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Abstract—The problem of imbalance detection in a three-phase
power system using a phasor measurement unit (PMU) is consid-
ered. A general model for the zero, positive, and negative sequences
from a PMU measurement at off-nominal frequencies is presented
and a hypothesis testing framework is formulated. The new for-
mulation takes into account the fact that minor degree of imbal-
ance in the system is acceptable and does not indicate subsequent
interruptions, failures, or degradation of physical components. A
generalized likelihood ratio test (GLRT) is developed and shown
to be a function of the negative-sequence phasor estimator and the
acceptable level of imbalances for nominal system operations. As a
by-product to the proposed detectionmethod, a constrained estima-
tion of the positive and negative phasors and the frequency devia-
tion is obtained for both balanced and unbalanced situations. The
theoretical and numerical performance analyses show improved
performance over benchmark techniques and robustness to the
presence of additional harmonics.

Index Terms—Generalized likelihood ratio test (GLRT),
off-nominal frequencies, phasor measurement unit (PMU), sym-
metrical components, synchrophasor, unbalanced power system.

I. INTRODUCTION

T HE three-phase power system is designed to operate at a
nominal frequency in a near-balanced fashion [1]. In prac-

tice, frequency deviation and load imbalance are the norm rather
than the exception. According to the American National Stan-
dards Institute (ANSI) report [2], 2% of the electrical distribu-
tion systems in the USA have a significant undesirable degree of
imbalance, leading to several serious consequences. First, fre-
quency deviations and imbalances may be a precursor to more
serious contingencies leading to possible blackouts [3], [4]. In
addition, substantial power imbalance causes excessive losses,
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overheating, insulation degradation, a reduced lifespan of mo-
tors and transformers, and interruptions in production processes
[5]–[8].
Thus, the ability to detect potentially harmful levels of imbal-

ance in various power systems is highly desirable for the ben-
efit of both the utility and customer [4], [6]. However, in most
phasor measurement applications it is common and acceptable
[2] to have some degree of imbalance in the system due to un-
balanced loads and untransposed transmission lines [1]. To this
end, effective algorithms and sophisticated methods are crucial
for estimating frequency deviations and phasors in the event of
system imbalance and detecting an abnormal level of imbal-
ance. It is in this context that modern sensing devices, such as
phasor measurement units (PMUs), have the potential to pro-
vide rapid detection of contingencies and situational awareness
(see [1] and references therein).

A. Summary of Results

In this paper we consider detection of voltage imbalance in
three-phase power systems using the native frequency output
of PMU. The contribution of the paper is threefold. First, we
develop a statistical model that captures characteristics of im-
balance from PMU output. In particular, we provide the noise
statistics and demonstrate that, for a perfectly balanced power
system, the PMU output is a single complex sinusoid, whereas,
under imbalance, the symmetrical components at the PMU
output have two related frequencies. The statistical model indi-
cates that, at the nominal frequency, imbalance is undetectable
by using only the positive-sequence. Therefore, detection of
imbalance should be carried out by using the negative-sequence
and/or the zero-sequence in addition to the positive-sequence.
Second, we derive a hypothesis testing technique based on the
principle of generalized likelihood ratio test (GLRT). The pro-
posed GLRT uses the constrained maximum-likelihood (CML)
estimators of the frequency deviation and the three symmetrical
component phasors under the balanced and unbalanced system
operating conditions. Third, we analyze the performance of
the proposed GLRT and provide simulation results in practical
settings. In particular, in Section IV, we present an analysis of
false alarm probability from which we obtain a practical way
of setting detection thresholds for given false alarm probabil-
ities. Simulations studies are presented in Section V, where
we demonstrate the performance of the proposed GLRT for
single-phase magnitude and phase imbalances. We demonstrate
that at high signal-to-noise ratios (SNRs), the GLRT with es-
timated frequency coincides with the known-frequency GLRT
and thus, the frequency estimation has no impact in this region.
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Of particular importance is the evaluation of the robustness
of the proposed algorithm in the presence of higher-order har-
monics. We show that the probability of detection of the GLRT
for non-sinusoidal voltages is close to those of the sinusoidal
case. Therefore, the proposed method can also be used in the
presence of inter-harmonics.

