1. Suppose $X_i \overset{st}{\leq} Y_i$ for $i = 1, 2$. Assume that X_1 is independent of X_2 and Y_1 is independent of Y_2. Show that $X_1 + X_2 \overset{st}{\leq} Y_1 + Y_2$.

2. Suppose $X_i \overset{cx}{\leq} Y_i$ for $i = 1, 2$. Assume that X_1 is independent of X_2 and Y_1 is independent of Y_2. Show that $X_1 + X_2 \overset{cx}{\leq} Y_1 + Y_2$.

3. Consider two $G/M/1$ queues with service rate μ and $\rho_i < 1$, where $A_2 \overset{L}{\leq} A_1$. Show that the stationary queue lengths are ordered in standard stochastic ordering for these two systems. Note that A_i denotes the distribution of interarrival times for system $i, i = 1, 2$.