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Abstract

In both industry and academic, the seismic exploration
does not yet have the capability of illuminating the physical
dynamics with high resolution and in real-time, as it involves
collecting the raw seismic data from sensors to data loggers
then manually retrieving data for post processing which may
take months to complete. This study presents InsightTomo, a
In-Situ Seismic Tomographic Imaging System based on sen-
sor network technology and travel-time tomography princi-
ples. It is a large-scale sensor network system design that
senses and processes seismic signals, and compute 3D to-
mography in-situ in real-time. The proposed InsightTomo
system consists a distributed approach for tomography com-
putation, collaborative signal processing and the associated
sensor network design. We implemented InsightTomo and
demonstrated that it can illuminate the 3D subsurface image
of Parkfield in-situ in real-time. The design of InsightTomo
in this paper is general, and can be implemented as a new
field network paradigm for real-time imaging of highly dy-
namic and complex environments.

Categories and Subject Descriptors
C.24 [COMPUTER-COMMUNICATION NET-
WORKS]: Distributed Systems

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Distributed Computing, In-network Processing, Seismic
Tomography, Sensor Networks

1 Introduction

Volcanic eruption is one of the most dangerous threats to
life on the Earth. In recent years, more volcano activities
have drawn the attention of public and scientists. Most ex-
isting volcano monitoring systems employ expensive broad-
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band seismometer as instrumentation. Also at present raw
seismic data are typically collected at central observatories
for post processing. Seismic sampling rates for volcano
monitoring are usually in the range of 16-24 bit at 50-200Hz.
With such high-fidelity sampling, it is virtually impossible
to collect raw, real-time data from a large-scale dense sen-
sor network, due to severe limitations of energy and band-
width at current, battery-powered sensor nodes. As a result,
at some most threatening, active volcanoes, fewer than 20
nodes [24] are thus maintained. With such a small network
and post processing mechanism, existing system do not yet
have the capability to recover physical dynamics with suffi-
cient resolution in real-time. This limits our ability to under-
stand volcano dynamics and physical processes inside vol-
cano conduit systems. Substantial scientific discoveries on
the geology and physics of active volcanism would be im-
minent if the seismic tomography inversion could be in real-
time and the resolution could be increased by an order of
magnitude or more. This requires a large-scale network with
automatic in-network processing and computation capabil-
ity.

To date, the sensor network technology has matured to
the point where it is possible to deploy and maintain a large-
scale network for volcano monitoring and utilize the comput-
ing power of each node for signal processing and distributed
tomography inversion in real-time. The methods commonly
used today in the procedure of seismic tomography computa-
tion cannot be directly employed under field circumstances
proposed here because they rely on centralized algorithms
and require massive amounts of raw seismic data collected
on a central processing unit. Thus, real-time seismic tomog-
raphy of high resolution requires a new mechanism with re-
spect to system design, information processing and tomogra-
phy inversion computation. To clearly address the challenges
in this paper, we give a short description on the background
knowledge of the first-arrival traveltime tomography.

The first-arrival traveltime tomography uses P-wave first
arrival times at sensor nodes to derive the internal velocity
structure of the subsurface. The basic workflow of traveltime
tomography illustrated in Figure 1 involves four steps.

(a) P-wave Arrival Time Picking. Once an earthquake
event happens, the sensor nodes that detect seismic
disturbances record the signals. The P-wave arrival
times need to be extracted from the raw seismic data.
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Figure 1: Workflow of first-arrival traveltime tomography.

(b) Event Location. The P-wave arrival times and locations
of sensor nodes are used to estimate the event hypocen-
ter and origin time in the volcanic edifice.

(c) Ray Tracing. Following each event, seismic rays propa-
gate to nodes and pass through anomalous media. These
rays are perturbed and thus register anomalous residu-
als. Given the source locations of the seismic events
and current velocity model, ray tracing is to find the ray
paths from the event hypocenters to the nodes.

(d) Tomography Inversion. The traced ray paths, in turn,
are used to image a 3D tomography model of the ve-
locity structure. As shown in Figure 1 the volcano is
partitioned into small blocks and the seismic tomogra-
phy problem can be formulated as a large, sparse matrix
inversion problem.

In traditional seismology, the raw seismic data is collected
for manual analysis including P-wave arrival time picking on
the seismograms. Then centralized methods will process the
data and compute seismic tomography. Keep in mind that
our goal is to design a system which can deliver 3D tomog-
raphy in real-time over a large-scale senor network by uti-
lizing the limited communication ability in the network and
the computation power on the sensor node. To reach this
goal, first no raw seismic data should be transmitted over the
network, which requires a light weighted algorithm that can
accurately pick the P-wave arrival time on the sensor nodes
locally inside the network. Second, an efficient distributed
tomography computation method is needed for processing
data and inverting volcano tomography in the network while
avoiding both costly data collections and centralized compu-
tations.

This paper presents InsightTomo - a in-situ seismic tomo-
graphic imaging system framework in sensor network. The
design of InsightTomo consists of a series of algorithms and
network design to automatically process the seismic data,
pick the P-wave arrival time, identify seismic events and
compute the seismic tomography in-situ in real-time. The
system design is evaluated with real data from the San An-
dreas Fault (SAF) on Parkfield and the results demonstrates
the feasibility to implement and deploy the system on the
future volcano monitoring sensor networks.

The rest of the paper is organized as follows. Section 2
shows an overview of the system design. Section 3 discusses
the details of the system design and implementation. Sec-
tion 4 gives extensive evaluations on the system with real
data set. Section 5 reviews the related work and section 6

concludes the paper.

