Layout Design

Some of these slides are courtesy of Professor Paul Griffin

Post Woods Apartment Complex
Hospital floor plan

Acute Hospital - First Floor

Guildcrest Homes – Factory floor plan
Furniture parts warehouse

Cross-dock layout

Issues in facilities design

- What equipment should be purchased?
- How facilities should be organized?
 - Finding the locations of departments within some specified boundary
- Where facilities should be located?

Why is this important?
- 8% of the U.S. gross national product has been spent on new facilities annually since 1955
- 20-50% of total operating expenses in manufacturing are attributed to material handling costs

Layout

- Definition - How to best locate a facility’s resources with respect to each other in order to maximize the firm’s objectives.
Possible Objectives

- Efficient flow of people/materials/goods
- Minimize costs
 - materials handling
 - capital
 - maintenance
- Improved utilization (people, equipment, space, energy)
- Flexibility (process, volume, routing, product)
- Maximize throughput
- etc

Possible Constraints

- Financial
- Space
- Legal/Regulations
- Safety
- Historical/Cultural
- Physical (noise, dust, vibration)
Types of layouts

- Fixed position layout
 - Ships, aircraft, rockets, etc.

- Product layout
 - Machines are organized to conform to the sequence of operations
 - High volume, standardized/mass production
Types of layouts

- Process layout
 - Group similar machines, having similar functions
 - Common for small-to-medium volume manufacturers, e.g., job-shop
 - Effective when there is a variation in the product mix
Types of layouts

- Group technology layout
 - Machines are grouped into machine cells
 - Each cell corresponds to a “family” (or a small group of families) of parts
 - Appropriate for large firms producing a wide variety of parts in moderate to high volumes
Types of layouts

- Group technology layout

 Benefits
 - Reduced WIP
 - Reduced setup times
 - Reduced material handling costs
 - Better scheduling

 Drawbacks
 - How to identify suitable part families?
 - Possible duplication of some machines
 - Response to the change in product mix, design, and demand patterns
Flow analysis

- It is important for a layout designer to have an understanding of the (required) flow within the facility
 - Horizontal flow
 - Vertical flow

From-To-Chart

- Used to describe the flow between departments for an “existing” layout
 - Distances between departments
 - Number of material handling trips per day
 - Total cost of material handling trips per day

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Connectedness-Tile Adjacencies

4-adjacent

8-adjacent

Connectedness-Definitions

- Departments are 4-connected if a path exists between any two tiles in the department using 4-adjacencies
- Departments are 8-connected if a path exists between any two tiles in the department using 8-adjacencies
- Note: It is usually required for departments to be 4-connected
Example

Suppose the departmental areas are:

<table>
<thead>
<tr>
<th>Department</th>
<th>Area (sq.ft.)</th>
<th>Tiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8,000</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6,000</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8,000</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4,000</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6,000</td>
<td>3</td>
</tr>
</tbody>
</table>

Assume

• each tile is 2000 sq. ft.
• facility is 4x4 tiles (32,000 sq.ft.)

Two possible 4-connected alternatives

Which of these two alternatives is better?
Evaluation Techniques

- In order to pick the “best” set of alternatives, we must have an evaluation strategy. Some popular methods are:
 - Centroid Method
 - Graph Method
 - Adjacency Method
- Let SCORE denote the objective function value

Evaluation using the centroid method

- Objective: Minimize total travel (material handling) cost
- We need to fill the from-to charts for
 - Distance
 - Number of trips per period
 - Cost to move each unit of flow per unit distance
Calculating the Distance Between Departments

What is the distance between departments 1 and 2?

Idea: find the “center” or “centroid”, i.e., an (x,y) coordinate for each department.

Centroid

- The centroid for department j is computed from:

\[C_j^X = \frac{\sum_{i=1}^{h} i x_i}{n} \]

\[C_j^Y = \frac{\sum_{i=1}^{v} i y_i}{n} \]

where

- \(x_i \) is the number of tiles allocated to the department in horizontal position \(i \)
- \(y_i \) is the number of tiles allocated to the department in vertical position \(i \)
- \(h \) is the horizontal width
- \(v \) is the vertical height
- \(n \) is the number of tiles for the department
Centroid Example

For department 1:
\[C_1^x = \frac{1(1) + 2(2) + 1(3)}{4} = 2 \]
\[C_1^y = \frac{3(1) + 1(2)}{4} = 1.25 \]

