proposition 2. First, we argue that ĥ is strictly positive. We know that

ĥ(x0) = 1. Choose m such that Km(x, x0) > 0. Now,

Km+n(x, S) =
∑
z

Km(x, z)Kn(z, S)

Km+n(x, S)

Km+n(x0, S)
=
∑
z

Km(x, z)
Kn(z, S)

Kn(x0, S)

Kn(x0, S)

Km+n(x0, S)
let n→∞,

ĥ(x) ≥
∑
z

Km(x, z)ĥ(z)Rm from Fatou’s lemma

≥ Km(x, x0)ĥ(x0)Rm

> 0

since we already know that R = ρ−1 > 0.

Next, to see that (8) holds,

Km+n(u, v)

Kn(x, y)
=
Km+n(u, v)

Kn(u, v)

Kn(u, v)

Kn(u, S)

Kn(u, S)

Kn(x, S)

Kn(x, S)

Kn(x, y)
→ ρm

πu(v)ĥ(u)

πx(y)ĥ(x)

where Proposition 1 guarantees that πx is a ρ-invariant QSD for every x ∈ S.

To show that ĥ is ρ-harmonic when the support of K(x, ·) is finite, return to the

argument at the beginning of this proof, and set m = 1. Instead of using Fatou’s

lemma, use the finite support to replace the first inequality with equality, which shows

that ĥ is ρ-harmonic. �

Even if ĥ is known to be ρ-harmonic, it can still be difficult to determine ĥ since

K may have other ρ-harmonic functions as our hub-and-two-spoke example illustrates;

see (40). Often, Kesten’s Theorem 1 [18] can help since it gives conditions guaranteeing

a unique, up to multiplicative constants, ρ-harmonic function.

Let K be irreducible, aperiodic and substochastic. One vexing open question is that

we do not know whether the existence of a Yaglom limit starting from a particular

state x implies the existence of Yaglom limits starting from any state.
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2.5. Periodic Yaglom limits & QSDs

Fix the starting state x ∈ S. If the period d > 1, then we can partition S into

d classes labeled S0, . . . , Sd−1 so that y ∈ Sk iff Knd+k(x, y) > 0 for n sufficiently

large. Hence, x ∈ S0, and {Xnd+k ∈ Sk} = {Xnd+k ∈ S}. For brevity, let Sk+j :=

Sk+j (mod d). We will say that K has a periodic Yaglom limit starting from x if for all

k ∈ {0, . . . , d− 1} and all y ∈ Sk,

lim
n→∞

Px{Xnd+k = y | Xnd+k ∈ S} =
πx(y)

πx(Sk)
(11)

where πx is a probability measure on S with πx(S) = 1. We will show πx must be a

ρ-invariant QSD. Unlike when K is stochastic, πx(Sk) may take values other than 1/d.

Our starting point for the periodic case is slightly different than (2). Instead, we

assume that there exists a k such that

lim
n→∞

Px{Xnd+k = y | Xnd+k ∈ S} = πkx(y) for all y ∈ Sk, (12)

or equivalently

lim
n→∞

Knd+k(x, y)

Knd+k(x, S)
= πkx(y) for all y ∈ Sk. (13)

where πkx is a probability measure on S with πkx(Sk) = 1. If (13) holds for some k,

then Proposition 3 shows that we have a periodic Yaglom limit starting from x; that

is, (11) holds for all k, and πx is a ρ-invariant QSD.

If a periodic Yaglom limit holds for some x ∈ S0, we have not been able to prove

that a periodic Yaglom limit holds starting from some other state in S0. However, if

a periodic Yaglom limit holds for every state in S0, then Proposition 4 shows that a

periodic Yaglom limit holds starting from any state in S.

Lemma 2. Let K be irreducible, substochastic, and periodic with period d > 1. If (13)

holds for some k ∈ {0, . . . , d− 1}, then

lim
n→∞

K(n+1)d+k(x, Sk)

Knd+k(x, Sk)
= ρd (14)

lim
n→∞

K(n+1)d+k(x, y)

Knd+k(x, y)
= ρd for y ∈ Sk.



12 R. D. Foley and D. R. McDonald

Proof. Using the corollary to Scheffés Theorem,

K(n+1)d+k(x, S)

Knd+k(x, S)
=
∑
y∈S

Knd+k(x, y)

Knd+k(x, S)
Kd(y, S)

→
∑
y∈S

πkx(y)Kd(y, S)

=: L ∈ (0, 1].

As in the proof of Lemma 1, (13) implies that for any y ∈ Sk,

K(n+1)d+k(x, S)

Knd+k(x, S)
∼ K(n+1)d+k(x, y)

Knd+k(x, y)
→ L.

Since the root test is stronger2 than the ratio test, [Knd+k(x, y)]1/(nd) → L1/d, but

Theorem A [30] implies that for any y ∈ Sk, [Knd+k(x, y)]1/(nd+k) → ρ. Hence, L = ρd.

�

Proposition 3. Let K be irreducible, substochastic, and periodic with period d > 1.

Recall that x is a fixed state in S0. Suppose that (13) holds for some k ∈ {0, 1, . . . , d−1}.

Then (13) holds for all k ∈ {0, 1, . . . , d− 1}. Moreover, there is a ρ-invariant QSD πx

such that πkx(y) = πx(y)/πx(Sk) for y ∈ Sk for each k ∈ {0, 1, . . . , d− 1}. Hence,

lim
n→∞

Px{Xnd+k = y | Xnd+k ∈ S} =
πx(y)

πx(Sk)
for all k and all y ∈ Sk.

In addition, the πkx(y) in (13) can be iteratively computed by using

πk+1 (mod d)
x (y) =

1

ρk(x)

∑
z∈Sk

πkx(z)K(z, y) (15)

where the probability of surviving for one more step given the current distribution is

πkx is given by

ρk(x) =
∑
z∈Sk

πkx(z)K(z, S)

Furthermore, the ρ-invariant QSD πx can be constructed as

πx =

d−1∑
k=0

ckπ
k
x (16)

2See Clark [4, 11.5.3 and Corollary 255] or [5, 2.5] for a discussion.
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where

c0 =
1

1 + ρ0(x)
ρ + ρ0(x)ρ1(x)

ρ2 + · · ·+ ρ0(x)ρ1(x)...ρd−2(x)
ρd−1

(17)

ck = c0
ρ0(x) . . . ρk−1(x)

ρk
for k ∈ {1, 2, . . . , d− 1} (18)

Remark 4. Lemma 11 of Ferrari and Rolla [9] and Proposition 3 are closely related.

Equations (20) and that ckρk/ρ = ck+1 are in their Lemma 11.

Remark 5. In the following special case, ρk(x) is easy to compute. Let ∆ := {x ∈ S :

K(x, S) < 1} be the set of possible exit states. If ∆ ⊂ Sj for some j, then

ρk(x) =

ρ
d for k = j

1 for k 6= j

which follows from (20) below.

Proof. Recall that ζ is the exit time from S. Let sn := sn(x) := Px{ζ > n+1 | ζ > n}

for n ∈ N0 := {0} ∪ N. Clearly, sn > 0, and so is infn sn since (14) implies that

lim infn sn ≥ ρd > 0.

We now show that snd+k → ρk where ρk := ρk(x) =
∑
z∈Sk

πkx(z)K(z, Sk+1).

1− ρk
snd+k

=

∑
z∈Sk

Knd+k(x, z)K(z, Sk+1)

Knd+k(x, Sk)snd+k
−
∑
z∈Sk

πkx(z)K(z, Sk+1)

snd+k

≤
∑
z∈Sk

∣∣∣∣ Knd+k(x, z)

Knd+k(x, Sk)
− πkx(z)

∣∣∣∣ K(z, Sk+1)

snd+k

≤
∑
z∈Sk

∣∣∣∣ Knd+k(x, z)

Knd+k(x, Sk)
− πkx(z)

∣∣∣∣ 1

infn snd+k

→ 0.

where we used (13).

For brevity, write k + 1 for k + 1 (mod d). The next step is to establish that (13)

holds when k is replaced by k + 1 and to relate πk+1
x with πkx. For y ∈ Sk+1,

Knd+k+1(x, y)

Knd+k+1(x, Sk+1)
=
∑
z∈Sk

Knd+k(x, z)

Knd+k(x, Sk)
K(z, y)

1

snd+k

→
∑
z∈Sk

πkx(z)K(z, y)
1

ρk

=: πk+1
x (y). (19)
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Thus, πk+1
x is a probability measure on S with πk+1

x (Sk+1) = 1, as can be seen by

summing over y ∈ Sk+1. Thus, (15) holds.

Now that we have established that (13) holds when k is replaced by k + 1, we

can repeat the above arguments d − 2 additional times establishing that the above

expressions in this proof hold for all k ∈ {0, . . . , d− 1}.

Next, since

K(n+1)d+k(x, Sk)

Knd+k(x, Sk)
=

d−1∏
j=0

snd+k+j ,

ρd = ρ0(x)ρ1(x) . . . ρd−1(x) as n→∞ (20)

where we used (14).

Though the notation suppresses the dependency, ρk, snd+k and the forthcoming

c0, . . . , cd−1 all depend on the initial state being x. Construct c0, . . . , cd−1 as in (17)

and (18). The constants are nonnegative, and c0 + · · · + cd−1 = 1. Define πx as

in (16). Since πx(Sk) = ck, πx is a probability measure on S, and if y ∈ Sk, then

πkx(y) = πx(y)/πx(Sk) for all k.

