Vehicle Routing and Scheduling

Martin Savelsbergh
The Logistics Institute
Georgia Institute of Technology
Vehicle Routing and Scheduling

Part I:
Basic Models and Algorithms
Introduction

- Freight routing
 - routing of shipments
- Service routing
 - dispatching of repair technicians
- Passenger routing
 - transportation of elderly
Freight Routing (LTL)

- pickup and delivery to and from end-of-line terminal
- shuttle from end-of-line terminal to regional distribution center
- transportation between distribution centers
 - rail
 - sleeper teams
 - single driver
LTL Linehaul Network

- DCs
- EOLs
- Customers
Origin-Destination Route

Origin

Pickup and delivery

EOL

Linehaul scheduling

DC

Shuttle scheduling

Destination
Routing and Scheduling

- Routing and scheduling does not follow a single “one-size-fits-all” formula. Routing and scheduling software must usually be customized to reflect the operating environment and the customer needs and characteristics.
Models

- Traveling Salesman Problem (TSP)
- Vehicle Routing Problem (VRP)
- Vehicle Routing Problem with Time Windows (VRPTW)
- Pickup and Delivery Problem with Time Windows (PDPTW)
Traveling Salesman Problem

- In the TSP the objective is to find the shortest tour through a set of cities, visiting each city exactly once and returning to the starting city.
- Type of decisions:
 - routing
Traveling Salesman Problem
Vehicle Routing Problem

- In the VRP a number of vehicles located at a central depot has to serve a set of geographically dispersed customers. Each vehicle has a given capacity and each customer has a given demand. The objective is to minimize the total distance traveled.

- Type of decisions:
 - assigning
 - routing
Vehicle Routing Problem
Vehicle Routing Problem with Time Windows

- In the VRPTW a number of vehicles is located at a central depot and has to serve a set of geographically dispersed customers. Each vehicle has a given capacity. Each customer has a given demand and has to be served within a given time window.

- Type of decisions:
 - assigning
 - routing
 - scheduling
Vehicle Routing Problem with Time Windows
Pickup and Delivery Problem with Time Windows

- In the PDPTW a number of vehicles has to serve a number of transportation requests. Each vehicle has a given capacity. Each transportation request specifies the size of the load to be transported, the location where it is to be picked up plus a pickup time window, and the location where it is to be delivered plus a delivery time window.

- Type of decisions:
 - assigning
 - routing
 - scheduling
Pickup and Delivery Problem with Time Windows

△ Pickup
○ Delivery
Pickup and Delivery Problem with Time Windows

- Pickup
- Delivery
Routing and Scheduling

- Objectives
 - minimize vehicles
 - minimize miles
 - minimize labor
 - satisfy service requirements
 - maximize orders
 - maximize volume delivered per mile
Routing and Scheduling

- Practical considerations
 - Single vs. multiple depots
 - Vehicle capacity
 - homogenous vs. heterogenous
 - volume vs. weight
 - Driver availability
 - Fixed vs. variable start times
 - DoT regulations (10/1, 15/1, 70/8)
Routing and Scheduling

- Practical considerations (cont.)
 - Delivery windows
 - hard vs. soft
 - single vs. multiple
 - periodic schedules
 - Service requirements
 - Maximum ride time
 - Maximum wait time
Routing and Scheduling

- Practical considerations (cont.)
 - Fixed and variable delivery times
 - Fixed vs. variable regions/route
Recent Variants

- Dynamic routing and scheduling problems
 - More and more important due to availability of GPS and wireless communication
 - Information available to design a set of routes and schedules is revealed dynamically to the decision maker
 - Order information (e.g., pickups)
 - Vehicle status information (e.g., delays)
 - Exception handling (e.g., vehicle breakdown)
Recent Variants

- Stochastic routing and scheduling problems
 - Size of demand
 - Travel times
Algorithms

- Construction algorithms
- Improvement algorithms
- Set covering based algorithms
Construction Heuristics

- Savings heuristic
- Insertion heuristics
Savings

$Savings\ s(i,j) = c(i,0) + c(0,j) - c(i,j)$
Savings Heuristic (Parallel)

- Step 1. Compute savings $s(i,j)$ for all pairs of customers. **Sort savings.** Create out-and-back routes for all customers.

