The Role of Bathhouses and Sex Clubs in HIV and STD Transmission: Findings from a Mathematical Model

Daniel Faisso1, Julie Swann1, Paul Griffin1, Thomas Gift2

1Georgia Institute of Technology, School of Industrial and Systems Engineering, Atlanta, GA
2Centers for Disease Control and Prevention, Atlanta, GA

The findings and conclusions in this presentation have not been formally disseminated by the CDC and should not be construed to represent any agency determination or policy.

Background

- HIV and STD rates in MSM
 - HIV incidence in MSM increasing
 - Syphilis and gonorrhea in MSM up, as well
 - Studies show lower condom usage rates now vs. 1980s/1990s

- Bathhouses and sex clubs
 - Implicated in original HIV epidemic
 - May be facilitating HIV/STD transmission now
 - Some have called for them to be closed
 - Others suggest closure would have no effect
Research Question

- How would closing bathhouses affect HIV transmission in urban areas?

Methodology

- Bernoulli Process Model developed by Pinkerton and Abramson, 1998
- Each sex act is treated as an independent Bernoulli trial
- Probability calculations depend on number of acts, HIV prevalence, condom usage, etc.
Data

- Survey Data from the 1997 **Urban Men’s Health Study**
- Conducted by the Center for AIDS Prevention Studies (CAPS) at the University of California at San Francisco
- MSM in New York, San Francisco, Los Angeles, and Chicago
- 2881 male responses
- 855 variables

Sample and Subpopulations

- Entire sample
Sample and Subpopulations

- Entire sample
- Those who go to bathhouses & those who do not
- Those who have main partners & those who do not

Bathhouse patrons

Non-Bathhouse

29.6% 70.4%

Main
No Main
Main
No Main

45% 55% 53% 47%
Sample and Subpopulations

- Entire sample
- Those who go to bathhouses & those who do not
- Those who have main partners & those who do not
- Those who are HIV-infected & those who are not

<table>
<thead>
<tr>
<th>Bathhouse patrons</th>
<th>Non-Bathhouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>No Main</td>
</tr>
<tr>
<td>HIV+</td>
<td>HIV-</td>
</tr>
<tr>
<td>22.2%</td>
<td>77.8%</td>
</tr>
<tr>
<td>72.1%</td>
<td>83.0%</td>
</tr>
</tbody>
</table>

Sample and Subpopulations

- Entire sample
- Those who go to bathhouses & those who do not
- Those who have main partners & those who do not
- Number of non-main sex acts last year*†

<table>
<thead>
<tr>
<th>Bathhouse patrons</th>
<th>Non-Bathhouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>No Main</td>
</tr>
<tr>
<td>64.1</td>
<td>94.7</td>
</tr>
</tbody>
</table>

* sig. diff. between bathhouse and non-bathhouse at p < 0.05
† sig. diff. between main and no main (within each type) at p < 0.05
^ sig. diff. between HIV+ and HIV- (within each type) at p < 0.05
Sample and Subpopulations

- Entire sample
- Those who go to bathhouses & those who don’t
- Those who have main partners & those who don’t
 - Number of non-main sex acts last year*†^
 - % condom use with non-main partners*

<table>
<thead>
<tr>
<th></th>
<th>Bathhouse patrons</th>
<th>Non-Bathhouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>64.1</td>
<td>8.8</td>
</tr>
<tr>
<td>No Main</td>
<td>94.7</td>
<td>34.0</td>
</tr>
<tr>
<td>% condom use</td>
<td>76%</td>
<td>83%</td>
</tr>
</tbody>
</table>

* sig. diff. between bathhouse and non-bathhouse at p < 0.05
† sig. diff. between main and no main (within each type) at p < 0.05
^ sig. diff. between HIV+ and HIV- (within each type) at p < 0.05

Additional Statistics

- Number of contacts with main partner:
 - 34.65
- % Condom usage with main partners:
 - 58%
- Approx. 22% of bathhouse patrons’ non-main sex acts are in the bathhouse.
 - Estimate 65% non-main sex acts are with BH patrons when BH open
Model

• Individual’s probability of acquiring HIV is:

$$P_{xm,ynz} = 1 - \left[1 - \pi \left[1 - (1 - \beta \alpha)^{xm(1 - \alpha)^{(1-x)m}}\right] \right]$$

- \(m \) acts with main partner,
- \(x\% \) condom usage

$$\times \left[1 - \pi_{BH} \beta \alpha)^{y^{zn}(1 - \pi_{BH} \alpha)^{(1-y)^{zn}}\right]$$

- \(x\% \) condom usage, \(BH \) partners only

$$\times \left[1 - \pi_{NB} \beta \alpha)^{y^{(1-z)n}(1 - \pi_{NB} \alpha)^{(1-y)(1-z)^{n}}}\right]$$

- \(x\% \) condom usage, \(Non-BH \) partners only

\(\alpha \) = per act probability of transmission, unprotected

\(\beta \alpha \) = per act probability of transmission, protected

\(\pi \) = HIV prevalence

Model cont’d

• Different parameters for each subpopulation

• Average number of total HIV infections

$$\sum (P_{x|m_{i},y_{i}|n_{i}|z_{i}} \times size \ of \ subpopulation \ i)$$

• Extended similarly to include syphilis
Assumptions

- Unprotected per act infection probability
 - $\alpha = 0.01$
- Condom effectiveness: 90%
 - $(\beta = 0.1)$
- Syphilis prevalence = .5%, uniformly distributed.
 - Sensitivity range: .5%-5%
- Impact of Syphilis on HIV transmission is to multiply infectivity by 3.
 - Sensitivity range: 3-15
HIV Attack Rate

20 40 60 80 100
% BH with BH

BH Condom 0.75
BH Condom 0.8
BH Condom 0.85
Bathhouse Closed
Bathhouse Open

HIV Attack Rate

20 40 60 80 100
% BH with BH

BH Condom 0.75
BH acts lost 25%
BH acts lost 50%
BH acts lost 75%
BH acts lost 100%
Bathhouse Closed
Bathhouse Open
Limitations

• # of acts and condom usage based only on last four partners
• Single-stage model is short term prediction
• Does not capture secondary infection effects
• Does not differentiate between acute and chronic HIV infection
• Survey data only includes city residents

Conclusions and Implications

• Suggests if BH patrons have same # of sex acts, then HIV attack rate may go up with BH closure
 – Difference of open vs closed BH is relatively small compared to effect from changes in condom usage and number of acts
• If # sex acts decrease because of closure, attack rate may go down
• Leaving BH open facilitates intervention programs, such as increasing condom usage
Acknowledgements

• Brian Kolodziejski, CDC
• Lance Pollack and Joseph Catania, University of California, San Francisco
 – UMHS 1997 primarily supported by National Institute of Mental Health grant MH54320