2 System Overview
2.1 System Model

The mesh network architecture is employed in the design
of InsightTomo. Each sensor node in the network is equipped
with a seismic sensor (e.g., single or three component geo-
phone) that continuously samples and records the signal in
an external storage (e.g., SD memory card). Also, the sensor
node has a low power MCU (e.g., MSP-430 or Imote se-
ries) that has limited computation resources but keeps a very
low power profile. Besides, all the sensor nodes have GPS
modules on board [24] such that the clocks on sensor nodes
are time-synchronized so are the time pickings. A powerful
computation unit (e.g., BeagleBone Black board, cellphone
or tablet) is also installed on each node; the unit can complete
the computation-intensive tasks including the event location
and tomography inversion.

2.2 System Architecture

In this section, we will give an overview of the system
architecture and the data flow of InsightTomo respect to the
design requirements mentioned above. InsightTomo consists
of several algorithms running on sensor nodes and coordina-
tor nodes, and a bundle layer protocol is proposed to improve
the performance of communication. Figure 2 illustrates the
architecture and dataflow of InsightTomo system. There are
three steps in the architecture corresponding to the workflow
of seismic tomography.

1. Sensor node receives the signal from the sensor and an-
alyze the signal with P-wave arrival time picking al-
gorithm. The algorithm will continuously monitor the
samplings and alarm if an event is detected, then the
picking algorithm will pick the P-wave arrival time. Af-
ter the arrival time picking done, the sensor node only
needs to send the arrival time to coordinator node. Refer
to section 3.1 for more details.

2. The coordinator (could be any sensor node) receives
the P-wave arrival times from many sensor nodes that
detected events. The only information received by the
coordinator node in this step is a series of arrival time
pickings, based on this, the coordinator first needs to
identify which arrival times are corresponding to the
same event. The reason is that not all the sensor nodes
can detect one specific event due to the event intensity,
event position, sensor instability and so on. After the
event is identified, the coordinator node can compute
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Figure 2: The architecture of InsightTomo system.

event location and origin time, then send the specific
event location and origin back to the corresponding sen-
sor nodes which detected it. Refer to section 3.2 for
more details.

3. This step consists of several in-network computation
and communication tasks. We put them together since
they are all parts of the distributed tomography compu-
tation mechanism. Once the sensor node receives one
event location from the coordinator node, it can trace
the ray path from the event location to itself. Based on
our distributed tomography algorithm, the sensor node
sends ray paths to corresponding landlord node which
will be in charge of the tomography computation. After
the computation done, each landlord will broadcast the
partial tomography model to the network so that each
sensor node can update its model for future ray tracing
and computation. Refer to section 3.3 for more details.

3 System Design

In this section, we study the design of InsightTomo step
by step following the discussion above. Note that this design
is based on careful analysis of the real data from previous
Parkfield deployment.

3.1 P-wave arrival time picking

Primary waves (P-waves) are the seismic waves that travel
faster than any other waves through the earth. P-waves arrive
at the seismic sensors first and the arrival time of P-waves are
essential to the first-arrival traveltime tomography. Figure 3
shows the seismograms from four seismometers deployed in
Parkfield when an event happens. The vertical lines repre-
sent manual pickings of the P-wave arrival times. Due to the
different wave propagation delays, the P-wave arrival times
on sensors are different. In local seismic tomography, the
scale of the field is up to tens of kilometers and the maxi-
mum difference of the P-wave arrival times among sensors
is about several seconds, so that the accuracy of the picking
is significant. Besides, manual analysis of seismograms and
picking of arrival times require post processing of the data
and are very time consuming, especially in a large sensor
network. To avoid raw seismic data transmission and meet
the real-time requirements, InsightTomo demands an on-line
automatic event detection and P-wave arrival time picking
method that runs on each sensor node.

From the seismograms in Figure 3, one can see that there
is a big difference on the amplitude of the signal before and
after the arrival of P-waves, the P-wave arrival time is a
change point of the variance of the signal amplitude. Based
on this observation, a method is proposed in this paper by uti-
lizing the maximum-likelihood (ML) estimation to estimate
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Figure 3: The seismogram from BHZ channel of four seis-
mometers in Parkfield when an event happens. The vertical
lines indicate the manual pickings of P-wave arrival times.

the variance of the signal amplitude following a statistical
model. In the following discussion, we use pre- and post-
change to describe the signals before and after the P-wave
arrival.

Without loss of generality, we assume that both the pre-
and post-change signals follow a normal distribution but with
different variances. Let {x;}!_, be the continuous sequence
of samples from 1 to ¢, then the pre- and post-change sample
has a normal distribution with zero mean respectively,

xi ~ N(0,07) (1)
xi ~ N(0,03) 2)
The logarithm of the likelihood function at time & is,

pre-change sample,

post-change sample,

fZ(xz)
In 3
= ¥ oni ®

where f](x;) and f(x;) are the probability density functions
(pdf) of the pre- and post-change signals, the likelihood func-
tion then can be rewritten as,

t L e 2}
2
L = Y mYFe 4)
i=k+1 | —ﬁ
27(6%
Lorloor X, 11
= Y g5l ®
i=k+1 2 2 1
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Figure 4: Two step P-wave arrival time picking.

Figure 4 illustrates how the proposed method works. The
method consists of two steps, (1) Event Detection which
continuously scanning the samplings from the sensor with
a sliding window, claims if there is an event (change point)
happens and extract a segment of signals around the change
point; (2) Arrival Time Picking which takes the segment of
signals from step (1), picks the exact change point (arrival
time) from it and send the P-wave arrival time to coordinator
node.