- Step 2. Starting from the top of the savings list, determine whether there exist two routes, one containing $(i,0)$ and the other containing $(0,j)$. If so, merge the routes if the combined demand is less than the vehicle capacity.
Savings Heuristics (Sequential)

- Step 1. Compute savings $s(i,j)$ for all pairs of customers. Sort savings. Create out-and-back routes for all customers.
- Step 2. Consider route $(0,i,\ldots,j,0)$ and determine the best savings $s(k,i)$ and $s(j,l)$ with routes containing $(k,0)$ and $(0,l)$. Implement the best of the two. If no more savings exist for this route move to the next.
Savings Heuristic - Enhancement

- Route shape parameter
 \[s(i,j) = c(i,0) + c(0,j) - \lambda \ c(i,j) \]

- The larger \(\lambda \), the more emphasis is placed on the distance between customers being connected
Insertion

Initial

Intermediate

Final
Insertion Heuristics

- Start with a set of unrouted stops
- Are there any unrouted stops?
 - Yes: Select an unrouted stop
 - Insert selected stop in current set of routes
 - No: Done
Nearest addition

- **Selection:**
 - If partial tour T does not include all cities, find cities k and j, j on the tour and k not, for which $c(j,k)$ is minimized.

- **Insertion:**
 - Let $\{i,j\}$ be either one of the two edges involving j in T, and replace it by $\{i,k\}$ and $\{k,j\}$ to obtain a new tour including k.
Nearest Insertion

- **Selection:**
 - If partial tour T does not include all cities, find cities k and j, j on the tour and k not, for which \(c(j,k) \) is minimized.

- **Insertion:**
 - Let \(\{i,j\} \) be the edge of T which minimizes \(c(i,k) + c(k,j) - c(i,j) \), and replace it by \(\{i,k\} \) and \(\{k,j\} \) to obtain a new tour including k.
Farthest Insertion

- Selection:
 - If partial tour T does not include all cities, find cities k and j, j on the tour and k not, for which $c(j,k)$ is maximized.

- Insertion:
 - Let $\{i,j\}$ be the edge of T which minimizes $c(i,k) + c(k,j) - c(i,j)$, and replace it by $\{i,k\}$ and $\{k,j\}$ to obtain a new tour including k.
Cheapest Insertion

- **Selection:**
 - If partial tour T does not include all cities, find for each k not on T the edge $\{i,j\}$ of T which minimizes $c(T,k) = c(i,k) + c(k,j) - c(i,j)$. Select city k for which $c(T,k)$ is minimized.

- **Insertion:**
 - Let $\{i,j\}$ be the edge of T for which $c(T,k)$ is minimized, and replace it by $\{i,k\}$ and $\{k,j\}$ to obtain a new tour including k.
Worst case results

- Nearest addition: 2
- Nearest insertion: 2
- Cheapest insertion: 2

- Farthest insertion:
 - > 2.43 (Euclidean)
 - > 6.5 (Triangle inequality)
Implementation

- Priority Queue
 - insert(value, key)
 - getTop(value, key)
 - setTop(value, key)

- k-d Tree
 - deletePt(point)
 - nearest(point)
Implementation

Tree->deletePt(StartPt)
NNOut[StartPt] := Tree->nearest(StartPt)
PQ->insert(Dist(StartPt, NNOut(StartPt)), StartPt)
loop n-1 time
 loop
 PQ->getTop(ThisDist, x)
 y := NNOut[x]
 If y not in tour, then break
 NNOut[x] = Tree->nearest(x)
 PQ->setTop(Dist(x, NNOut[x]), x)
 Add point y to tour; x is nearest neighbor in tour
 Tree->deletePt(y)
 NNOut[y] = Tree->nearest(y)
 PQ->insert(Dist(y, NNOut[y]), y)

Find nearest point

Delayed update

Update
Improvement Algorithms

Start with a feasible solution x

Define neighborhood $N(x)$.

Is there an improving neighbor y in $N(x)$?

Replace x by y

Yes

x is locally optimal

No

$N(x)$
2-change

$O(n^2)$ possibilities
3-change

$O(n^3)$ possibilities
1-Relocate

$O(n^2)$ possibilities
2-Relocate

$O(n^2)$ possibilities
Swap

$O(n^2)$ possibilities
Vehicle Routing and Scheduling
Vehicle Routing and Scheduling

1-relocate
B-cyclic k-transfer
Set covering based algorithms

- Assignment decisions are often the most important
- Assignment decisions are often the most difficult
Vehicle routing and scheduling

Possible route
Set partitioning formulation

<table>
<thead>
<tr>
<th></th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
<th>C₄</th>
<th>...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cust 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>... = 1</td>
<td></td>
</tr>
<tr>
<td>Cust 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>... = 1</td>
<td></td>
</tr>
<tr>
<td>Cust 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>... = 1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cust n</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>... = 1</td>
<td></td>
</tr>
<tr>
<td>y/n</td>
<td>y/n</td>
<td>y/n</td>
<td>y/n</td>
<td>y/n</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Set covering based algorithms

- **Advantage**
 - very flexible
 - heuristics for route generation
 - complicating constraints in route generation

- **Disadvantage**
 - small to medium size instances