B. Related Works

Under perfectly balanced three-phase operating conditions,
the zero and negative sequences are absent, hence the state-es-
timation and signal analysis in this case are carried out using
only the positive-sequence model [3], [9]. When system imbal-
ance occurs, the zero and negative sequences are nonzero, and
the PMUs output exhibits nonstationary frequency deviations
[4], [10]. In addition, the positive-sequence measurements
become non-circular as described in [11] and [12]. In the
pioneering works of [11] and [12], new methods were derived
for frequency-estimation based on non-circular models and
the Clarkes transformation. These methods use the positive
and negative sequences and analyze the measurements in the
time domain. The mismatch estimation error caused by using
the balanced state estimation under imbalance is studied in
[3] and the influence of imperfect synchronization on the state
estimation is described in [13]. In [14] a distribution system
state estimator suitable for monitoring unbalanced distribution
networks is presented. A practical procedure to decrease the
state estimation error introduced by load imbalances is devel-
oped in [15].
In the literature, various definitions are given for imbalance in

a power system, where the fundamental performance measures
are the voltage unbalance factor (VUF) [4], [16], [17] and the
percent voltage unbalance (PVU) [18]. The VUF is the ratio of
the magnitudes of negative- and positive-sequence voltages and
the PUV is equal to the ratio of the maximum voltage magnitude
deviation of the zero, positive, and negative sequences from the
average of the three-phase voltage magnitudes [19]. The phase
angle imbalance, which is not reflected in either the VUF or
PVU measures, can be described by the phase voltage unbal-
ance factor (PVUF) [20] and the complex VUF (CVUF) [21],
[22]. The limitations of these commonly-used methods can be
found, for example, in [23]. An online identification method of
the level, location, and effects of voltage imbalance in a distribu-
tion network is derived in [6] based on distribution system state
estimation. However, the existing non-parametric methods for
detection of imbalance are insufficient (e.g., [21]–[24]). Deriva-
tion of parametric detection methods is expected to improve the
detection performance.
A particularly relevant prior work is [25] where the authors

develop the first parametric GLRT for detecting voltage and
phase imbalances based on time domain measurements. While
[25] and this paper both use GLRT principle, the models con-
sidered and the statistics used are quite different. Specifically,
the approach presented here is based on the native PMU (fre-
quency domain) output that is less informative than the time do-
main measurements used in [25] but more readily accessible.1

1For example, the proposed method is able to detect imbalances based on
frequency domain samples. These samples are based on compressed

time domain samples.

More significance, perhaps, is the formulation of hypotheses.
The GLRT derived in [25] tests the hypothesis that the system
is perfectly balanced against any amount of imbalance in the
system. Our approach, on the other hand, aims to detect substan-
tial imbalance. The presence of imbalance in the null hypoth-
esis (the nominal case) presents nontrivial technical difficulties,
which cannot be dealt with by simply changing the detection
threshold on a test designed for a perfectly balanced system
operating at the nominal frequency. Finally, since usually the
zero-sequence power does not propagate to the machine termi-
nals [4], [26]–[28], the information which is used by the pro-
posed GLRT includes only the positive and negative sequence
components, while [25] uses the three sequences and investi-
gates the influence of the zero sequence on the detection perfor-
mance.
In most situations, frequency deviations and minor imbal-

ances can be mitigated by frequency regulation or load com-
pensation techniques [29]. In the literature, several mitigation
techniques have been suggested to correct significant voltage
imbalance problems [4], on both the power system and user
facility levels. Voltage imbalance is ultimately fixed by man-
ually or automatically rebalancing loads and removing asym-
metric network line configurations [6], where these are costly
processes and inappropriate for frequent but small imbalances.
For example, the compensation of the voltage imbalance can
be achieved by reducing the negative-sequence voltage using
a series active power filter or based on shunt compensation, as
described in [30], or by advanced control strategies [31]–[33].
In addition, the compensation of voltage harmonics, which can
be generated by a nonlinear unbalanced load, can be considered
by separating the positive and negative sequences of each har-
monic order [30].

Nomenclature

Three-phase voltage magnitudes.

Three-phase voltage phases.

.

Nominal grid-frequency.

Frequency deviation.

ML frequency-deviation estimator
under hypothesis .

Suboptimal frequency-deviation
estimator.

Samples per cycle at time domain.

Samples at the frequency domain.

Three-phase voltages at time .

Frequency domain zero, positive,
and negative phasor sequences at
time .

Gaussian noise sequences at time .

Complex Gaussian noise sequences
at frequency-time .
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Noise variance.

identity matrix.

Vector of ones of size .

.

.

Zero, positive, and negative phasors.

Positive and negative phasor CML
estimators under hypothesis .

Negative phasor ML estimator.

PMU's measurement vectors.

Whitened PMU's measurement
vectors.

Unknown parameters vector.

Likelihood function at .

GLRT detector.

GLRT-SNH detector.

VUF detector.

Detector's threshold.

GLRT false alarm probability at .

False alarm asymptotic probability
at .

Authorized level of imbalances.