The last step is to show that πx is ρ-invariant. We will use the fact that ckρk/ρ =

ck+1 and that from (19),

ρkπ
k+1
x (y) =

∑
z∈Sk

πkx(z)K(z, y)

Let y ∈ S. Since y ∈ S, there exists some k = k(y) such that y ∈ Sk+1. Since

∑
z∈S

πx(z)K(z, y) =
∑
z∈Sk

ckπ
k
x(z)K(z, y)

= ckρkπ
k+1
x (y)

= ρck+1π
k+1
x (y)

= ρπx(y),

πx is a ρ-invariant QSD. �

If we assume that a periodic Yaglom limit exists starting from every state in one

class, say S0, then we can show that under certain conditions a periodic Yaglom limit

will exist starting from every state in S. Since we will be assuming that a periodic
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Yaglom limit exists starting from any state in S0, we drop the assumption that x is

a fixed starting state in S0, which means that we need to be careful about quantities

that depend on the starting state. However, we will still need a fixed state x0 in S0

as a reference point for the following definition. If the following limit exists, which is

similar to (10) except with nd instead of n, then define

ĥ0(y) := lim
n→∞

Knd(y, S0)

Knd(x0, S0)
for all y ∈ S0. (21)

If (21) holds, then it follows that

ĥ0(y)

ĥ0(x)
= lim
n→∞

Knd(y, S0)

Knd(x, S0)
for all x, y ∈ S0.

In the following proposition when the starting state is in a class other than S0, do

not relabel the classes.

Proposition 4. Let K be irreducible, substochastic, and periodic with period d > 1. If

(12) holds for all x ∈ S0, (21) holds, and the support of K(u, ·) is finite for all u ∈ S,

then there is a periodic Yaglom limit starting from any state in S. More precisely, if

u ∈ Sj where j ∈ {1, . . . , d− 1}, then

Knd+k−j(u, y)

Knd+k−j(u, Sk)
→ πu(y)

πu(Sk)
for all k and all y ∈ Sk (22)

where πu is a ρ-invariant QSD. In particular, for k = 0, the r.h.s. of (22) is given by

π−ju (y) :=
∑
x∈S0

wu,xπ
0
x(y) for y ∈ S0, (23)

wu,x :=
Kd−j(u, x)ĥ0(x)∑
z∈S0

Kd−j(u, z)ĥ0(z)
(24)

where the weights wu,x are nonnegative and sum to one. In addition,

Knd+d−j(u, S0)

Knd+d−j(v, S0)
→
∑
x∈S0

Kd−j(u, x)ĥ0(x)∑
z∈S0

Kd−j(v, z)ĥ0(z)
(25)

Remark 6. The terms involving ĥ0(·) account for the relative likelihood of a long

remaining lifetime, which might vary over the states in S0. If the hypotheses of Prop. 6

hold, then the denominator in (24) simplifies to ρd−j ĥ(u) where ĥ(u) is defined just

prior to Prop. 6.
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The example in subsection 5.3 shows that ĥ may not be ρ-harmonic if the finite

support assumption does not hold.

Proof. It suffices to establish that (22) holds for any j ∈ {1, . . . , d− 1} but only one

k since Prop. 3 can then be used to show that (22) holds for all k and that πu is a

ρ-invariant QSD. We will show that it holds for k = 0 by letting k = d in the l.h.s.

of (22) and showing that it converges to the r.h.s. of (23). At which point, everything

follows from Prop. 3 except (25).

Consider the numerator of the l.h.s. of (22) with k = d divided by Knd(x0, S0).

That is, for y ∈ S0,

K(n+1)d−j(u, y)

Knd(x0, S0)
=
∑
x∈S0

Kd−j(u, x)
Knd(x, y)

Knd(x, S0)

Knd(x, S0)

Knd(x0, S0)

→
∑
x∈S0

Kd−j(u, x)π0
x(y)ĥ0(x)

where we used the finite support of Kd−j(u, ·) to justify interchanging the limit and

summation and then used (21) and (12).

Now, consider the denominator of the l.h.s. of (22) also with k = d and also divided

by Knd(x0, S0). That is,

K(n+1)d−j(u, S0)

Knd(x0, S0)
=
∑
x∈S0

Kd−j(u, x)
Knd(x, S0)

Knd(x0, S0)

→
∑
x∈S0

Kd−j(u, x)ĥ0(x)

where we again used the finite support of Kd−j(u, ·) to justify interchanging the limit

and summation and then used (21).

Combining the above, the l.h.s. of (22) with k = d has a limit

π−ju (y) :=

∑
x∈S0

Kd−j(u, x)π0
x(y)ĥ0(x)∑

z∈S0
Kd−j(u, z)ĥ0(z)

for y ∈ S0

=
∑
x∈S0

w(u, x)π0
x(y) for y ∈ S0

where w(u, x) is defined in (24). Clearly, w(u, x) > 0 and
∑
x∈S0

w(u, x) = 1. The limit

π−ju (y) is also nonnegative and
∑
y∈S0

π−ju (y) = 1. Thus, after a temporary relabelling

of S0, . . . , Sd−1, we can use Prop. 3 to establish (22) for all k.
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Lastly, to establish (25), just use the result related to the denominator of the l.h.s.

of (22) starting from u and the analogous result starting from v.

�

Recall that ρk(x) = limn Px{ζ > nd + k + 1 | ζ > nd + k} where x ∈ S0, which

gives the asymptotic probability of surviving one more step given that the process

is currently in Sk and started in state x. Part of the hypothesis of the forthcoming

Prop. 6 will be that each of the functions ρ0(·), . . . , ρd−1(·) is a constant; that is,

ρk(x) = ρk(y) for all k, and all x, y ∈ S0. (26)

We will see an example where (26) holds even though πx 6= πy whenever x 6= y.

Remark 5 gave one sufficient condition for—something stronger than—(26) to hold. A

second sufficient condition for (26) is given in the following proposition.

Proposition 5. Let K be irreducible, substochastic, and periodic with period d > 1.

If (12) holds for all x ∈ S0 and if the following limits exist

lim
n→∞

Kn(x, S)

Kn(x0, S)
for all x ∈ S0, (27)

then (26) holds for all k ∈ {0, . . . , d− 1}.

Proof. For x ∈ S0,

Knd+k+1(x, Sk+1)

Knd+k(x, Sk)
=
∑
z∈S0

Knd+k(x, z)

Knd+k(x, Sk)
K(z, Sk+1)

→
∑
z∈Sk

πkx(z)K(z, Sk+1) = ρk(x)

where we used (12) and the corollary to Scheffé’s Theorem in the last step. Conse-

quently, for x, y ∈ S0,(
Knd+k+1(x, Sk+1)

Knd+k(x, Sk)

)(
Knd+k(y, Sk)

Knd+k+1(y, Sk+1)

)
→ ρk(x)

ρk(y)
.

On the other hand, the above limit could also be evaluated using (27). If the limits

in (27) hold, then the limits must be equal to ĥ0(x) where ĥ0 was defined in (21)

Consequently, (
Knd+k+1(x, Sk+1)

Knd+k+1(y, Sk+1)

)(
Knd+k(y, Sk)

Knd+k(x, Sk)

)
→ ĥ0(x)

ĥ0(y)
· ĥ0(y)

ĥ0(x)
= 1,

which means that ρk(x) = ρk(y) for all k. �
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If (21) holds, we define ĥ(u) for u ∈ S as follows: if u ∈ Sj , then

ĥ(u) := ρj−d
∑
x∈S0

Kd−j(u, x)ĥ0(x)

where j ∈ {0, . . . , d− 1}. As in the aperiodic case, ĥ is a measure of the likelihood of

surviving for a long time relative to a fixed state x0. The following proposition shows

that under certain conditions ĥ is ρ-harmonic. Although there may be many other

ρ-harmonic functions, ĥ plays an important role in the large deviation behavior.

Proposition 6. Let K be irreducible, substochastic, and periodic with period d > 1.

If (12) holds for all x ∈ S0, (21) and (26) hold, and the support of K(u, ·) is finite for

all u ∈ S, then ĥ is ρ-harmonic. If in addition u and v are in the same class Sj, then

ĥ(v)

ĥ(u)
= lim
n→∞

Kn(v, S)

Kn(u, S)
. (28)

Remark 7. The example in subsection 5.3 shows that ĥ may not be ρ-harmonic

without the finite support assumption.

Proof. First, we show that ĥ is ρ-harmonic. Fix j ∈ {0, . . . , d− 1}. Let u ∈ Sj and

v ∈ Sj+1 (where by convention Sd means S0).

∑
v

K(u, v)ĥ(v) =
∑
v

K(u, v)ρj+1−d
∑
x∈S0

Kd−(j+1)(v, x)ĥ0(x)

= ρρj−d
∑
x∈S0

Kd−j(u, x)ĥ0(x)

= ρĥ(u).

Next, we prove the ratio limit result. Let u ∈ Sj for fixed j ∈ {0, . . . , d − 1} From
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(26), ρk(x) does not depend on x, so we shorten it to ρk. Fix i ∈ {1, . . . , d}.

Kd−j+md+i(u, S) =
∑

x,y∈S0

Kd−j(u, x)Kmd(x, y)Ki(y, Si)

Kd−j+md+i(u, S)

Kmd(x0, S0)
=

∑
x,y∈S0

Kd−j(u, x)
Kmd(x, y)

Kmd(x, S0)
Ki(y, Si)

Kmd(x, S0)

Kmd(x0, S0)

→
∑

x,y∈S0

Kd−j(u, x)π0
x(y)ρ0 . . . ρi−1ĥ0(x) as m→∞

= ρ0 . . . ρi−1
∑
x∈S0

Kd−j(u, x)ĥ0(x)

= ρ0 . . . ρi−1ρ
d−j ĥ(u)

where we justify interchanging the limit and sum in the next paragraph. In the above,

we used the identity
∑
y∈S0

π0
x(y)Kj(y, Sj) = ρ0(x) . . . ρj−1(x). Also, since the ρk’s do

not depend on x, they could be factored outside the summation. Consequently, if v is

also in Si, then

Kd−j+md+i(u, S)

Kd−j+md+i(v, S)
→ ĥ(u)

ĥ(v)
as m→∞.

Since this limit does not depend on i and j as long as u and v are in the same class,

(28) holds.

