Problem 1

Consider a constant stepsize algorithm, so that $x_{k+1} = x_k + sd_k$ for some constant stepsize $s > 0$. There are a variety of conditions under which the sequence of iterates $\{x_k\}$ of such an algorithm converges to a stationary point of f.

(1) Consider the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ given by $f(x) := \|x\|_2^{2+a}$, with $a \geq 0$. Consider the application of the steepest descent algorithm with constant stepsize to f, that is, $x_{k+1} = x_k - s\nabla f(x_k)$ for some constant stepsize $s > 0$. Determine for which values of s and x_0 the sequence of iterates $\{x_k\}$ converges to $x^* = 0$.

(2) Consider the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ given by $f(x) := \|x\|_3^{3/2}$.

(a) Show that f is not Lipschitz continuously differentiable, that is, there is no constant L such that

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2$$

for all $x,y \in \mathbb{R}^n$. (In fact, f is not even locally Lipschitz continuously differentiable at the optimal solution $x^* = 0$, that is, there is no neighborhood of the optimal solution $x^* = 0$ and constant L such that the Lipschitz inequality above holds for all x,y in the neighborhood.)

(b) Consider the application of the steepest descent algorithm with constant stepsize to f, that is, $x_{k+1} = x_k - s\nabla f(x_k)$ for some constant stepsize $s > 0$. Show that, for any value of $s > 0$, the sequence of iterates $\{x_k\}$ either converges to $x^* = 0$ in a finite number of iterations (and only in a very special case), or else the iterates do not converge to x^*.

(3) Consider a quadratic function $f : \mathbb{R}^n \mapsto \mathbb{R}$ given by $f(x) := \frac{1}{2}x^T G x + d^T x$, where $G \in \mathbb{R}^{n \times n}$ is symmetric positive definite and $d \in \mathbb{R}^n$. In the previous homework you were asked to show that f is Lipschitz continuously differentiable, that is, there is a constant L such that

$$\|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2$$

for all $x,y \in \mathbb{R}^n$, with the smallest such constant L given by the largest eigenvalue of G.

(a) Consider a steepest descent algorithm with a constant stepsize s applied to f. Show that $\{x_k\}$ converges to $x^* = -G^{-1}d$ for any starting point x_0 if and only if $0 < s < 2/L$.

(b) Consider a gradient search algorithm with a constant stepsize s and constant symmetric positive definite deflection matrix B applied to f, that is, $x_{k+1} = x_k - sB\nabla f(x_k)$. Let L be the largest eigenvalue of $B^{1/2}GB^{1/2}$. Show that $\{x_k\}$ converges to $x^* = -G^{-1}d$ for any starting point x_0 if and only if $0 < s < 2/L$.
(4) Consider a quadratic function \(f : \mathbb{R}^n \to \mathbb{R} \) given by \(f(x) := \frac{1}{2} x^T G x \), where \(G \in \mathbb{R}^{n \times n} \) is non-singular symmetric indefinite. Consider a steepest descent algorithm with a constant stepsize \(s \) applied to \(f \). Show that if the starting point \(x_0 \) does not belong to the subspace spanned by the eigenvectors corresponding to the nonnegative eigenvalues of \(G \), the sequence \(\{x_k\} \) diverges.

(5) Suggest some conditions that you think would be required for a constant stepsize algorithm to converge to a stationary point of \(f \).

Problem 2
Nocedal and Wright, Problem 3.1

Problem 3
Nocedal and Wright, Problem 3.5

Problem 4
Nocedal and Wright, Problem 3.8