3.1.1 Event Detection

The goal of event detection is to continuously check
weather there is a change point in the signal that is proba-
bly an earthquake event. Here we use a sliding window to
scan the signal and compute the maximum value of the like-
lihood function out of the samples inside current window,
we call this maximum value statistics for ML change point
detection. If the statistics for ML change point detection of
current window exceeds some threshold b, a change point is
detected. Let w be the sliding window size, based on the def-
inition of the likelihood function in equation (3) the statistics
for ML change point detection can be defined as,

S= max L (6)
t—w<k<t

From the definition of statistics for ML change point de-
tection, we can see that 61 and G, are required to calculate
the value of §. Recall that G% is the variance of the pre-
change samples in the signal, which can be considered as the
noise level of the signal. This noise level can be different for
each sensor due to manufacturing, temperature and so on. So
every senor needs to calculate its own G% using some samples
generated from it while no event happens. Let z; be such a

sample at time i, G% can be calculated as,

1 n

2 =2

1= ;(Z Z) @)
where n is the number of samples and Z is the mean value of
these n samples. Since the noise level of one sensor usually
does not change much, the proposed method in this paper
uses the G% for a fixed period of time, e.g., one day and then

update once.
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Figure 5: llustration of sliding window in event detection.
Since G% represents the variance of the post-change sam-

ples, the value of G% depends highly on the property of event.

This imposes that for each k, a G% needs to be derived to max-
imize L. This follows that 9.£/ 86%,
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In the discussion above, we showed how to calculate the
statistics for ML change point detection. The event detection
problem can be formulated as to find a time 7 such that,

T =min{r >1:S$ > b} (10)

which means that to find the first time point where the statis-
tics for ML change point detection is over the threshold.

Algorithm 1 Event detection algorithm

1: Calculate c% as the noise level.
2: detected + false.
3: fort < w,...do

4 I*<+ 0,5 <t —window.

5: fork=s,....t—1do

6: Calculate G% and L, = L.

7: if [ > I* then

8: =1

9: end if
10:  end for
11:  if I* > b and detected is false then
12: T < t, detected < true.
13: Algorithm 2 picks arrival in [T — o, T + o] with 67.
14:  else
15: if detected is true then
16: detected < false.
17: end if
18:  endif
19: end for

Algorithm 1 gives the description of the event detection
method. A sliding window keeps moving sample by sam-
ple and calculating the value of § with current samples in
w, if the threshold is reached, a change point is detected at
T, the signal in the window of [T — o, T + a] is extracted
and the arrival time picking algorithm will pick the accurate
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arrival from it, see Figure 5. Then the sliding window con-
tinue moving from 7 and calculating the value of .S, since
the event usually lasts for a period the value of § will be
over the threshold for a while until time 7’. We call the time
window T’ — T the detection length, after time 7' the algo-
rithm will continue to find a new change point. A boolean
variable detected is used to control this. Figure 12 gives an
example of event detection result and the detection length of
an earthquake event.

Note that the T claimed here is only a change point but
not necessarily an earthquake event detection. Sometimes
there might be a voltage spike from the sensor that can cause
a change point detection, see Figure 7. Since the spikes have
much larger amplitudes than events, to avoid the false alarm
on spikes an upper threshold is set for .S. If the value of § is
over the threshold the event detection will skip this change
point.

Algorithm 2 Arrival timing picking algorithm
P+ 0,k 0.
cfork=T—-o+1,....,T+o—1do

Calculate G% and L,/ = L.

if > [* then

I Lk*+k

end if
end for
return k*

IR

3.1.2  Arrival Time Picking

After the event detection done, the samples in the window
[T —a,T +a is extracted with noise level 67. The arrival
time picking is to find the change point k* in [T — o, T + o]
which maximize the function value of £. The problem can
be simply formulated as,

K :argmlfle (11)

The corresponding algorithm is described in algorithm 2.
The vertical dashed line in Figure 12 indicate the arrival time
picking of the algorithm for that detected event.

3.2 Event Location

Based on the architecture of InsightTomo, if a sensor node
detects an event and picks the P-wave arrival time, it will
send the time picking to the sensor node which acts as the
coordinator for event location. The coordinator node only
receives the time pickings from the sensor nodes and has the
knowledge that which picking is from which node. In all
of these pickings, there might be false alarms or some small
and remote event is only detected by few stations. As we
known, to estimate an event location, at least three pickings
from different sensor nodes are required, the event detected
only by one or two nodes is impossible to be located. Also,
more pickings from different sensor nodes for one event usu-
ally lead to a better estimation. Thus there are two steps in
event location, (1) Event Identification where the coordina-
tor node identifies how many events existing in a series of
arrival time pickings received and which pickings belong to
the same event; (2) Location Estimation which uses Geiger’s
method to estimate the event location from the pickings of
that event.

3.2.1 Event Identification

Since the InsightTomo system focuses on local seismic to-
mography (contrast to global tomography which focuses on
spherical earth), the maximum arrival time difference among
the sensor nodes is about several seconds. The event identifi-
cation is based on two rules, (1) The maximum difference of
the time pickings from the same event should be less than a
threshold B; (2) The number of time pickings from the same
event should be over a threshold 6.

Suppose that the coordinator node receives a series of
time pickings and puts them in a list C. Each item in C is
a pair (picking,node) which represent the arrival picking and
the node picked it. The coordinator sorts list C increasingly
according to the value of pickings and get C'. Then the co-
ordinator will find the continuous subsequences in C’ where
the maximum difference among the items in the same sub-
sequence is less than B, if the length of some subsequence
is greater than 0 the items in this subsequence are from the
same event. Event identification will feed all the satisfied
subsequences to step (2) that will estimate the event loca-
tions. Figure 8 gives an example of the event identification
based on the 629 pickings of the P-wave arrival time picking
method in section 3.1. In this example, the x-axis is the ar-
rival time picking index for sorted list C’ and the y-axis is the
time difference between two adjacent pickings. Four events
are identified (circles in the figure, B = 4.0 and 6 = 14) from
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this data while three of them are identified in the manual
pickings.
3.2.2 Location Estimation

The arrival time pickings in seismology are also called
observed arrival times. To estimate the event location, an
initial reference model of the subsurface P-wave velocities
is required which can be used to calculate arrival time based
on the guess of event location, this arrival time is referred to
predicted arrival time. In this paper, we adopt 1D velocity
model which treats the subsurface as a layered model and
is commonly used in routine earthquake location (see 4 for
details).