C. Organization and Notations

The remainder of the paper is organized as follows:
Section II presents the mathematical model and outlines several
special cases. The GLRT detector and CML estimators for
detecting imbalance are derived in Section III. In Section IV,
a performance analysis of the proposed GLRT is developed.
Finally, the proposed method is evaluated via simulations in
Section V and the conclusions appear in Section VI.
In the rest of this paper, we denote vectors by boldface lower-

case letters and matrices by boldface uppercase letters. The op-
erators , , , and denote the complex conjugate,
transpose, Hermite, and inverse operators, respectively. The op-
erator denotes the real part of its argument. For conve-
nience, variables are cataloged in the Nomenclature Table.

II. MEASUREMENT MODEL

The system and measurement models considered here are
conventional (see, e.g., [1], [10]). In this section we present the
model in a statistical signal processing formulation that includes
a description of the noise statistics, and it is more convenient
for developing estimation and detection algorithms [34]. In par-
ticular, we describe the statistical behavior of the PMU output,
i.e., after the sampling, symmetrical transformation, and nom-
inal-frequency discrete Fourier transform (DFT) operation.

A. Off-Nominal Unbalanced System Phasors

The voltages in a three-phase power system are assumed to
be pure sinusoidal signals of frequency , where is
the known nominal-frequency ( or ) and is the
frequency deviation from this nominal value. The magnitudes
and phases of the three voltages are denoted by
and , respectively. The three-phase power
system is balanced or symmetrical if and

. The PMU samples these real sig-
nals times per cycle of the nominal-frequency, , to produce
the following discrete-time, noisy measurements model (e.g.,
[1, pp. 51–52] and [35]):

(1)

for all , where and
. The noise sequence,

, is assumed to be a real white Gaussian noise
sequences with known covariance matrix . The derived
method can be easily extended to the more general case of
a correlated three-phase system [6] by using a non-diagonal
covariance matrix. The error covariance matrix can be
obtained, for example, as described in [6].
The PMU constructs the complex representation of the sig-

nals by using a DFT operator over one cycle of the nominal-fre-
quency [1], [10]. That is, the PMU DFT operation on any arbi-
trary signal results in the following phasor sequence:

(2)

where the index refers to the beginning of the DFT window.
By substituting the three sequences, , , and , for
all from (1) in (2) and using the identity [36]

we obtain the following phasor sequences measurements:

(3)
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, where

(4)

(5)

It is seen, then, that and are functions of the unknown
frequency deviation, , but independent of .
Finally, the three symmetrical voltage sequences are calcu-

lated from three-phase voltages by the PMU using the symmet-
rical component transformation (e.g. [1, pp. 63–67]):

(6)

for all , where , and are
the zero, positive, and negative sequences, respectively, and

. By substituting (3) in (6), we obtain

(7)

(8)

(9)

for all , where

and

for all . Since , the noise
sequences, , , , , are
independent complex circularly symmetric Gaussian noise
sequences where each sequence has a variance of .
However, it should be noted that if the original three-phase
noise signals are correlated, which is the case in distribution
systems [6], [37], then, the noise sequences of the three sym-
metrical components are also correlated. It can be seen that the
PMU output in (7)–(9) includes samples of the symmetrical
sequences, , at the nominal-frequency
bin, that are different from the true value of the input sequence
phasors, , , and .
In this work, we are interested in the detection of imbal-

ances based on measurements of the positive and negative
sequences from (7)–(9). The PMU output of the zero sequence,

is usually non observable and is described
in this paper for the sake of completeness. The models for these

measurements can be written in matrix form as follows:

(10)
(11)
(12)

where

The vectors and are identical to the steering vector for
a uniform linear array [38]. The noise vectors, , , and

, are independent zero-mean complex, circularly symmetric,
colored Gaussian noise sequences with covariance matrix ,
where is a matrix with the following th element:

if
otherwise.

Since the error covariance matrix is known, the signals in
(10)–(12) can be prewhitened. The whitening operation is
performed by left-multiplication of the terms in (10)–(12) by

:

(13)
(14)
(15)

where , ,2. The modified noise vectors,
, ,

have an identity covariance matrix, . Similarly, the
prewhitening procedure can be performed for the more gen-
eral case of a correlated three-phase system, when the three
sequences are dependent.

B. Special Cases
1) Perfectly Balanced System: For the special case of a per-

fectly balanced system, the three-phase voltages satisfy
and . Therefore,

it can be verified that for this case , , and the
model in (13)–(15) is reduced to

(16)

The model in (16) indicates that for perfectly balanced systems
the zero-sequence is a noise-sequence and the positive and neg-
ative sequences create sinusoidal signals.
2) Nominal-Frequency System: If the input signal is a pure

sinusoid at the nominal-frequency, i.e., , then, by using
(4), (5), and the L'Hôpital's rule, it can be seen that
, , and . By substituting these terms in
(13)–(15), the output of the PMU for the nominal-frequency
case is given by

(17)
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For a perfectly balanced system at the nominal-frequency we
substitute in (17) and obtain

(18)