Since there are only a finite number of states x accessible from u, it suffices to show

that we can interchange the limit and the sum over y ∈ S0. SinceKmd(x, y)/Kmd(x0, S0)

converges to π0
x(y)ρ0 . . . ρi−1ĥ0(x), which is summable over y ∈ S0, and since Ki(y, Si)

is bounded, we can again use the corollary to Scheffe’s theorem to justify interchanging

the limit and sum. �

3. Duality and reversibility

In some situations, a duality exists between t-invariant measures and t-harmonic

functions. The example in subsection 5.3 is a situation where they cannot be linked

since there is a ρ-invariant measure, but no ρ-harmonic function. We now describe

a situation where such a duality arises and is related to a kind of reversibility for

substochastic matrices; there will be additional duality discussion without reversibility

in subsection 5.5.
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First, we need several definitions. Given a positive t-invariant function h on S,

Doob’s h-transform of K, sometimes called the twisted kernel, is given by

K̃(x, y) =
K(x, y)h(y)

th(x)
.

Similarly, given a positive t-invariant measure σ on S, the time reversal with respect

to σ is

←−
K(x, y) =

σ(y)K(y, x)

tσ(x)
.

Both
←−
K and K̃ are stochastic matrices on S. If K̃ =

←−
K and the same eigenvalue t was

used in constructing both, then h is the dual of σ, and vice-versa.

We will call K reversible if the Kolmogorov criterion holds. That is, let x0, x1, . . . , xn

be a sequence of states in S with x0 = xn. K is reversible ifK(x0, x1)K(x1, x2) · · ·K(xn−1, xn) =

K(xn, xn−1) · · ·K(x1, x0) for all such sequences of states.

Proposition 7. Let K be irreducible and substochastic on S. The following are equiv-

alent:

(a) K is reversible.

(b) K(x0, x1)K(x1, x2) · · ·K(xn−1, xn) = K(xn, xn−1) · · ·K(x1, x0) where x0, x1, . . . , xn

is any sequence of states in S with x0 = xn.

(c) there exists a positive measure γ on S, which we will call the reversibility measure,

such that γ(x)K(x, y) = γ(y)K(y, x) for all x, y ∈ S.

If K̃ =
←−
K where both were computed using the same eigenvalue t, then K is reversible.

If K is reversible and σ is a t-invariant measure, then h(x) := σ(x)/γ(x) for x ∈

S defines the corresponding t-harmonic function. If K is reversible and h is a t-

harmonic function, then σ(x) := h(x)γ(x) for x ∈ S defines the corresponding t-

invariant measure. If K is reversible, σ is t-invariant, h is t-harmonic, and σ(x) =

h(x)/γ(x), then K̃ =
←−
K .

Remark 8. In the stochastic case, a constant function h is 1-harmonic so K̃ =
←−
K becomes the familiar K =

←−
K , though without the assumption of stationarity.

For example, consider a simple random walk on the integers that moves right with
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probability 0 < p < 1/2. Birth-death processes are reversible since they satisfy

Kolmogorov’s criterion, and for this process with h being a column vector of ones,

we have γ(x) = σ(x) = (p/(1−p))x. For this pair, K̃ =
←−
K , and the associated Markov

chains drift to negative infinity. There is another 1-harmonic function: ((1 − p)/p)x.

The corresponding 1-invariant measure must be obtained by multiplying by γ(x) giving

(. . . , 1, 1, 1, . . .). Both the time reversal and the twisted process for this pair drift to

plus infinity. The next section contains substochastic examples, but notice that a single

measure γ works for all eigenvalues t of K.

Proof. Statements (a) and (b) are equivalent by definition. The following parts of

the argument related to Kolmogorov’s criterion is quite similar to the argument in the

proof of Theorem 1.7 in [16] though without stationarity and for a substochastic matrix.

For any path x = (x0, x1, . . . , xn), let κ(x) := K(x0, x1)K(x1, x2) · · ·K(xn−1, xn). In

addition, let ←−x = (xn, xn−1, . . . , x0). If (b) holds and x0 = xn, then κ(x) = κ(←−x ).

Let y be some other path ending at ym. If (b) holds, x0 = y0, xn = ym, and both

paths have a positive probability of occurring, then

κ(x)/κ(←−x ) = κ(y)/κ(←−y ). (29)

To see this, let z be a path from z0 = xn = ym and ending at z` = x0 = y0 with

κ(z) > 0. Then κ(xz) = κ(x)κ(z) where xz denotes the path that initially follows

x to xn and then follows z back to x0. Similarly, κ(yz) = κ(y)κ(z). Under (b),

κ(xz) = κ(←−xz) = κ(←−z )κ(←−x ); hence, κ(x)/κ(←−x ) = κ(←−z )/κ(z). Similarly, κ(y)/κ(←−y ) =

κ(←−z )/κ(z), which gives (29).

Fix some state 0 and γ(0) > 0. Let x be a path from x0 = 0 to some state xn with

κ(x) > 0. If (b) holds, then define γ(xn) := γ(0)κ(x)/κ(←−x ). Under (b), it follows from

(29) that the definition of γ(xn) makes sense since the r.h.s. is the same for all such

paths. Consider a path that is one step longer: xxn+1. For this path,

γ(xn+1) = γ(0)
κ(xxn+1)

κ(←−−−−xxn+1)

= γ(0)
κ(x)K(xn, xn+1)

K(xn+1, xn)κ(←−x )

= γ(xn)
K(xn, xn+1)

K(xn+1, xn)
,

which means that (c) holds. Thus, (b) implies (c).
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To see that (c) implies (b), suppose that x is a path with x0 = xn and κ(x) > 0.

Since γ(0) = γ(0)κ(x)/κ(←−x ), Kolmogorov’s criterion holds.

To see that K̃ =
←−
K implies reversibility, where both were computed using the same

eigenvalue t,

K̃(x, y) =
←−
K(y, x)

K(x, y)h(y)

th(x)
=
σ(y)K(y, x)

tσ(x)

σ(x)K(x, y)

h(x)
=
σ(y)K(y, x)

h(y)
,

which means that (c) holds.

If K is reversible, then we know that (c) holds with γ(x). Since σ is t-invariant,

←−
K(x, y) =

σ(y)K(y, x)

tσ(x)

=
K(x, y)σ(y)/γ(y)

t(σ(x)/γ(x))
.

Since the sum over the l.h.s. is 1, σ/γ is t-invariant, and we have K̃ =
←−
K .

If K is reversible, then we know that (c) holds with γ(x). Since h is t-harmonic,

K̃(x, y) =
K(x, y)h(y)

th(x)

=
γ(y)h(y)K(y, x)

tγ(x)h(x)
.

Since the sum over the l.h.s. is 1, γh is t-invariant, and we have K̃ =
←−
K . The last

claim follows from a straightforward algebraic simplification. �

4. One idea that yields a handful of identities

We will exploit the following simple idea in computing various quantities of interest:

frequently, it can be easier to analyze a well-chosen twist or time reversal rather than

directly analyzing the process of interest. For example, suppose we are interested in

computing the probability of ever hitting state y starting from state x. If the well-

chosen twist or time reversal eventually hits y for certain when starting from x—that is,

if F̃ξ∗(x, y) = 1 or
←−
F ξ∗(x, y) = 1 in (30) below—then we have the hitting probabilities

for other twisted processes and time reversals.
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Initially, assume that the process of interest is a Markov chain starting in state x

that has transition matrix either
←−
K ξ or K̃ξ, where

←−
K ξ would be the time reversal of K

with respect a t-invariant measure σξ and K̃ξ would be the time reversal with respect to

t-harmonic function h. Assume that the quantities of interest are the probably of ever

hitting y starting from x, which will be denoted by
←−
F ξ(x, y) and F̃ξ(x, y), respectively.

Let either σ∗ξ be a (well-chosen) t∗-invariant measure, or let h∗ξ be a (well-chosen)

t∗-harmonic function. For simplicity, assume t∗ = t.

←−
K ξ(x, y) =

σξ(y)

σξ∗(y)

σξ∗(x)

σξ(x)

←−
K ξ∗(x, y) and K̃ξ(x, y) = K̃ξ∗(x, y)

hξ∗(x)

hξ(x)

hξ(y)

hξ∗(y)

←−
F ξ(x, y) =

σξ(y)

σξ∗(y)

σξ∗(x)

σξ(x)

←−
F ξ∗(x, y) and F̃ξ(x, y) = F̃ξ∗(x, y)

hξ∗(x)

hξ(x)

hξ(y)

hξ∗(y)
. (30)

The idea is simply to undo the twist or reverse and redo the twist or reverse with a

better measure or harmonic function. In some contexts, it might be advantageous to

mix the two: undoing the twist and then applying a time reversal or vice-versa.

The same idea can be exploited to obtain useful expressions for a different quantity

of interest: the generating function G(x,y)(z) defined in (4). Suppose that t = 1/z

and that σ∗ξ is a (well-chosen) t-invariant measure or h∗ξ is a (well-chosen) t-harmonic

function for K. Then

G(x,y)(z) =
σξ∗(y)

σξ∗(x)

←−
Gξ∗(y, x) (31)

= G̃ξ∗(x, y)
hξ∗(y)

hξ∗(x)
(32)

where
←−
Gξ∗(y, x) is the expected number of visits to x starting from y for the reversed

process with transition matrix
←−
K ξ∗ and G̃ξ∗(x, y) is the expected number of visits to y

starting from x for the twisted process with transition matrix K̃ξ∗ . The proofs of the

above equations are straightforward algebraic manipulations.

5. Examples

The examples are based on the Seneta and Vere-Jones’ [26] semi-infinite random walk

with absorption, which is the same as the gambler’s ruin problem in the Introduction.

Our primary example is a “hub-and-two-spoke example” that is depicted in Fig. 1. A

hub-and-one-spoke model, shown in Fig. 2, functions as a notational bridge between
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Figure 1: K is restricted to Z.

our primary example and the Seneta–Vere-Jones example. The hub-and-one-spoke

example is simply a relabeled version of the Seneta–Vere-Jones example. The notation

for these 3 examples will be the following:

Hub-and-two-spoke: Let X = {X0, X1, . . .} be a Markov chain with state space Z :=

{. . . ,−1, 0, 1, . . .} augmented with an absorbing state δ and transition matrix K

between states in Z as shown in Figure 1.

