1. A sequence of random variables \(\{X_n\} \) is said to be bounded in probability if for every \(\varepsilon > 0 \), there exists a positive number \(M_\varepsilon \) such that \(P(|X_n| > M_\varepsilon) < \varepsilon \) for all \(n \).

(i) Show that if \(\{X_n\} \) converges in distribution, then \(\{X_n\} \) is bounded in probability.

Let \(F_n \) be the cdf of \(X_n \). Suppose that \(\{X_n\} \) converges in distribution to a cdf \(F \). This means that \(F_n(x) \to F(x) \) for every \(x \in \mathbb{R} \) such that \(F \) is continuous at \(x \). Now for any \(\varepsilon > 0 \) we can choose \(M_\varepsilon > 0 \) such that \(F(-M_\varepsilon) < \varepsilon \) and \(F(M_\varepsilon) > 1-\varepsilon \). Moreover, we can choose \(M_\varepsilon \) such that \(F \) is continuous at \(M_\varepsilon \) and \(-M_\varepsilon \), and hence \(F_n(-M_\varepsilon) \to F(-M_\varepsilon) \) and \(F_n(M_\varepsilon) \to F(M_\varepsilon) \). Consequently, there exists \(N_\varepsilon \) such that \(|F_n(-M_\varepsilon) - F(-M_\varepsilon)| < \varepsilon \) and \(|F_n(M_\varepsilon) - F(M_\varepsilon)| < \varepsilon \) for any \(n > N_\varepsilon \). It follows that \(|F_n(x)| < 2\varepsilon \) and \(F_n(x) \to 1 - 2\varepsilon \) for any \(n > N_\varepsilon \). It follows that \(P(|X_n| > M_\varepsilon) < 4\varepsilon \) for any \(n > N_\varepsilon \). This proves that \(\{X_n\} \) is bounded in probability (why?).

(ii) Show that if there exist positive constants \(r \) and \(C \) such that \(\mathbb{E}[|X_n|^r] \leq C \) for all \(n \), then \(\{X_n\} \) is bounded in probability.

For a given \(\varepsilon > 0 \) take \(M_\varepsilon = (C/\varepsilon)^{1/r} \). Then, by Chebyshev’s inequality, we have

\[
P(|X_n| > M_\varepsilon) = P(|X_n|^r > M_\varepsilon^r) \leq M_\varepsilon^{-r}\mathbb{E}[|X_n|^r] \leq M_\varepsilon^{-r}C = \varepsilon.
\]

(iii) Suppose that \(Y_n \overset{p}\to 0 \) and \(\{X_n\} \) is bounded in probability. Show that \(X_nY_n \overset{p}\to 0 \).

(This can be written as follows: if \(Y_n = o_p(1) \) and \(X_n = O_p(1) \), then \(X_nY_n = o_p(1) \).)

For \(\varepsilon > 0 \) and \(M > 0 \) we can write

\[
P(|X_nY_n| > \varepsilon) = P(|X_nY_n| > \varepsilon, |X_n| > M) + P(|X_nY_n| > \varepsilon, |X_n| \leq M)
\leq P(|X_n| > M) + P(|Y_n| > \varepsilon/M).
\]

Since \(\{X_n\} \) is bounded in probability, we can choose \(M \) large enough such that \(P(|X_n| > M) \) is arbitrary small for all \(n \). Also since \(Y_n \overset{p}\to 0 \), we have that \(P(|Y_n| > \varepsilon/M) \) tends to zero, and hence \(P(|Y_n| > \varepsilon/M) \) is arbitrary small for all \(n \) large enough. It follows that \(P(|X_nY_n| > \varepsilon) \) is arbitrary small for all \(n \) large enough, and hence \(X_nY_n \overset{p}\to 0 \).

2. Suppose that \(X_1, \ldots, X_n \) are iid random variables with pdf:

\[
f(x, \theta) = \begin{cases}
\frac{1}{2\theta}, & \text{if } x \in [-\theta, \theta], \\
0, & \text{otherwise},
\end{cases}
\]

where \(\theta > 0 \) is the unknown parameter. Find the maximum likelihood estimator of \(\theta \) and show that it is consistent. Find a sufficient statistic for \(\theta \).
The likelihood function is \(L(\theta) = 1/(2\theta)^n \) if \(x_i \in [-\theta, \theta] \), \(i = 1, \ldots, n \), and \(L(\theta) = 0 \) otherwise. Consequently, the maximum of \(L(\theta) \) over \(\theta > 0 \) is attained at a larger of the numbers \(-x(1)\) and \(x(n)\), and hence the ML estimator

\[
\hat{\theta} = \max \{-X(1), X(n)\} = \max \{|X_1|, \ldots, |X_n|\}.
\]

The density function of \(X_1, \ldots, X_n \) is

\[
f(x_1, \ldots, x_n, \theta) = \frac{1}{(2\theta)^n} \prod_{i=1}^{n} I(|x_i| \leq \theta) = \frac{I(\max \{|X_1|, \ldots, |X_n|\} \leq \theta)}{(2\theta)^n}.
\]

By the Factorization criterion we then have that \(\max \{|X_1|, \ldots, |X_n|\} \) is a (minimal) sufficient statistic for \(\theta \).