For sensor node v, we designate the observed arrival times
by 1, and the predicted arrival time by #, which is a function
of the estimated location x,y,z and the origin time g for the
event. The residual, or the difference between the observed
arrivals and the predicted arrivals is r, = T, — %(q,x,,2)-
Then an approximate location is estimated by seeking a small
perturbation in the location that makes the residual smaller.

The guess, or estimation, is designated as, Xo =
{q0,%0,y0,20} and let Ax = {3¢, &x, 8y, 8z} be the small ad-
justments to the guess that bring Xy closer to the correct lo-
cation. The new location is represented as x = xg + Ax and
the travel time associated with this location is y = o + AY.
We can use the total derivative of ) to get the effect of per-
turbations,

szAq+a—XAx+a—XAy+a—XAz (12)
ox ay dz
The residual calculated from the initial guess is rg, =
T, —%(q0,%0,¥0,20). The v-th residual is thus r, =T, — (X0, +
Ay) = roy — AY,. To estimate the location, the goal is to min-
imize the residual, i.e. find the perturbation that gives the
least squared residual.

S, T 2
rvrov(Aqu LN XAZ) (13)

ox dy 0z

where the unknowns are Ag, Ax,Ay,Az. Then the goal is to
minimize the sum of the squares of the residuals with respect
to these variables, i.e., the objective is,

min " r; (14)
"

Suppose there are n pickings in one event, the matrix of
residuals can be written as,

1 I 9

ox  dy oz o1
A p
ox dy Jz Ax o 02
. . . Ay - N
1 xn N A Az ron

ox dy oz

this is the standard inversion of matrix equations MAX =r.
We use Bayesian ART method (refer to section 3.3) to solve
this equation system and get the perturbation solution Ax.
The event location is obtained by adding Ax to initial guess.
This solution may not be close to the real location, then we
can use this as a new guess and solve the system again until
the solution is good enough.

After the event location done, the coordinator node needs
to send the event location to corresponding sensor node that
has a arrival time picking on this event. InsightTomo then
can proceed to the ray tracing and tomography computation.
3.3 Tomography Inversion

On the reception of event location information, the sen-
sor nodes will trace the ray paths and send them to the nodes
which perform landlord for distributed tomography compu-
tation. Since the ray tracing method used in this paper is
standard bending based method based on 1D velocity model
and the distributed tomography computation method used
here need to partition the ray paths after ray tracing done,
we will discuss the ray tracing with tomography inversion in
this section and will not give the details on ray tracing algo-
rithms due to the space limitation.

Suppose that there are N nodes and J earthquakes, we
consider a perturbation approach in this paper. Let s* be the
slowness (reciprocal of velocity) model with resolution M
(blocks). s* can be assumed to be a reference model, sY, plus
a small perturbation As, i.e., s* = s° + As. For simplicity, we
use s to denote As in the following discussion.

The ray travel times can be estimated by the arrival time
pickings and estimated event origin times from event loca-
tion. Let tf = [t}},15,...,t5]", where t7; is the travel time
experienced by node i in the j-th event. Based on the ray
paths from ray tracing, the travel time of a ray is the sum
of the slowness in each block times the length of the ray
within that block, i.e., #;; = A;[j,m] - s*[m] where A;[j,m] is
the length of the ray from the j-th event to node i in the m-
th block and s*[m] is the slowness of the m-th block. Let
t) = 19,79, ...,19]7 be the unperturbed travel times where
tl-Oj = A;[j,m]-s°[m]. t/; and t?j represent observed travel time
and predicted travel time respectively. In matrix notation we



have the following equations on sensor node i,
Ais* —Ais” =Ajs (15)

where A;[j, m| represents the element at the j-th row and m-
th column of matrix A; € R”M . Let t; = [t;1,t2, ... ,ti7]" be
the travel time residual such that t; = t7 — t?, equation (15)
can be rewritten as,

As=t; (16)

We now have a linear relationship between the travel time
residual observations, t;, and the slowness perturbations, s.
Since each ray path intersects with the model only at a small
number of blocks compared with M, the design matrix, A;,
is sparse. The seismic tomography inversion problem is to
solve the system,

As=t a7

where A = [AT AT AT and t= [t ] ,... t1]7. This
system is usually overdetermined and the inversion aims to
find the least-squares solution s such that,

s =argmin || t—As || (18)
S

To solve the equation system in tomography inversion
problem, there are many methods can be used as discussed
in section 5. In InsightTomo, we employ Bayesian ART
method which has been proved to be a good smoother for
tomography inversion.

Algebraic Reconstruction Technique (ART) is a row ac-
tion method to solve equation system. As an iterative
method, ART produce a sequence of estimated vectors which
converge to the required solution. Consider the system in
tomography inversion As =t where A € RE*M and s,t €
RM*I The basic ART method can compute the approxima-
tion of the solution of the system with the following iterative
formula,

skt ) = g0) 4 oW =1 a (19)

where qg; is the / — th row (e.g., the [ —th ray path traced)
of A, alT is the transpose of a;, t; is the [ — th component

of vector t and p¥) is a relaxation parameter. |a|> = a! -
a; and (k) denotes the iteration number, the procedure can
repeatedly operate on the equations with / = (k) mod (L+
1). The formula above provides a simple iteration routine, if
the system is consistent, basic ART is proved to converge to
the minimum-norm solution.