Hub-and-one-spoke: Let Y = {Y0, Y1, . . .} denote the Markov chain with state space

N0 augmented by an absorbing state δ, and Q will denote the transition matrix

between states in N0 as shown in Figure 2.

Seneta–Vere-Jones: Let Z = {Z0, Z1, . . .} be the Markov chain with state space N

augmented by an additional absorbing state 0. The strictly substochastic matrix

P gives the transition probabilities between states in N where

P =


0 b 0 0 0 · · ·

a 0 b 0 0 · · ·

0 a 0 b 0 · · ·
...

 (33)

Throughout, we assume that 0 < b < 1/2 < a < 1 and a+ b = 1.

These three examples can be coupled in the following natural way. Given the hub-

and-two-spoke model X, let Yn = |Xn| and Zn = (Yn + 1) for all n prior to the

(common) time of absorption ζ. The coupling makes it easier to take advantage of

results in Seneta–Vere-Jones [26]. For example, Kn(0, 0) = Qn(0, 0) = Pn(1, 1) so
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0

δ

1 2 . . .

b

a

b

a

b

a a

Figure 2: Q is restricted to N0.

all three matrices have the same convergence parameter R, and from Seneta–Vere-

Jones [26] R = 1/ρ where ρ = 2
√
ab. Next, we review a few results from Seneta–Vere-

Jones [26].

5.1. Seneta–Vere-Jones semi-infinite random walk with absorption

The matrix P given in (33) for the Seneta–Vere-Jones example [26] is irreducible,

strictly substochastic, and periodic with period 2. Let fn be the probability that the

first return to state 1 starting from 1 occurs at time n. Then the generating function

F (z) =
∑
n≥0 fnz

n =
(
1−
√

1− 4abz2
)
/2. Hence, the convergence parameter of P is

R = 1/ρ where ρ = 2
√
ab. Since F (R) = 1/2, G1,1(R) = 1/(1 − F (R)) = 2 < ∞, P

must be R-transient.

Seneta and Vere-Jones [26] prove a periodic Yaglom limit where the ρ-invariant QSD

on the r.h.s. is π∗ given in (1), which does not depend on the starting state x. From

(35) in [26] and from p. 430 of [26], we have the following asymptotic expressions as

n→∞

P 2n(x, y) ∼ x
(√

a

b

)x−1
y

(√
b

a

)y−1√
1

π

(4ab)n

n3/2
for y − x even (34)

P{ζ = n | Z0 = x} =
x

n

(
n

(n− x)/2

)
b(n−x)/2a(n+x)/2 for n− x even

∼ x · 2n+1

(2π)1/2(n)3/2
b

1
2 (n−x)a

1
2 (n+x) for n− x even (35)

where ζ is the time of absorption.
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5.2. Hub-and-two-spoke model: our primary example

At first, this two-spoke variation may seem pointless, but the point is to construct

a tractable model that has more than one way to escape from 0. Each spoke provides

a different escape route. We will show that the periodic Yaglom limit starting from

state x in the hub-and-two-spoke example is

πx(y) =


1−ρ
2a

(
1 + |y|+ x

1+|x|y
)(√

b
a

)|y|
for y ∈ Z \ {0}

1−ρ
a for y = 0.

(36)

For y > 0, πx(y) is strictly increasing in x—each starting state x has a different Yaglom

limit. For aperiodic examples, it suffices to look at either the even states or the odd

states and use the two-step transition matrix K2. For K2, the limiting conditional

distribution of being in state 2y for y > 0 is strictly increasing in the starting state 2x.

Theorem 1. The hub-and-two-spoke model with 0 < b < 1/2 < a < 1 and a + b =

1 is periodic with period d = 2 and has a periodic Yaglom limit πx given in (36).

Equivalently,

K2n(x, y)

K2n(x, S)
→ πx(y)

πx(2Z)
for x even and y even, (37)

K2n+1(x, y)

K2n+1(x, S)
→ πx(y)

πx(2Z + 1)
for x even and y odd,

K2n(x, y)

K2n(x, S)
→ πx(y)

πx(2Z + 1)
for x odd and y odd,

K2n+1(x, y)

K2n+1(x, S)
→ πx(y)

πx(2Z)
for x odd and y even (38)

where

πx(2Z) =
1

1 + ρ

πx(2Z + 1) =
ρ

1 + ρ
.

In the next two sections, we prove Theorem 1. To show that (37)–(38) hold, we

first look at the asymptotics of their denominators, and then the asymptotics for their

numerators. In the remainder of this section, we describe the ρ-invariant measures and

harmonic functions for the hub-and-two-spoke model.
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We leave it to the reader to show that the matrix K possesses a family of ρ-invariant

QSDs σξ indexed by ξ ∈ [−1, 1] and given by

σξ(y) =


1−ρ
2a (1 + |y|+ ξ y)

(√
b
a

)|y|
for y ∈ Z \ {0}

1−ρ
a for y = 0.

(39)

Thus, if the chain starts from state x, πx = σξ with ξ = x/(1 + |x|) is the periodic

Yaglom limit. The derivation of the asymptotics of K is given in the next sections.

By looking at σξ(1), it is clear that every member of the family is a different distribu-

tion. For each distribution, the correct amount of mass is lost to absorption: aσξ(0) =

1 − ρ. As ξ increases from −1 to 1, σξ(|y|) increases from ((1 − ρ)/(2a))(
√
b/a)|y| to

((1 − ρ)/(2a))(1 + 2|y|)(
√
b/a)|y|. When ξ = 0, the distribution is symmetric with

σ0(y) = σ0(−y). The mass σξ(y) + σξ(−y) = π∗(|y|+ 1) does not depend on ξ; π∗ was

defined in (1). Consequently, the mass on the even integers 2Z and the odd integers

2Z + 1 does not depend on ξ. Since

σξK(2Z) = ρ σξ(2Z) by ρ-invariance, and

σξK(2Z) = σξ(2Z + 1) by periodicity and nonabsorption,

we have

σξ(2Z) =
1

1 + ρ
, σξ(2Z + 1) =

ρ

1 + ρ

In addition to the ρ-invariant measures σξ, K also has ρ-harmonic functions hξ. A

function h ≥ 0, which we think of as a column vector with elements h(y) for y ∈ S, is

ρ-harmonic if Kh = ρh.

Equivalently, h is a nonnegative right eigenvector for the eigenvalue ρ = 1/R. In this

example, K has a family of nonnegative ρ-harmonic functions hξ indexed by ξ ∈ [−1, 1]:

hξ(y) := [1 + |y|+ ξy]

(√
a

b

)|y|
for y ∈ Z. (40)

Proposition 8. All ρ-invariant probability measures for the hub-and-two-spokes ex-

ample are in the family (39) and all positive ρ-harmonic functions are in the family

(40).
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Proof. To see that there are no other positive ρ-harmonic functions h with h(0) = 1,

notice that h(y) satisfies the difference equation bh(y + 1)− ρh(y) + ah(y − 1) = 0 for

y ∈ N. Since this difference equation is a linear, homogeneous, second order difference

equation with constant coefficients, we look at the roots of the characteristic equation

br2 − ρr + a to determine the general solution. Both roots are r =
√
a/b, so h(y) =

(c1 + c2y)ry spans the space of all solutions. Since h(0) = 1, we must have c1 = 1,

which we do in (40). For h(y) to be nonnegative, we need c2 ≥ 0. For y ≥ 0, that

means that (1 + ξ) = c2 ≥ 0 implying ξ ≥ −1. By symmetry, we need ξ ≤ 1 so that

h(y) is nonnegative for y < 0. Thus, (40) is the set of all positive harmonic functions

normalized to have h(0) = 1. A similar difference equation argument shows that σξ

for ξ ∈ [−1, 1] describes all ρ-invariant measures up to scalar multiples. �

In section 3 we described a duality that sometimes exists between ρ-invariant mea-

sures and ρ-harmonic functions. We now show that for each value of ξ ∈ [−1, 1] the

ρ-harmonic function hξ and the ρ-invariant measure σξ are linked. For the hub-and-

two-spokes example, the measure

γ(x) =


1−ρ
2a

(
b
a

)|x|
for x 6= 0

1−ρ
a for x = 0.

satisfies γ(x)K(x, y) = γ(y)K(y, x). From Prop. 7, the ρ-invariant measure linked with

the ρ-harmonic function hξ(x) would be hξ(x)γ(x), which simplifies to σξ(x).

5.2.1. Asymptotic behavior of the survival probability. For x even, K2n(x, S) = K2n−1(x, S).

Since Kn(−x, S) = Kn(x, S), also assume that x is nonnegative. Now,

K2n(x, S) = P{ζ > 2n | X0 = x}

=

∞∑
k=1

P{ζ = 2n+ 2k − 1 | X0 = x}

=

∞∑
k=1

P{ζ = 2n+ 2k − 1 | Z0 = x+ 1}.
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Since P{ζ = 2n+ 2k− 1 | Z0 = x+ 1} is asymptotically equivalent to the r.h.s. of (35)

after replacing n by 2n + 2k − 1 and x by x + 1 and since the equivalence is uniform

over k ∈ N (for a discussion of this condition, see (5.27) of [22]),

K2n(x, S) ∼
∞∑
k=1

(x+ 1)22n+2k

(2π)1/2(2n+ 2k − 1)3/2
b(2n+2k−x−2)/2a(2n+2k+x)/2

=
(x+ 1)

(2π)1/2

(√
a

b

)x
(4ab)n

(2n)3/2
1

b

∞∑
k=1

(4ab)k

(1 + (2k − 1)/(2n))3/2

∼ (x+ 1)

(2π)1/2

(√
a

b

)x
(4ab)n

(2n)3/2
4a

1− 4ab

= (x+ 1)

(√
a

b

)x
a

1− 4ab

1√
π

(4ab)n

n3/2
for even x ≥ 0 (41)

where the second from last step follows from using dominated convergence to show

that

lim
n→∞

∞∑
k=1

(4ab)k

(1 + (2k − 1)/(2n))3/2
=

∞∑
k=1

(4ab)k.