For department 2:
\[C_2^x = \frac{3(3)}{3} = 3 \]
\[C_2^y = \frac{1(2) + 1(3) + 1(4)}{3} = 3 \]

Distance Metrics

- **Euclidean** \(D_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \)
- **Rectilinear** \(D_{ij} = |x_i - x_j| + |y_i - y_j| \)
- **Tchebyshev** \(D_{ij} = \max \{|x_i - x_j|, |y_i - y_j|\} \)
- Choice of metric depends on the application
Example: Distance between 1 and 2

- Euclidean
 \[D_{12} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(2 - 3)^2 + (1.25 - 3)^2} = 2.016 \]

- Rectilinear
 \[D_{12} = |x_1 - x_2| + |y_1 - y_2| = |2 - 3| + |1.25 - 3| = 2.75 \]

- Tchebyshev
 \[D_{12} = \max \{|x_1 - x_2|, |y_1 - y_2|\} = \max \{|2 - 3|, |1.25 - 3|\} = 1.75 \]

From-To-Chart: Number of trips per day (flow)

<table>
<thead>
<tr>
<th>from</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>X</td>
<td>20</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>30</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>-</td>
<td>2</td>
<td>X</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>20</td>
<td>-</td>
<td>10</td>
<td>X</td>
</tr>
</tbody>
</table>

Using the distance between any pair of departments, and the flow, we can compute the total distance traveled per day.
From-To-Chart: Cost of traveling one unit of distance between the departments

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>X</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>X</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>X</td>
</tr>
</tbody>
</table>

Using the total distance traveled per day and the cost of traveling one unit of distance, we can compute the daily total cost of traveling (material handling) between the departments.

Activity relationship chart

The activity relationship chart is constructed/modified by considering qualitative information:

- **A** - absolutely necessary (<5%)
- **E** - especially important (<10%)
- **I** - important (<15%)
- **O** - ordinary importance (<20%)
- **U** - unimportant (>50%)
- **X** - not desirable (<5%)
Example

<table>
<thead>
<tr>
<th>Dept.</th>
<th>Space (sqft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40,000</td>
</tr>
<tr>
<td>2</td>
<td>20,000</td>
</tr>
<tr>
<td>3</td>
<td>10,000</td>
</tr>
<tr>
<td>4</td>
<td>20,000</td>
</tr>
</tbody>
</table>

Assume: facility is square, is 90,000 sq.ft., departments must be 4-connected, rectilinear metric, A=6, E=4, I=2, O=1, U=0, X=-10 (e.g., Rel(1,2)=6, Rel(2,4)=4)

Example continued

Potential layout

```
1 3 2
1 1 2
1 4 4
```
Centroid Method

- Compute the centroid for each department.
- Compute distance between each pair of departments (D(i,j)).
- Compute SCORE as
 \[\text{SCORE} = 0; \]
 \[\text{for } i = 1 \text{ to } \# \text{ of departments do} \]
 \[\text{for } j = (i+1) \text{ to } \# \text{ of departments do} \]
 \[\text{SCORE} = \text{SCORE} + D(i,j) \times \text{Rel}(i,j); \]
- In this case we want to minimize SCORE.

Example continued

Potential layout

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Centroids:

<table>
<thead>
<tr>
<th>Dept.</th>
<th>CX</th>
<th>CY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.25</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Centroid evaluation

Relationships

\[
\begin{array}{cccc}
1 & 6 & & \\
2 & 4 & 1 & \\
3 & 2 & 4 & \\
4 & & -10 & \\
\end{array}
\]

Rectilinear Distances

\[
\begin{array}{cccc}
1 & 2.25 & & \\
2 & 1.75 & 1.5 & \\
3 & & 2.5 & 2 \\
4 & & & 2.25 \\
\end{array}
\]

\[
\text{SCORE} = 6(2.25)+4(1.75)+1(2.25)+2(1.5)+4(2)-10(2.5) = 8.75
\]

Graph Method

- Construct a graph where each node corresponds to a department
- Draw an edge between two nodes if they are adjacent in the layout.
- Weight each edge by the number of 4 (or 8) adjacencies times the relationship for that edge.
- \(\text{SCORE} = \text{sum of the edge weights.} \)
- We want to maximize \(\text{SCORE} \)
Graph evaluation

Potential layout

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Relationships

```
1  6  4  1
2  4
3  2
4  -10
```

SCORE = 22