For the inconsistent system, a Bayesian version of the ba-
sic ART is proposed by G.T. Herman [4] for the image recon-
struction in medical tomography. Suppose the system As =t
is inconsistent, then we consider the system As+u =t where
u is chosen from given any s. Then the system is transformed
to a well-proposed problem, s and u can be solved simulta-
neously. Bayesian ART method has the following iterative

En

E Es Ey En

Figure 9: Multi-resolution evolving tomography.

formulas,
7\1~ — (u<k) -|— KaT . S(k))
dR = S i i 20
S L AE e
L L v P 1)
bt = g gWe, (22)

where e; is a unit vector with the i — th component equal to
one, A is the regularization parameter. Bayesian ART method
find the solution s such that,

s=argmin || t—As || +A% || s ||? (23)
S

Note that in Bayesian ART method, we need an additional
vector u of length L, but in (k) — th step only one component
of u®) needs to update locally without communications.

To compute the tomography inversion in the network, a
tomography partition and computation distribution algorithm
with a multi-resolution evolving scheme [22] is employed to
distribute the computation load, reduce the communication
cost and approximate the least-squares solution of the seis-
mic tomography inversion problem in the network. To dis-
tribute the computation load, this method first partition the
volcano structure geometrically and the system As =t cor-
respondingly. Then some nodes are selected as landlords to
compute part of the tomography model. The computation on
each landlord is entirely local so that the communication cost
is bounded. Since the computation on each landlord only
uses part of the system As = t, the result is not equivalent
to the solution of the original system. To approximate the
optimal solution, a multi-resolution evolving scheme is in-



troduced: the network initially computes a coarse resolution
tomography without partition when small amount of earth-
quake events arrive; as more and more earthquake events
arrive, the network will compute finer and finer resolution
tomography with more partitions. The intuition behind this
is that the network first computes an outline of the volcano
structure in an low resolution then fills up with finer details
inside. With the multi-resolution evolving scheme, people
do not need to wait for all computation done and can retrieve
the intermediate results under low resolutions in a real-time
manner.

Algorithm 3 Distributed Multi-resolution Evolving Tomography

: Upon the reception of an event location

1

2:  Trace the ray to get ray path a;.

3:  Calculate @, and 1; , for 1 < p < P,.

4:  Send dy p and #; , to landlord £,,.

5: Upon the reception of g; , and 7; , (node is landlord)
6:  Adddppandf,to Ays, =t,.

7. if there is enough rays information in A s, = t,,.

8: Solve A s, = t, with Bayesian ART.

9: Broadcast s,,.

10:  endif

11: Upon the reception of s, from landlord 7,
12 Update the corresponding part of s with s D
13:  ifalls,(1 < p < P,) have been received

14: if r+11isequalto g

15: TERMINATE

16: else

17: r—r+1,0+2'dx2"'dx2'd, P+ 4"

18: Increase the resolution of s° to O

19: Partition the tomography model into P, parts
20: endif

21:  endif

The partition method involves the ray path and travel time
splitting after ray tracing on each sensor node, this can be
done locally since the partition scheme can be predefined.
Suppose that there are P partitions in the subsurface struc-
ture. For partition p(1 < p < P), let d; , be the partial ray
path of the I-th ray a, f; , be the corresponding partial travel
time residual of 7; and s, be the partial slowness perturbation.
For more details about how to estimate d; , and #; ,, please
refer to [22]. Then we use A, to denote the column partition
of A corresponding to tomography partition p, t, is the par-
tial time residuals for A . In each partition, some node %, is
selected as the landlord and the landlord in partition p solves
the subsystem A, -s, =t,. The global tomography can be
obtained by combining all s,,.

Figure 9 illustrates how the multi-resolution evolving
scheme works. Notice that the computation of the partial
travel time residuals highly depends on the slowness refer-
ence model. In the multi-resolution evolving scheme, the
tomography model is not partitioned initially so that a good
initial guess of the slowness model can be derived. This ini-
tial guess is used to estimate the partial travel time residuals
later for approximating the optimal solution.

Suppose that the resolution of the tomography model is

d x d x d in the beginning, a single landlord (node 10 in the
example) will compute the first perturbation for the refer-
ence model. Then the resolution increases to 2d x 2d x 2d,
and the tomography model is partitioned into 4 parts and dis-
tributed to 4 landlords (node 3, 7, 12 and 14) for computa-
tion as illustrated in Figure 9. Notice that, here the reso-
lution of each partition is d X d x 2d. The aforementioned
partition procedure will be recursively applied in each parti-
tion when sufficient more new earthquake events arrive, until
the required resolution is achieved. Thus, at the (r+ 1)-
th (r =0,1,2,...) resolution, the tomography model has
resolution 2"'d x 2"d x 2"d and is partitioned into 4" parts
and evenly distributed to max(N,4") landlords. Algorithm 3
gives the description of Distributed Multi-resolution Evolv-
ing Tomography (DMET).

4 Evaluation

In this section, we evaluate InsightTomo performance
with extensive experiments by utilizing (1) the CORE! and
EMANE? network emulators [1] to emulate the sensor net-
work with sensor nodes and (2) BeagleBone Black boards
to perform as coordinator node for event location compu-
tation and landlord node for tomography inversion compu-
tation respectively. The advantage of emulation is that the
code developed over the emulator can be transplanted to a
Linux-based device, e.g., BeagleBone Black board, virtually
without any modifications.

Real data set from the deployment on SAF at Parkfield
is used in the evaluations of P-wave arrival time piking and
event location. Both synthetic and real data are used to eval-
uate the DMET algorithm. The system implementation and
experiments validate the correctness and accuracy for the
proposed algorithms and the feasibility of InsightTomo sys-
tem design.