5.2.2. The periodic Yaglom limit of the hub-and-two-spoke model. In this section, we

show K corresponding to Figure 1 has a periodic Yaglom limit; that is, we establish

(36). Let x, y ≥ 0. From the coupling, we have

Qn(x, y) = Kn(x,−y) +Kn(x, y),

and we can determine the asymptotics of Q from the asymptotics of P given in (34)

that were derived in Seneta and Vere-Jones [26].

Similar to the classical ballot problem, there are two types of paths from x to y:

those that visit 0 and those that do not. From the reflection principle, any path from

x to y that visits 0 has a corresponding path from −x to y with the same probability

of occurring. Thus, if {0}K
n(x, y) denotes the probability of going from x to y in n

steps without visiting zero in between, we have

Kn(x, y) = {0}K
n(x, y) +Kn(−x, y) = {0}K

n(x, y) +Kn(x,−y).

From the coupling, {0}K
n(x, y) = Pn(x, y).

For x ≥ 0 and y ≥ 1,

Qn(x, y) = Kn(x, y) +Kn(x,−y).
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Hence

Kn(x, y) = Qn(x, y)−Kn(x,−y)

= Qn(x, y)−
[
Kn(x, y)− {0}Kn(x, y)

]
=
Qn(x, y) + {0}K

n(x, y)

2
. (42)

Similarly,

Kn(x,−y) =
Qn(x, y)− {0}Kn(x, y)

2
. (43)

5.2.3. Yaglom limits from even states to even. If either x is 0 or y is 0, then the

asymptotics of Kn(x, y)/Kn(x, S) can be obtained directly from the results in Seneta

and Vere-Jones [26] through the coupling Thus, (13) holds for k = 0.

Now, let x, y ≥ 1 and even. From the couplings,

Q2n(x, y) = P 2n(x+ 1, y + 1), {0}K
2n(x, y) = P 2n(x, y).

Since x− y is also even, (34) gives

Q2n(x, y) ∼ (x+ 1)

(√
a

b

)x
(y + 1)

(√
b

a

)y
1√
π

(4ab)n

n3/2

{0}K
2n(x, y) ∼ x

(√
a

b

)x−1
y

(√
b

a

)y−1
1√
π

(4ab)n

n3/2

Hence, using (42) and (41),

K2n(x, y)

K2n(x, S)
∼

(x+ 1)
(√

a
b

)x
(y + 1)

(√
b
a

)y
1√
π

(4ab)n

n3/2

2(x+ 1)
(√

a
b

)x a
1−4ab

1√
π

(4ab)n

n3/2

+

x
(√

a
b

)x−1
y

(√
b
a

)y−1
1√
π

(4ab)n

n3/2

2(x+ 1)
(√

a
b

)x a
1−4ab

1√
π

(4ab)n

n3/2

=
1− 4ab

2a

[
(y + 1) +

xy

x+ 1

](√
b

a

)y
(44)

=
1− ρ2

2a

(
1 + y +

xy

x+ 1

)(√
b

a

)y
. (45)
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We now argue that (13) holds for d = 2, k = 0 and S0 = 2Z with

π0
x(y) =


1−ρ2
2a

(
1 + |y|+ xy

|x|+1

)(√
b
a

)|y|
for y 6= 0 and even x, y,

1−ρ2
a for y = 0 and even x.

(46)

We are still assuming even x, y ≥ 1. Since π0
x(y) is the same as (45), we know that

(46) holds for even x, y ≥ 1. The asymptotics for −x to −y are the same as from x to

y, and π0
−x(−y) = π0

x(y) so (46) also holds in this case.

To handle from x to −y, we use (43) instead of (42), which causes a single sign

change, and the final result agrees with (46) in this case. The asymptotics from −x to

y are the same as from x to −y, and (46) gives the same result in both cases.

5.2.4. Yaglom limits from even states to odd. Instead of using a similar argument for

the asymptotics from even to odd, we use Proposition 3. Since (13) holds for k = 0,

Proposition 3 gives (13) for k = 1. Proposition 3 also gives π1
x, which is a probability

measure on the odd states S1 = 2Z−1 giving the asymptotics from even to odd. Next,

Proposition 3 gives us the ρ-invariant QSD πx for every even x. We leave it to the

reader to show that πx is given by (36). Hence, we have the asymptotics going to any

state as long as the starting state is even.

5.2.5. Yaglom limits starting from odd states. To finish determining the periodic Ya-

glom limit, we obtain the asymptotics starting from an odd state. Instead of direct

calculations like those that led to (44), We use Prop. 4. To do so, we need the function

ĥ0 defined in (21). The class S0 is the even states. Choose x0 = 0 to be the reference

state. From (41) and symmetry, it follows that ĥ0(x) = (|x|+ 1)
(√

a/b
)|x|

. Since the

assumptions of Prop. 6 hold, there exists a ρ-harmonic function ĥ that agrees with ĥ0

on S0 such that (28) holds. However, (40) describes all ρ-harmonic functions for K.

The only ρ-harmonic function that could agree with ĥ on S0 is h0, that is, hξ with

ξ = 0 in (40). Thus, ĥ = h0. Furthermore, since the assumptions of Prop. 6 hold, the

denominator of (24) simplifies to ρd−j ĥ(u).

Let u ∈ S1, that is, an odd state, and y ∈ S0. To make things easier, temporarily
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assume u ≥ 1 and y 6= 0. From (23),

π−1u (y) =
∑
x∈S0

wu,xπ
0
x(y)

=
aĥ(u− 1)

ρĥ(u)
π0
u−1(y) +

bĥ(u+ 1)

ρĥ(u)
π0
u+1(y)

=
au

2
√
ab(u+ 1)

√
b

a
π0
u−1(y) +

b(u+ 2)

2
√
ab(u+ 1)

√
a

b
π0
u+1(y)

=
u

2(u+ 1)
π0
u−1(y) +

u+ 2

2(u+ 1)
π0
u+1(y)

=
1− ρ2

2a

(
1 + |y|+

[
u

2(u+ 1)

u− 1

u
+

u+ 2

2(u+ 1)

u+ 1

u+ 2

]
y

)(√
b

a

)|y|
= π0

u(y)

where we used (46) several times. The case with y = 0 is much simpler and also

simplifies to π0
u(0). We leave the cases with u ≤ 1 to the reader. Thus, we have the

asymptotics starting from an odd state and going to an even state. Again, Prop. 3

allows us to extend the result to going to any state. Hence, we have the asymptotics

starting from any state and going to any state. Combining all of the results, we have

that (11) holds where πu(y) is given in (36) (though we would have to interchange

labels on S0 and S1 in (11) if the initial state were odd).

5.2.6. Rates of convergence and the starting state’s influence. One fear with Yaglom

limits is that by the time the transient conditional distribution becomes close to the

limiting conditional distribution, the probability of non-absorption will be so small

that the limit will be of little practical importance. To briefly address this fear, we

describe some empirical results where the dependence of the limiting distribution on

the initial state is apparent after a small number of steps (50 steps in Table 1) and the

non absorption probability is not ridiculously small (0.00047 in Table 1).

Suppose that b = 1/5, so a = 4/5 and ρ = 4/5. Also assume that the initial state is

X0 = 10. From (46), P10{X2n = 0 | ζ > 2n} → π0
10(0) = 0.45 and P10{X2n ∈ 2N | ζ >

2n} → 201/440 ≈ 0.46. The latter limit is the limiting conditional probability starting

from 10 of being a strictly positive, even integer after an even number of steps. Starting

from state 10, ξ = 10/11; asymptotically after a large, even number of steps, over 90%

of the probability mass is on the nonnegative, even integers. The remaining probability
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n Kn(10,0)
Kn(10,S)

Kn(10,2N)
Kn(10,S)

Kn(10,−2N)
Kn(10,S) Kn(10, S)

0 0.00 1.00 0.00 1.00

10 0.11 0.89 0.00 1.00

20 0.38 0.60 0.02 0.31

30 0.44 0.53 0.03 0.042

40 0.46 0.50 0.04 0.0050

50 0.46 0.49 0.05 0.00047

∞ 0.45 0.46 0.09 0.0

Table 1: Rates of convergence starting from state 10 with b = 1/5 and 2N = {2, 4, 6, . . .}.

mass, approximately 0.09, is on the strictly negative, even integers. Table 1 suggests

that at least in some cases the limiting conditional distribution might be giving some

information before the probability of non-absorption Kn(10, S) becomes ridiculously

smal1.

Table 1 also illustrates the long range influence of the starting state. The limiting

conditional probability of being in a strictly positive state is roughly 5 times larger

than the limiting conditional probability of being in a strictly negative state. If the

initial state had been zero, then the two limiting conditional probabilities would have

been equal. If the process had started in state -10, the third and fourth columns would

swap.

5.2.7. Domain of attraction paradox. The domain of attraction problem is to determine

which initial distributions lead to a particular QSD describing the limiting conditional

behavior. To make things concrete, consider our hub-and-two-spoke example in Fig. 1.

Suppose X0 = 6 and b = 1/5, which means a = 4/5 and the limiting conditional

behavior is described by π6. Then, X2 is 8 with probability b2, 6 with probability 2ab,

and 4 with probability a2. It might seem obvious that the distribution of X2 must be

in the domain of attraction of π6, but it is not even true. It may seem surprising, but

the limiting conditional behavior is quite different when these two distributions are

used as initial distributions even though there is no possibility of absorption in 2 steps

when starting from 6.
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If the initial distribution were 8 with probability b2(225/28) = 9/28, 6 with proba-

bility 2ab(25/16) = 1/2, and 4 with probability a2(125/448) = 5/28, then the limiting

behavior would be described by π6. This distribution is obtained by letting the mass

at y be

Knd(u, y)ĥ(y)∑
zK

nd(u, z)ĥ(z)
,

where nd = 2 and u = 6. Intuition for this choice is given in Remark 6. Other

distributions in the domain of attraction can be obtained by increasing n, but for our

hub-and-two-spoke example, we can do more.