3. Suppose that \((X_1, Y_1), \ldots, (X_n, Y_n)\) are iid pairs of random variables where \(X_i \) and \(Y_i \) are independent each having normal distribution \(N(\mu_i, \sigma^2) \). Find the ML estimators of \(\mu_1, \ldots, \mu_n \) and \(\sigma^2 \). Is the ML estimator of \(\sigma^2 \) consistent?

The log-likelihood function is

\[
\log L(\mu_1, \ldots, \mu_n, \sigma^2) = -n \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} [(x_i - \mu_i)^2 + (y_i - \mu_i)^2] + \text{constant}.
\]

The ML estimators \(\hat{\mu}_i = (X_i + Y_i)/2 \) and \(\hat{\sigma}^2 = \frac{1}{4n} \sum_{i=1}^{n} (X_i - Y_i)^2 \). We have that

\[
E \left[\frac{1}{4n} \sum_{i=1}^{n} (X_i - Y_i)^2 \right] = \frac{1}{4n} \sum_{i=1}^{n} E[(X_i - Y_i)^2] = \sigma^2/2.
\]

It follows by the LLN that \(\hat{\sigma}^2 \) tends in probability to \(\sigma^2/2 \), as \(n \to \infty \), and hence is not consistent. Note that the situation here is not standard since the number of parameters tends to infinity as \(n \to \infty \).

4. Let \(X_1, \ldots, X_n \) be iid Bernoulli random variables with parameter \(\theta \in (0, 1) \), i.e., \(P(X_i = 1) = \theta \) and \(P(X_i = 0) = 1 - \theta \). (i) Show that \(X_1 + \ldots + X_n \) is a sufficient and complete statistic for \(\theta \). (ii) Show that \(I(X_1 = 1, X_2 = 0) \) is an unbiased estimator of \(\theta(1 - \theta) \).

We have that

\[
E[I(X_1 = 1, X_2 = 0)] = P(X_1 = 1, X_2 = 0) = P(X_1 = 1)P(X_2 = 0) = \theta(1 - \theta),
\]

and hence \(I(X_1 = 1, X_2 = 0) \) is an unbiased estimator of \(\theta(1 - \theta) \).

(iii) Find the UMVU estimator of \(\theta(1 - \theta) \).

By Lehmann-Scheffe theorem we need to calculate \(E[I(X_1 = 1, X_2 = 0)|T] \), where \(T = X_1 + \ldots + X_n \). We have, for \(t = 0, 1, \ldots, n \),

\[
E[I(X_1 = 1, X_2 = 0)|T = t] = \frac{P(X_1=1,X_2=0,\sum_{i=3}^{n} X_i=t)}{P(T=t)} = \frac{P(X_1=1)P(X_2=0)P(\sum_{i=3}^{n} X_i=t-1)}{P(T=t)} = \frac{\binom{n-2}{t-1}(1-\theta)^{t-1}(1-\theta)^{n-t-1}}{n(n-1)} \frac{t(n-t)}{n(n-1)}.
\]

Consequently the the UMVU estimator of \(\theta(1 - \theta) \) is \(\frac{T(n-T)}{n(n-1)} \).
5. Let X_1, \ldots, X_n be iid random variables with pdf $f(x, \theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0$. Is there a function of θ, say $g(\theta)$, for which there exists an unbiased estimator whose variance attains the Cramér-Rao lower bound?

We know that there exists an unbiased estimator $W(X_1, \ldots, X_n)$ whose variance attains the Cramér-Rao lower bound iff

$$\prod_{i=1}^{n} f(x_i, \theta) = \exp\{A(\theta)W(x_1, \ldots, x_n) + B(\theta)\} h(x_1, \ldots, x_n). \quad (1)$$

Since

$$\log \prod_{i=1}^{n} f(x_i, \theta) = n \log \theta + (\theta - 1) \sum_{i=1}^{n} \log x_i,$$

it follows that (1) holds if

$$W(x_1, \ldots, x_n) = n^{-1} \sum_{i=1}^{n} \log x_i.$$

Now

$$\mathbb{E}[\log X_i] = \int_{0}^{1} (\log x) \theta x^{\theta-1} dx = \int_{0}^{1} (\log x) dx^\theta = (\log x) x^{\theta} \bigg|_{0}^{1} - \int_{0}^{1} x^\theta d \log x$$

$$= - \int_{0}^{1} x^{\theta-1} dx = -1/\theta.$$

It follows that $W(x_1, \ldots, x_n)$ is an unbiased estimator of $g(\theta) = -1/\theta$ for which the Cramér-Rao lower bound is attained.

Again by direct calculations $\mathbb{E}[(\log X_i)^2] = 2/\theta^2$, and hence $\text{Var}[\log X_i] = 1/\theta^2$. It follows that $\text{Var}[W] = 1/(n\theta^2)$. On the other hand the Cramér-Rao lower bound here is

$$\frac{[g'(\theta)]^2}{n \mathbb{E}[\log X_i]} = \frac{[1/\theta]^2}{n/\theta^2} = \frac{1}{n\theta^2}.$$

We obtain that, indeed, $\text{Var}[W]$ attains its Cramér-Rao lower bound.