4.1 System Implementation

InsightTomo is designed to compute the tomography in a
wireless mesh network and requires both unicast and broad-
cast communication according to the system architecture and
the algorithm requirements. On most remote deployment
sites it is hard to rely on the pre-existing infrastructures (e.g.
cellular infrastructure). Therefore, we need to utilize the
wireless mesh networking which create its own infrastruc-
ture by multi hop relays. However, such systems may expe-
rience erratic link qualities and intermittent disconnections
among nodes. These characteristics, combined with unpre-
dictable environmental conditions, make it difficult to main-
tain efficient and reliable end-to-end connectivity that spans
many hops. For example, the traditional end-to-end protocol
like TCP is not suitable for a wireless mesh network in chal-
lenging environment because the packet lost ratio is higher
than a wired network. On one hand, in a multi hop transmis-
sion the source node need to retransmit the packet through
all hops once the packet lost on the path. On the other hand,
the data rate can be very low after several hops due to packet
loss and congestion control.

To address the challenges in wireless mesh networking,
we adopt Disruption-Toleration Networks (DTN) techniques

"http://cs.itd.nrl.navy.mil/work/core/
Zhttp://cs.itd.nrl.navy.mil/work/emane/
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Figure 10: Bundle layer architecture.

to maintain efficient and reliable end-to-end connectivity that
spans many hops for data delivery. In our design, the data is
buffered in a bundle and then transferred hop by hop in a
store-and-forward manner until it arrives at the destination.
Our implementation of DTN technique does not make any
changes to underlying network services, it uses TCP for one-
hop reliable bundle transfer, and uses routing table to indi-
cate the next hop. Figure 10 shows the application interfaces
on each node for the integration of DTN and routing pro-
tocol. Figure 11 shows that the Bundle Layer outperforms
TCP with routing protocol. The test is done using CORE
and EMANE for 100 nodes multi-hop network settings.
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Figure 11: Performance of Bundle layer vs TCP.

Besides unicast, we implement a delay-tolerant broad-
casting service based on the NACK-Oriented Reliable Mul-
ticast (NORM) protocol’. Using NORM interface, one node
can push a bundle reliably to its one-hop neighbors. Our
cache component can receive and store this broadcast bun-
dle, and rebroadcast it again with NORM, to the nodes that
are two hops away, and so on so forth. A redundancy check
module is developed in the cache component guarantees each
node receives the same bundle at most once.

The implementation of all the algorithms in InsightTomo
is in ANSI C. The event location and tomography inversion

3http://cs.itd.nrl.navy.mil/work/norm/

related code are cross-compiled to run on BeagleBone Black
board. All other code can be directly ported to embedded
system such as ARM-based CPU or MCU.
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Figure 13: Manual pickings vs algorithm pickings on 6 sta-
tions in one event.

4.2 P-wave Arrival Time Picking Accuracy

The raw seismic data set from the deployment on SAF at
Parkfield is archived by IRIS*. The deployment is from Jan
1, 2000 to Dec 31, 2002 with 61 stations but the archived data
we can download consists of 42 stations from Oct 2, 2001 to
Oct 10, 2002. An extensive data set is obtained from Dr. Hai-
jiang Zhang. This data set has more stations and longer pe-
riod of data but not in seismic waves. The arrival timings in
the extensive data set are from manual analysis, and the event
locations and velocity model are from the previous compu-
tation with double-difference tomography method [33]. We
use the extensive data set for comparison in this evaluation.

From the discussion in the system design, to get the ac-
curate P-wave arrival time picking, the event detection algo-
rithm needs to give the correct detection point that the ar-
rival time point can be involved in the correct window to be
picked. Most important parameter is the threshold in event
detection. If the threshold is not set properly, the arrival time
picking can be meaningless, see Figure 12. The dashed box
indicate the window of signals to be processed by arrival time
picking algorithm. If the threshold is too small, the event de-
tection can trigger a false alarm while a delay detection could
happen if the threshold is too big. In the implementation, af-
ter each detection, the algorithm will get some samples from
the beginning of the current window, recalculate the statis-
tics and get a new detection point. If this difference between
these two points is bigger than the window size, the algo-
rithm will reset the noise level for future detection. Figure 13
compares the pickings of P-wave arrival time picking algo-
rithm with manual pickings, the long and short vertical lines
indicate algorithm picking and manual picking respectively.
We can see that two pickings are close and the picking is
accurate.

Figure 14 shows the algorithm picking errors in compar-
ison with manual picks from the extensive data set where

‘http://www.iris.edu/data/
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Figure 12: Earthquake event during 17:39:20 to 17:39:40 Feb 7, 2002 on BHZ channel of station CGAS in Parkfield.
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Figure 14: Picking errors.

x-axis is the picking difference between two methods and
the y-axis is the number of pickings stand in that difference
range. There are total 4478 pickings generated by the al-
gorithm, which has a matching in the manual picking data
for the Parkfield data. About 91% pickings from our algo-
rithm are within 0.2 seconds of manual pickings. The mean
value and the standard deviation of the difference between
our pickings and manual pickings are 0.043 and 0.23.

4.3 Event Location Accuracy

As we discussed in the system design, the 1D reference
velocity model is used for event location in InsightTomo.
Figure 15 gives the reference model used in our evaluation.
Note that this model is also used in the ray tracing and as the
initial model for tomography inversion.

Velacky, ks

Figure 15: 1D P-wave velocity reference model.

The P-wave arrival time picking and event identification
algorithm generate 433 events and 290 of them have cor-
responding event data in the extensive data set. The mean
value and standard deviation of the difference between the
positions of our algorithm and extensive data set are (0.33,
0.26) km respect to X, (0.46, 0.37) km respect to Y and (0.39,

0.40) km respect to Z.
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(a) Event locations on XY plane (b) Event locations on XZ plane

Figure 16: Event location result comparison, the empty cir-
cles and solid disc indicate the event location from Insight-
Tomo and the event location in extensive data set respec-
tively.