If the support of X0 is finite, then the limiting conditional behavior is described by

σξ with ξ = E[X0/(|X0|+ 1)] where straightforward modifications need to be made to

the description of the limiting behavior if the support of X0 contains both even and odd

states. If the initial distribution were that of X2 above, then the limiting conditional

behavior would be described by σ6472/7875. However, if the initial distribution is either

X0 = 6 or the distribution on 4,6, and 8 with probabilities 5/28, 1/2, and 9/28, then

E[X0/(|X0|+ 1)] = 6/7, and σ6/7 = π6.

Thus, in the previous paragraph, we have completely described the domain of

attraction for our hub-and-two-spoke example for every ρ-invariant QSD σξ provided

the initial distribution has a finite support.

5.2.8. Harmonic functions arising from ratio limits. Suppose x, y are both even inte-

gers. From the asymptotic expression for K2n, it follows that

K2n(x, y)

K2n(0, y)
→ hξ(x)

hξ(0)
= hξ(x)

where hξ is the ρ-harmonic function given in (40) with ξ = y/(|y| + 1). Similarly, for

x odd and y even integers

K2n+1(x, y)

K2n(0, y)
→ ρ

hξ(x)

hξ(0)
.

We leave the other cases to the reader.

The above results are not surprising given the existence of the measure γ described
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in Prop. 7. For example if x, y are both even integers then

K2n(x, y)

K2n(0, y)
=
γ(0)

γ(x)

K2n(y, x)

K2n(y, 0)

→ γ(0)

γ(x)

π0
y(x)

π0
y(0)

=
γ(0)

πy(0)

πy(x)

γ(x)

=
hξ(x)

hξ(0)
.

5.2.9. Time reversals and h-transforms. In addition to the ρ-invariant measures for the

hub-and-two-spoke example, we have determined all nonnegative ρ-harmonic functions

for K. Since we have a multitude of ρ-invariant measures σξ and ρ-harmonic functions

hξ, we can define a multitude of time reversals

←−
K ξ(x, y) =

Rσξ(y)K(y, x)

σξ(x)
(47)

and a multitude of twisted processes (tilted processes, Doob’s h-transform, Derman–

Vere-Jones transform, change-of-measure)

K̃ξ(x, y) =
RK(x, y)hξ(y)

hξ(x)
(48)

Both
←−
K ξ and K̃ξ are stochastic matrices on S for every ξ ∈ [−1, 1]. However, depending

on the choice of ξ, the time reversal’s behavior can vary considerably, and similarly for

the twisted process. In the hub-and-two-spoke example, we have

P0{X1 = 1 | X1 ∈ S} =
K(0, 1)

K(0, S)
=

1

2
,

but, depending on the choice of ξ, K̃ξ(0, 1) and
←−
K ξ(0, 1) can take any value in the

interval [1/4, 3/4]. Even if the time until absorption is ζ > n and n is tending to ∞,

the initial state x still influences the state prior to absorption Xζ−1, and two steps

prior to absorption, Xζ−2, . . .

5.2.10. Escape probabilities for time reversals and h-transforms. Let
←−
X ξ = (

←−
X ξ

0,
←−
X ξ

1, . . .)

denote a Markov chain with transition matrix
←−
K ξ as given in (47). The transition

matrix
←−
K ξ is a birth-death chain on the integers that is stochastic and transient,

so
←−
X ξ must escape to either plus infinity or negative infinity. We now compute
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the probability of escaping to plus infinity starting from x; that is, we compute
←−
h ξ(x) := P{

←−
X ξ escapes to +∞ |

←−
X ξ

0 = x}.

Computing
←−
h ξ(x) is easiest in the two extreme cases. When ξ = 1,

←−
K1 on the

negative integers is a symmetric, simple random walk: for x < 0

←−
K1(x, x+ 1) =

σ1(x+ 1)K(x+ 1, x)

ρσ1(x)

=
((1− ρ)/2a)

(√
b/a
)|x+1|

b

ρ((1− ρ)/2a)
(√

b/a
)|x|

=
b

2
√
ab
√
b/a

= 1/2,

which means that the process cannot escape to negative infinity. Hence,
←−
h 1(x) = 1.

Similarly,
←−
h −1(x) = 0.

Now, we can handle the more interesting cases with −1 < ξ < 1. From the first

equation in (30) with ξ∗ = 1,

←−
F ξ(x, `) =

σξ(`)

σ1(`)

σ1(x)

σξ(x)

←−
F 1(x, `)

Since
←−
F 1(x, `) = 1 whenever ` > x and since the walk is nearest neighbor and transient,

letting `→∞ gives the desired escape probability

←−
h ξ(x) =

1 + ξ

2

σ1(x)

σξ(x)
,

which can be rewritten as

σξ(x)
←−
h ξ(x) =

1 + ξ

2
σ1(x). (49)

By considering the other extreme case with ξ∗ = −1 and letting `→ −∞, we obtain

σξ(x)(1−
←−
h ξ(x)) =

1− ξ
2

σ−1(x) (50)

Adding (49) and (50) yields the representation

σξ(y) =
1 + ξ

2
σ1(y) +

1− ξ
2

σ−1(y) for ξ ∈ [0, 1]. (51)

Now, we turn our attention to escape probabilities for the twisted processes. Let

X̃ξ = (X̃ξ
0 , X̃

ξ
1 , . . .) denote a Markov chain with transition matrix K̃ξ as given in (48).
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The transition matrix K̃ξ is a birth-death chain on the integers that is stochastic

and transient, so X̃ξ must escape to either plus infinity or negative infinity. We now

compute the probability of escaping to plus infinity starting from x; that is, we compute

h̃ξ(x) := P{X̃ξ escapes to +∞ | X̃ξ
0 = x}. Recall that hξ(x) was defined in (40).

Computing h̃ξ(x) is also easiest in the two extreme cases. When ξ = 1, K̃1 on the

negative integers is a symmetric, simple random walk, which means that the process

cannot escape to negative infinity. Hence, h̃1(x) = 1. Similarly, h̃−1(x) = 0.

Now, we can handle the more interesting cases with −1 < ξ < 1. From the second

equation in (30) with ξ∗ = 1,

F̃ξ(x, `) =
hξ(`)

h1(`)

h1(x)

hξ(x)
F̃1(x, `),

and F̃1(x, `) = 1 whenever ` > x. Since the walk is nearest neighbor and transient,

letting `→∞ gives the desired escape probability

h̃ξ(x) =
h1(x)

hξ(x)

1 + ξ

2

=
1 + |x|+ x

1 + |x|+ ξx

1 + ξ

2

The analogous result with ξ∗ = −1 and `→ −∞ is that

1− h̃ξ(x) =
h−1(x)

hξ(x)

1− ξ
2

.

Combining the two gives the representation

hξ(x) =
1 + ξ

2
h1(x) +

1− ξ
2

h−1(x) for ξ ∈ [−1, 1]. (52)

Although we have determined the escape probabilities for all h-transforms, the escape

probabilities when h = ĥ defined in (9) will play a fundamental role in Yaglom limits in

the R-transient case [11]. For our example, ĥ = h0 as described in subsubsection 5.2.5;

hence, the probability of escaping to positive infinity starting from state x for this

h-transform is

h̃0(x) =
1 + |x|+ x

2(1 + |x|)

In particular, the probability measure πx describing the periodic Yaglom limit start-

ing from x can be represented as the following convex combination of two extremal
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measures

πx = h̃0(x)π∞ + (1− h̃0(x))π−∞.

Thus, the escape probabilities corresponding to ĥ determine the proper weights.

5.2.11. Martin exit and entrance boundaries of the hub-and-two-spoke model. This sec-

tion depends heavily on the works of Dynkin [8] and Woess [32, 33]. Among other

things, the Martin exit boundary theory can characterize all positive harmonic func-

tions, and the Martin entrance boundary theory, all invariant measures of an irreducible

stochastic or substochastic matrix. Generally, there seems to be more interest in exit

boundary theory since it is useful in describing the limiting behavior of transient pro-

cesses; if left unspecified, Martin boundary theory usually refers to the exit boundary.

Similarly, the t-Martin exit and entrance boundary theory can be used to describe

all t-invariant harmonic functions and t-invariant measures. Again, there seems to

be more interest in the exit boundary theory. Papers that study the t-Martin exit

boundary of killed random walks include Ignatiouk-Robert [13, 14], Doney [6], Alili

and Doney [1], Raschel [24], and Lecouvey and Raschel [20]. Maillard [21] identifies

the t-invariant measures for the Bienaymé–Galton–Watson process t ≥ ρ. The ρ-

Martin entrance boundary for this process is trivial having a single point, and the

corresponding ρ-invariant measure is the classic limit of Yaglom. When the ρ-Martin

entrance boundary is trivial, it is impossible to have different (aperiodic or periodic)

Yaglom limits starting from different initial states.

Fix t ≥ ρ. Although G(x,y)(t) was defined in (4), the Martin boundary definitions

will be slightly less ugly if we also define Gt(x, y) :=
∑
n≥0(1/t)nKn(x, y). To construct

the t-Martin boundaries, we define ∗M and M∗, the t-Martin entrance and exit kernels

respectively using 0 as the reference state, as:

∗M(x, y) :=
Gt(x, y)

Gt(x, 0)
, and M∗(x, y):=

Gt(x, y)

Gt(0, y)
. (53)

Recall that K is R-transient, and 1/t ≤ R so ∗M and M∗ exist.

Let
∗
S̄ be the smallest compactification such that the t-Martin kernel ∗M(x, y)

extends continuously in x; i.e., x∞ ∈
∗
S̄ if there is a sequence xn ∈ S such that

∗M(xn, y) converges for every y. The limiting measure on S is denoted by ∗M(x∞, ·).
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Let ∂
∗
S̄ :=

∗
S̄\S be the boundary of

∗
S̄. ∂

∗
S̄ is called the t-Martin entrance boundary.

For more details, see of [33, Chapter 7]

Similarly let S̄∗ be the smallest compactification such that the t-Martin kernel

M∗(x, y) extends continuously in y; i.e., y∞ ∈ S̄∗ if there is a sequence yn ∈ S such that

M∗(x, yn) converges for every x. The limiting function on S is denoted by M∗(·, y∞).

Let ∂S̄∗ := S̄∗ \ S be the boundary of S̄∗. ∂S̄∗ is called the t-Martin exit boundary.

We are particularly interested in the ρ-Martin entrance boundary. Though the

ρ-Martin entrance boundary for substochastic matrices seems to have received little

attention, it is ideally suited for studying Yaglom limits starting from a fixed state

since the Yaglom limit (periodic or aperiodic) is a ρ-invariant QSD, and the ρ-Martin

entrance boundary describes all ρ-invariant measures.

For the hub-and-two-spoke example, we will show that the ρ-Martin exit and en-

trance boundaries both have two points {−∞,+∞}. If xn → −∞, then ∗M(xn, ·) →

σ−1(·)/σ−1(0); if xn → +∞, then ∗M(xn, ·) → σ1(·)/σ1(0). Thus, we can extend

∗M continuously to the boundary ∂
∗
S̄ = {−∞,+∞} by defining ∗M(−∞, ·) :=

σ−1(·)/σ−1(0) and ∗M(+∞, ·) := σ1(·)/σ1(0). Since the two limits differ, we cannot

extend M continuously with a smaller compactification. Similarly, we will show that

if yn → −∞, then M∗(·, yn) → h−1(·) =: M∗(·,−∞) and that if yn → +∞, then

M∗(·, yn) → h1(·) =: M∗(·,+∞), which shows that the ρ-Martin exit boundary is

∂S̄∗ = {−∞,+∞}.

To verify the claimed limits for the entrance boundary, let us derive a more conve-

nient expressions for the ρ-Martin entrance kernel given in (53). From (53) with t = ρ

and using (31),

∗M(x, y) =
σξ∗(y)

σξ∗(0)

←−
Gξ∗(y, x)
←−
Gξ∗(0, x)

=
σξ∗(y)

σξ∗(0)

←−
F ξ∗(y, x)
←−
F ξ∗(0, x)

←−
Gξ∗(x, x)
←−
Gξ∗(x, x)

=
σξ∗(y)

σξ∗(0)

←−
F ξ∗(y, x)
←−
F ξ∗(0, x)

.

Now, it is simple to compute the claimed limits for ∗M(xn, y). If xn → −∞, choose

ξ∗ = −1 so that ∗M(xn, y)→ σ−1(y)/σ−1(0). On the other hand, if xn → +∞, choose

ξ∗ = 1 so that ∗M(xn, y)→ σ1(y)/σ1(0).
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Similarly, the ρ-Martin exit kernel can be rewritten using (32) to obtain

M∗(x, y) =
F̃ξ∗(x, y)

F̃ξ∗(0, y)

hξ∗(x)

hξ∗(0)
,

which makes it easy to verify the claimed limits for M∗(x, yn).

For the hub-and-two-spoke model, we have the representation of all positive ρ-

invariant measures by (51) and all positive ρ-harmonic functions by (52). The mapping

where state x ∈ Z is mapped to x/(1 + |x|) is a homeomorphism that connects the

boundary points −∞ to −1 and +∞ with 1. With this homeomorphism, (52) is

the general integral representation of the ρ-harmonic functions over the ρ-Martin exit

boundary (see Theorem 6 in [8]) and (51) will be the integral representation of the

ρ-invariant measures over the ρ-Martin entrance boundary (see Theorem 11 in [8]).

From [27], we know that the hub-and-one-spoke model also has a unique quasi-

stationary distribution for every t ∈ (ρ, 1). We now argue that—similar to the situation

when t = ρ—the hub-and-two-spoke model has a family of quasi-stationary distribu-

tions for every t ∈ (ρ, 1), which can be normalized to give a t-invariant quasi-stationary

distribution.

Fix t ∈ (ρ, 1). Let 0 < s1 < s2 < 1 be the roots of the f(r) = ar2 − tr + b, which

must be real and distinct since the discriminant is positive. Define

σ−(x) =


sx1
2 for x ≥ 1

Cs
|x|
1 + s2

s2−s1 s
|x|
2 for x ≤ −1

1 for x = 0

where C = (1/2 − s2/(s2 − s1)). Even though C < 0, σ−(x) is strictly positive since

σ−(x) ≥ s
|x|
1 /2 for all x. In addition, σ− is summable since σ−(x) ≤ s

|x|
2 for all x.

Thus, σ− could be normalized to be a proper probability distribution. Furthermore,

σ− is a t-invariant measure for K. For x ≥ 2, the time reversal of K with respect to σ−

gives
←−
K(x, x−1) = b/(ts1) and

←−
K(x, x+1) = as1/t. For x ≥ 2, the drift b/(ts1)−as1/t

is negative if s1 <
√
b/a. But the smaller root s1 is less than

√
b/a since

f(
√
b/a) = (ρ− t)

√
b/a < 0.

Since the time reversal is 1-transient, the reversed process converges to −∞. Thus, the

t-Martin entrance boundary will have a point −∞, and the t-Martin entrance kernel at
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−∞ is σ−, which is a minimal t-invariant measure. By symmetry, σ+(x) := σ−(−x) is

a different minimal t-invariant measure corresponding to a different t-Martin boundary

point +∞. Since a nearest neighbor random walk on the integers could have at most

two points in the (full) Martin compactification and we have found two minimal t-

invariant measures, we have found the whole Martin compactification. Any convex

combination of the two minimal t-invariant measures is also a t-invariant measure.

Since the Martin boundary does not depend on t for t ∈ [ρ, 1), the Martin boundary

is stable [23].

5.3. Time until returning to state zero

We construct an example where the ratio limit ĥ(·) that is defined just before Prop. 6

is not ρ-harmonic; indeed, this example does not have any ρ-harmonic functions. This

example does not contradict Prop. 6 since the support of K(u, ·) will be infinite when

u = 0. Thus, the finite support assumption is needed in Prop. 6 and, in general, we

cannot limit attention to ρ-harmonic functions when determining ĥ(·). Despite the

above, we compute the limiting conditional distribution. In addition, if we consider

K2 with state space the even integers, we have an example with a Yaglom limit that

falls outside of Kesten’s sufficient conditions [18] since his condition (1.4u) does not

hold.

This simple example has several other interesting aspects. The ρ-Martin exit kernel

at +∞ is the same as the ρ-Martin kernel at state 0, which leads to a divergence

of approaches on whether to include +∞ in the boundary. Doob [7] and Kemeny,

Snell and Knapp [17] would not include the point +∞, while Hunt [12], Dynkin [8],

and Woess [32, 33] would include +∞ allowing S to remain discrete in the induced

topology; see the discussion at [33, page 189]. We follow the latter group.

The example is a variation on the hub-and-one-spoke example. Returns to state 0

in the hub-and-spoke model form a terminating renewal process. Define a sub-Markov

chain where–prior to absorption–the state is the remaining lifetime of this renewal

process; that is, the number of steps until being in state 0.

The state space is N0, and the substochastic transition matrix is (recycling the
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notation K)

K =


f1 f2 f3 f4 f5 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·
...


where fn is the coefficient of zn in the generating function F (z) given in the beginning

of subsection 5.1. For this example, 0 = f1 = f3 = f5 = . . . , F (R) = 1/2, F (1) = b,

and K is periodic with period 2.

If both the hub-and-one-spoke and the remaining lifetime examples start in state

0, then we can couple the two processes so that the times of visits to state 0 are

identical. It immediately follows that this example is also R-transient with ρ = 2
√
ab.

In addition, an asymptotic expression for P0{ζ > 2n} is given by the r.h.s. of (41) with

x = 0. This gives an asymptotic expression for the denominator of ĥ0(0) in (21) where

the subscript 0 denotes the class of even states and x0 = 0 is the reference state.

An asymptotic expression for the numerator can be found by noticing that P2x{ζ >

2n} = P0{ζ > 2n − 2x}. Simplifying gives ĥ0(2x) = R2x. Consequently, from the

definition of ĥ(·) immediately before Prop. 6, we have ĥ(x) = Rx for x ∈ N0. Even

though we have computed ĥ(·), we now show that ĥ(·) is not ρ-harmonic by showing

that K does not have any ρ-harmonic functions.

Solving Kh(x) = ρh(x) for x ≥ 1 gives h(x) = Rxh(0), which is looking like ĥ(·)

above. However, the equation Kh(0) = ρh(0) simplifies to ρF (R)h(0) = ρh(0), but

F (R) = 1/2. Thus, there is no non-zero solution, and K does not have any ρ-harmonic

functions. The function ĥ(x) = Rx is ρ-superharmonic.

We can compute the limiting conditional distribution for the remaining lifetime

example as follows. First, since

Kn(x, y)

Kn(x, S)
=
Kn−x(0, y)

Kn−x(0, S)
,

any limiting conditional distribution would not depend on the initial state, so we can

assume that the initial state is 0 without loss of generality. (This would also be true

if we looked at a two-spoke version of the remaining lifetime example.) Consequently,

should it exist, let πk to be the periodic Yaglom limit on Sk where S0 = 2N0 and S1
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is the odd positive integers analogous to (12) or (13). Similarly, should it exist, let π

denote the corresponding ρ-invariant QSD.

From the coupling argument, we know that

π0(0) = lim
n→∞

K2n(0, 0)

K2n(0, S)

=
1− ρ2

a

and if a periodic Yaglom limit exists, that

π(S0) = 1/(1 + ρ), π(S1) = ρ/(1 + ρ) and π(0) =
1− ρ
a

.