4.4 Tomographic Imaging Result

Since the real structure of the Earth subsurface is unavail-
able, we can not directly compare the tomography image
from the real data with ground truth. To verify the correct-
ness, accuracy and the performance for DMET algorithm,
here we use both a synthetic phantom and the real data set
from Parkfield to construct the image of seismic tomography
using InsightTomo and present the results.

4.4.1 Synthetic Phantom

The evaluation of algorithm is illustrated by simulating
seismic data on a synthetic model of resolution 128* con-
sisting of a magma chamber (low velocity area) in a 10 km3
cube. 100 stations are randomly distributed on top of the
cube.

We evaluate the algorithm starting with resolution 83 and
one partition, evolving to resolution 163 with 4 partitions and
complete at resolution 32% with 16 partitions. 50, 100 and
400 events are generated for resolution from low to high to
make sure the system is overdetermined. To simulate the
event location estimation and ray tracing errors, a White
Gaussian Noise is added to the travel time to generate the
sensor node observations (arrival times).

To validate the correctness and accuracy of the algorithm,
we first visualize the tomography result in vertical slices in
Figure 17. Each row of figures shows the same tomography
slice on corresponding layer along with X or Y axes (the total
layers of each figure is equal to the resolution dimension of
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Figure 17: Vertical slices of tomography model. Column (a), (b) and (c) are the results from DMET algorithm with resolution
dimension 8, 16, 32 respectively while column (d) is the result of centralized algorithm and column (e) is the ground truth.

the result). The black polygons give the cross section outline
of the magma chamber surface. We can see that at the lowest
resolution 83, the result can hardly indicate the outline of the
magma chamber since the block size is big, especially for
the small cross section in the first row. But it gives a good
start point for the higher resolution to further refine the re-
sult. At resolution dimension 16, the result can closely show
the outline of the magma chamber. The result in column (c)
at resolution 323 is already very close to the centralized so-
lution in column (d).
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Figure 18: Measures of distance from synthetic phantom.

Using §, s* and § to represent the synthetic model, the re-
constructed model and the mean value of s* respectively, we
use the following quantitative measures of distance from the
synthetic model provided in [10] to evaluate the estimation
quality,

e =

(T, Gi—si)?/ i@; s
R Y S

e3 = max|§—s|

These represent the normalized root mean squared dis-

tance, the average absolute value distance and the worst-
case distance respectively. The result is shown in Figure 18,
DMET(8) means that the distance analysis of DMET algo-
rithm with resolution 8% and CENT(32) indicates the result
of centralized algorithm. First we observe that in DMET
algorithm, the distances are decreasing along with the in-
crease of the resolution. The distances in DMET(32) are
even smaller than CENT(32), this is because that we use the
relative update as the stop criteria in Bayesian ART method
and the centralized algorithm may stop before the distance
is small enough. This analysis can imply that the multi-
resolution evolving scheme can give a good approximation
on each resolution level for estimating partial travel times
and the computation can approximate the centralized solu-
tion while not diverging in the local computation in each par-
tition.

(a) CENT(M) Communication

(b) DMET Communication

Figure 19: Communication and computation load balance.

Figure 19 shows the communication cost on each node in
the network for 2 different scenarios. From Figure 19(a), we
can see that the communication cost in centralized scenario
for the nodes near the base station in the center are much
higher than other nodes since all the messages need to be de-
livered through them. The communication cost on each node
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Figure 20: Horizontal slices of the P-wave velocity at depths of 1, 2, 4, and 7 km. The fault is located around X=13.5km.

in our algorithm shown in Figure 19(c) is more balanced.
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Figure 21: Vertical slices of tomography model.

Next we did an evaluation on the robustness of DMET.
The algorithm runs with the same data set and two differ-
ent packet loss ratios of 10% and 40% set in the emulator.
Figure 21 shows the rendering of one vertical slice along Y
axes. We can see that with 10% or even 40% packet loss,
compared with the result without packet loss, It is hard to
tell the differences. This validate the robustness of DMET
algorithm which can be tolerant to a severe packet loss.

4.4.2 Real Data: Parkfield

In this section, we present the tomography result of Park-
field delivered by InsightTomo System from the raw seismic
data. Followed [33], the y-axis of the tomography rotated 40
degrees counterclockwise from north so that it is parallel to
the local strike of the SAF.

Figure 20 gives the P-wave velocity model around SAF
at Parkfield. The tomography in first row is centralized cal-
culated from the extensive data with event locations (1538
events involved). It is close to the result in [33], it is easy
to see that the velocity model is different on different side of
SAF. The dots in the tomography indicate the event locations
estimated in InsightTomo system. A scientific fact is that the
events often happen around the fault which is verified by our
result. The tomography in second row is centralized calcu-
lated from the extensive data, but not all the data is used.
Only 438 events happened between Oct 2, 2001 and Oct 10,
2002 are used. This is because InsightTomo only used the
raw seismic data inside that time period. It makes more sense
to compare the InsightTomo result with the centralized result
on similar data set. We can see that the fault feature is easy



to get from the second row of tomography but the velocity
contrast at different sides of SAF is reduced.

The third row is the result from InsightTomo based on the
the 433 events extracted from raw seismic data. A two-level
DMET algorithm is applied where one landlord will start the
tomography inversion with low resolution and four landlords
compute partial model in high resolution. From the tomog-
raphy image, except the Vp at depth 7km, the main feature
of SAF can still be recognized and comparable with the cen-
tralized result. This verifies the feasibility of InsightTomo
system.

5 Related Work

Static tomography inversion for 3D structure, applied to
volcanoes and oil field explorations, has been explored since
the late 1970’s [5, 28, 8]. In volcano applications, tomogra-
phy inversion used passive seismic data from networks con-
sisting of tens of nodes, at most. The development and ap-
plication to volcanoes include Mount St. Helens [7, 9, 29],
Mt. Rainier [15], Kliuchevskoi, Kamchatka, Russia [11],
and Unzen Volcano, Japan [17]. At the Coso geothermal
field, California, researchers have made significant contribu-
tions to seismic imaging by coordinating tomography inver-
sions of velocity [31], anisotropy [12], attenuation [30] and
porosity [13].

P-wave arrival picking has been studied by the commu-
nity. The widely used approach is the STA/LTA method [16]
that has been using in real deployment [24] on volcano mon-
itoring. The STA/LTA method continuously monitors the ra-
tio of short-term average over long-term average on a signal.
Since it is based based on RSAM (Realtime Seismic Am-
plitude Measurement), which is calculated on raw seismic
data samples every second, the accuracy of STA/LTA is not
enough for tomography computation.

In seismic tomography, the event location can also be for-
mulated as a least-squares problem by Geiger’s Method [2],
and the estimation vector is of length 4 (event origin time and
3D coordinates). Since the dimension of the estimation vec-
tor is fixed and small, a centralized solution can be applied
in the network for this problem. In step (2), each node traces
ray path based on a reference model. This can be naturally
distributed since the ray tracing computation is entirely lo-
cal. The third step is the most computationally intensive and
time-consuming aspect of high resolution seismic tomogra-
phy. The sparse system can be solved by conjugate gradient
method or row action method [10]. However, designed for
high-performance computers, these centralized approaches
need significant amount of computational/memory resources
and require the knowledge of global information. As a re-
sult, they cannot be directly distributed in wireless sensor
network. Thus, the key research challenge here is how to
solve the least-squares problem in step (3) distributedly un-
der the severe constraints of wireless sensor network. In this
paper, we focus on distributed tomography inversion algo-
rithm, while assuming that the event arrival timing at each
node has been extracted from the raw seismic data by each
node itself [23, 26], as well as that the event location and ray
tracing have been done.

The methods to solve least-squares problem mainly fall

into two categories, direct methods and iterative methods.
Iterative methods for solving large sparse linear systems of
equations are advantageous over the classical direct solvers,
especially for huge systems [3]. Methods of parallelizing
least-squares solutions on distributed memory architecture
have been studied for both direct and iterative methods, but
there are few studies on distributing the least-squares solu-
tions from a wireless sensor network point of view.

Strakova, Gansterer and Zemen investigate randomized
algorithms based on gossiping for distributed QR factoriza-
tion [25]. This algorithm demands asynchronous random-
ized information exchange among nodes. The problem is
that gossiping based algorithms converge slow and a back
substitution node by node is required to get the least-squares
solution where the delay is introduced. Renaut proposed
a parallel multisplitting solution of the least-squares prob-
lem [18] where the solutions to the local problems are re-
combined using weighting matrices. The problem to dis-
tribute this algorithm in the network is that it requires broad-
cast communications in each iteration. Yang and Brent de-
scribe a modified conjugate gradient least-squares method
to reduce inner products global synchronization points and
improve the parallel performance [32]. This can also be po-
tentially distributed over the network but the broadcast com-
munication is still required in each iteration.

In the literature of signal processing, there are a few stud-
ies on consensus-based Distributed Least Mean Square (D-
LMS) algorithms [14, 20] in sensor network. These al-
gorithms let each node maintain its own local estimation
and, to reach the consensus, exchange the local estimation
only within its neighbors. This can also be used for get-
ting least-squares solutions statistically. The problem is that
consensus-based methods can be slow [27] on convergence
and the communication cost highly depends on the dimen-
sion of estimation. In large-scale network, consensus based
algorithms introduce not only high communication overhead
but also long delays involving frequent multi-hop communi-
cations. Sayed and Lopes developed a Distributed Recursive
Least-Squares (D-RLS) strategy by appealing to collabora-
tion techniques to achieve an exact recursive solution [19].
But it requires a cyclic path in the network to perform the
computation node by node while exchanging a large dense
matrix between nodes.

Kaczmarz’s row projection method [6], also known as Al-
gebraic Reconstruction Technique (ART), was one of the
first iterative methods used for large nonsymmetric sys-
tems. Its main advantages are robustness and cyclic con-
vergence on inconsistent systems. Dan and Rachel pro-
posed scheme performs Kaczmarz row projections within
the blocks and merges the results by certain component-
averaging operations, called component-averaged row pro-
jections (CARP) [3]. CARP is a robust and memory effi-
cient method to solve sparse systems. However, to distribute
CARP in the network, the broadcast communication is re-
quired and the performance depends on the partition number
of the equation system.

The methods mentioned above have been proved to be
convergent, but there are several system design problems to
distribute them in the wireless sensor network due to high



communication cost or long delay. In high-resolution seis-
mic tomography, we intend to solve a large sparse system (n
can be as large as tens of thousands even millions) in a large-
scale network (hundreds of nodes), i.e., N < m and N < n.
Considering this, the multisplitting method and CARP have
less communication cost if all algorithms converge in the
same order of iteration number. But the iteration number
highly depends on the matrix condition number (from the
evaluation in [21], these methods need hundreds to thou-
sands iterations to converge over a network with hundreds
of nodes). Besides, some methods either requires broadcast
communication per iteration or a path in the network to per-
form the computation node by node. This results to either
high communication cost or long delay if the number of iter-
ations is large.

6 Conclusion

In this paper we presented InsightTomo, an end-to-end
system which performed in-network data processing and ob-
tained tomography using distributed computation. Evalua-
tion was carried out on real data and the obtained results
where comparable to centralized method obtained by [33].
The communication cost was also flat meaning balanced un-
like the centralized approach and was resilient to data loss.
This project marks the collaboration between geophysicists
and computer scientists that provided opportunities to intro-
duce new technology for geophysical monitoring. The ap-
proach presented here has broader implication beyond to-
mography inversion and can be easily extended to oil and
natural gas exploration.
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