For y ≥ 1,

K2n(0, 2y) = K2n+2y(0, 0)−
y∑
k=1

K2n+2y−2k(0, 0)f2k

∼ 1√
π

(4ab)n+y

n3/2

[
1−

n∑
k=1

f2kR
2k

]

π0(2y) = ρ2y
1− ρ2

a

[
1−

y∑
k=1

f2kR
2k

]
where we used the coupling to see that Kn(0, 0) = Pn(1, 1), (34) with x = y = 1,

and (41) with x = 0. Since
∑
y≥1 ρ

2y
∑

1≤k≤y f2kR
2k = b/(1 − ρ2), it follows that

π0 is a proper probability measure on S0. Thus, for every x ∈ S0, the hypotheses of

Prop. 3 hold; hence, for every x ∈ S0, there is a ρ-invariant QSD. But K has a unique

ρ-invariant QSD, which is given by

π(y) = ρy
(1− ρ)

a

[
1−

y∑
k=1

fkR
k

]
for y ∈ N0,

(and is quite different from the analogous result for the hub-and-one-spoke model).

Consequently, the ρ-invariant QSD π must describe the (periodic) limiting conditional

behavior starting from any state x.

5.3.1. Exit and entrance boundaries for the time remaining until returning to zero For

the time until returning to zero example, we examine the ρ-Martin exit and entrance

boundaries. Unlike the hub-and-two-spoke model, the ρ-Martin entrance and exit

boundaries are not the same. In addition, the minimal ρ-Martin exit boundary and

the ρ-Martin exit boundary are not equal.
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To compute the ρ-Martin kernels, use (32) so that

Gρ(x, y) = G̃(x, y)
ĥ(x)

ĥ(y)

where ĥ(x) = Rx,

K̃ =


f̃1 f̃2 f̃3 f̃4 f̃5 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·
...


and f̃k = Rfkĥ(k − 1)/ĥ(0) = fkR

k. Notice that K̃(0, S) = F (R) = 1/2. To compute

G̃(x, y), notice that G̃(x, y) = 1{x ≥ y > 0}+ G̃(0, y) where 1{x ≥ y > 0} is 1 if x ≥

y > 0 and zero, otherwise. To compute G̃(0, y), also notice that the number of upward

excursions has a geometric distribution with parameter 1/2, and the expected number

of excursions is 1. Each excursion visits y with probability F̃y := f̃y+1 + f̃y+2 + . . .

Thus, G̃(0, y) = F̃y.

Now, the ρ-Martin exit kernel is

M∗(x, y) :=
Gρ(x, y)

Gρ(0, y)

=
ĥ(x)G̃(x, y)

ĥ(0)G̃(0, y)

= Rx
1{x ≥ y > 0}+ G̃(0, y)

G̃(0, y)

Since M∗(x, yn) → Rx as yn → ∞, there is a single point +∞ in the ρ-Martin exit

boundary—even though M∗(x,+∞) = M∗(x, 0) = Rx, a point is still added in the

compactification of the state space; see [33, page 189]. As a consequence, the minimal ρ-

Martin exit boundary is the empty set since there are no minimal ρ-harmonic functions;

see [33, page 207]. Thus, for this example, the ρ-Martin exit boundary and the minimal

ρ-Martin exit boundary are not the same.

5.4. Age example

Instead of considering the remaining lifetime as in the previous example, consider

the age where the age is the number of steps since being in zero prior to absorption.
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The state space is N0, and the substochastic transition matrix is (recycling the notation

K again)

K =


0 b 0 0 0 · · ·

r2 0 1− r2 0 0 · · ·

r3 0 0 1− r3 0 · · ·
...


where rj = fj/F̄j and F̄j = fj + fj+1 + . . . . The age example and the remaining

lifetime example can be coupled so that they are in zero at the same points in time

and have the same time of absorption if both start in state 0. Thus, the age example

is also R-transient with ρ = 2
√
ab. This example is also periodic with period 2 since

0 = r1 = r3 = · · ·

The age example seems nicer than the remaining lifetime example since the support

of K(u, ·) is finite for all states u. Nonetheless, K does not possess a ρ-invariant QSD.

From Prop. 3, it follows that (12) cannot hold. Thus, the age example does not have

a (periodic or aperiodic) Yaglom limit.

5.5. Duality without assuming reversibility

In section 3, we described a duality between t-invariant measures and t-harmonic

functions that relied on reversibility. We describe a generalization that does not rely

on reversibility.

For this duality to hold, we need the following two conditions:

• If ∗M(zn, y) converges to a minimal t-invariant measure σ for some sequence zn,

then M∗(x, zn) also converges to a minimal t-harmonic function h.

• If M∗(x, zn) converges to a minimal t-harmonic function h for some sequence zn,

then ∗M(zn, y) also converges to a minimal t-invariant measure σ.

A t-harmonic function h is minimal if h(0) = 1 and h ≥ h1 where h1 is also t-

harmonic implies that h1/h must be a constant; a minimal t-invariant measure is

defined analogously. The above two properties imply thatM∗ = ∗M whereM∗ is the

minimal t-Martin exit boundary [32, page 263–264] and ∗M is the minimal t-Martin

entrance boundary.
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Let σ be any t-invariant measure for K, and let h be any t-harmonic function. The

Poisson-Martin integral provides a unique representation of h [32, (24.18)] and σ:

h(x) =

∫
M∗

M∗(x, ·)dνh

σ(y) =

∫
∗M

∗M(·, y)dνσ.

When M∗ = ∗M, we can say that h and σ are duals of each other if νh = νσ in their

Poisson-Martin representations.

We show that this concept of duality includes the duality described in section 3

when K is reversible. Let γ be the reversibility measure of K. For the first part of

the argument, assume that h is a minimal t-harmonic function. Hence, there exists

a sequence of states zn such that M∗(x, zn) → M∗(x, z∞) =: h(x), and the unique

Poisson-Martin representation has νh being a point mass. We need to show that

∗M(zn, x)→ σ(x) := h(x)γ(x) and that σ is minimal to know that σ is the dual of h

under the generalized definition.

Now

∗M(zn, x) =
Gt(zn, x)

Gt(zn, 0)

=
γ(x)Gt(x, zn)/γ(zn)

γ(0)Gt(0, zn)/γ(zn)

=
γ(x)

γ(0)
M∗(x, zn)

→ γ(x)h(x) = σ(x).

In addition, σ is minimal. To see this, assume that σ ≥ σ1, which is also t-invariant.

Hence, h ≥ h1 where h1(x) = σ1(x)/γ(x). Since h1 is also t-harmonic, h/h1 is a

constant, but that means σ/σ1 is a constant, which means σ is minimal. Thus, σ must

be the dual of h under the generalized definition.

The second part of the argument is analogous to the first part except for starting

off with a minimal t-invariant measure σ and showing that h(x) = σ(x)/γ(x) is the

dual of σ.

From the first two parts of the argument, it follows that M∗ = ∗M and that

if z∞ ∈ M∗ then M∗(x, z∞) = ∗M(z∞, x)/γ(x). From the Poisson-Martin integral
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representation, it now follows that that the generalized definition of duality reduces to

h(x) = σ(x)/γ(x) when K is reversible.

6. Literature

Van Doorn and Pollett [28] survey the vast literature on, and the interconnections

among, Yaglom limits, limiting conditional distributions, QSDs and t-invariant mea-

sures. We discuss only the most relevant papers, and we consider only irreducible

chains. Many papers are set in continuous time, but most results for continuous time

processes have an obvious analog in discrete time [28, Section 3.4].

In the impressive paper Seneta and Vere-Jones [26], the authors show that the

Yaglom limit does not depend on the initial state in the R-positive case, but they

allow for the possibility that a Yaglom limit might depend on the starting state in the

R-transient case. Seneta and Vere-Jones analyze several examples including the killed

simple random walk on the nonnegative integers that we exploited and the Bienaymé-

Galton-Watson process.

That the Yaglom limit might depend on the starting state seems to have been

overlooked for two reasons: first, in all of the analyzed examples with Yaglom limits

starting from a fixed state, the limit did not depend on the starting state; second, it

seems like there should be a coupling argument showing that the limit does not depend

on the starting state.

The connection between the ρ-Martin entrance boundary and Yaglom limits for

ρ 6= 1 seems to have been largely overlooked except for Maillard [21], who studies the

minimal t-Martin entrance boundary for t ≥ ρ for the subcritical Bienaymé-Galton-

Watson process. He finds that the ρ-Martin entrance boundary is trivial and that there

is a unique ρ-invariant QSD, which is the classic Yaglom limit. Breyer [3] made the

profound connection between the space-time Martin entrance boundary and Yaglom

limits but failed to realize that convergence to the space-time boundary could fail

as in Kesten’s example [18] (see below). Lalley [19] identifies the space-time Martin

boundary of a nearest neighbor random walk (stochastic transition matrix) on a class

of homogeneous trees.

Seneta and Vere-Jones [26] mention but do not pursue the domain of attraction



48 R. D. Foley and D. R. McDonald

problem. Most of the domain of attraction work has been concerned with situations

where there is a unique t-invariant distribution for each t ∈ [ρ, 1), and the question is

which initial distributions are in the domain of attraction of a particular t-invariant

distribution; see van Doorn [27] and Villemonais [31]. This is slightly different than

subsubsection 5.2.7 where we have many ρ-invariant distributions, and we determine

which initial distributions with a finite support are in the domain of attraction of a

given ρ-invariant QSD.

The most amazing example appears in H. Kesten’s tour de force [18]. Certainly,

Kesten was aware that the Yaglom limit could depend on the starting state, but he

does not even bother to mention it. Instead, he focuses on constructing an example of

a sub-Markov chain possessing most every nice property possible including having at

least one ρ-invariant QSD, but fails to have a Yaglom limit! Our far more pedestrian

example has a different Yaglom limit for every starting state. Kesten’s example and

ours are similar. The only difference is that Kesten allows the process to stay in each

state x with probability rx. Once the process leaves a state, the transition probabilities

are identical to our example. By carefully choosing the values of rx, Kesten constructs

an example where P{Xn > 0 | X0 = 0, Xn ∈ S} oscillates as n increases. Hence the

Yaglom limit fails. Kesten [18] also gives general conditions guaranteeing the existence

of a Yaglom limit that does not depend on the starting state but this result depends

on conditions ensuring the uniqueness of the ρ-invariant probability or equivalently the

triviality of the ρ-Martin entrance boundary.
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