Therefore, it can be seen from (17) and (18) that for a system op-
erated at nominal-frequency, system imbalance is undetectable
using only the positive-sequence phasors since the model of the
positive-sequence, , is identical under both circumstances.
This is in contrast to state estimation and signal analysis, which
are carried out using only the positive-sequence model [3], [9].
Thus, in order to detect unbalanced situations versus perfectly
unbalanced situation we should also use the zero- and/or the
negative-sequence.2

III. DETECTION OF IMBALANCE AND THE GLRT

A. Hypothesis-Testing Problem
The objective of this study is to develop a method for signif-

icant system imbalance detection based on the PMU output. In
most phasor measurement applications, it is common to have
some degree of imbalance in the system [2]. Therefore it is
important that the detector is robust to modest level of imbal-
ance. Furthermore, in the vast majority of cases, the zero-se-
quence signal does not propagate to the machine terminals [4],
[26]–[28]. Therefore the problem of imbalance detection is de-
veloped in this section based only on the whitened positive and
negative sequence components. For the special case of indepen-
dent three-phase signals, the three symmetrical measurements
sequences in (13)–(15) are also independent and the problem
of imbalance detection based on the positive and negative se-
quences is independent of the zero-sequence.
The detection problem can be formulated as the following

composite hypothesis testing problem:

(19)

where is an authorized level of imbalance, and hypotheses
and represent the balanced and imbalanced hypothesis,

respectively. That is, the measurement model under either hy-
potheses is given in (13)–(15), i.e., the likelihood functions are
identical, and the difference between the hypotheses is the mag-
nitude of . This problem is known in the literature as a con-
strained hypothesis testing problem [39].
The detection problem in (19) is a composite test, i.e., the

measurement likelihood functions depend on unknown param-
eters, , , and . Hence, the GLRT is a natural choice
for this problem. The GLRT adopts the general alternative
against if the ratio of the likelihood functions is greater than
a threshold, where the unknown parameters are replaced by their
respective maximum-likelihood (ML) estimators [38]. In the

2It should be noted that at off-nominal frequency a detection method can be
derived based only on the model of the positive-sequence in (14), similar to the
derivations of the GLRT in Section III. However, since typical magnitudes of

are small compared to (Chapter 3 in [1]), imbalance is detectable solely
by using only for significantly high 1) signal-to-noise ratio (SNR); and/or
2) number of samples; and/or 3) frequency deviations.

presence of parametric constraints, the ML estimators should
be replaced by the CML estimators [39].

B. State Estimation

Let denote the ML estimator of under
hypothesis and is the probability density function
(pdf) of and . Based on the model described in (13)–(15),
the likelihood function is given by

(20)

In this section, we develop the CML estimators under the bal-
anced/unbalanced system constraints.
1) CML Estimators for Balanced Systems: Under the bal-

anced system constraint, , the CML estimator of
under is given by

Therefore, under , we maximize the following Lagrangian:

(21)

where is the Karush-Kuhn-Tucker (KKT) multiplier [40]
under . For a fixed , by equating the complex derivatives
of the right hand side (r.h.s.) of (21) with respect to (w.r.t.)
and to zero, one obtains

(22)

(23)

where , ,
, and By using

some mathematical manipulations, the CML estimators in (22),
(23) can be rewritten as

(24)

(25)

It should be noted that, according to (24) and (25), the magni-
tude constraints have no influence on the phase of the estimator

. By using the primal feasibility and complementary slack-
ness KKT conditions [40], it can be shown that the KKT multi-
plier satisfies

if

otherwise
(26)

where

(27)
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which is the unconstrainedML estimator of the negative phasor,
and . By substituting (26) in (25), one
obtains the CML negative phasor estimator:

if

otherwise
(28)

where the positive-sequence phasor can be calculated by substi-
tuting (28) in (22).
2) CML Estimators for Unbalanced Systems: Similarly,

under the imbalanced system hypothesis, , the CML esti-
mator of is given by

Similar to the derivations of the CML estimators for the bal-
anced system in (22) and (28), it can be shown that the solution
of the maximization in (29) is given by

(29)

if

otherwise
(30)

3) Frequency-Deviation Estimation: If the frequency devi-
ation is unknown then, the phasor estimators and ,

,1 are function of the frequency-deviation estimate. Sim-
ilar to [34], it can be shown that the ML frequency-deviation es-
timator is found by maximizing the likelihood function in (20)
after substituting the phasor CML estimators, which results in
the following frequency-deviation ML estimator under :

(31)
,1. However, in practice, since the ML frequency-devi-

ation estimator in (31) is based on a high complexity search,
many other low-complexity frequency estimation methods are
used in power systems (e.g., [1], [11], [34], [41]). In this work
we use the state-of-the-art frequency-estimation method, which
is based on the positive-sequence and given by [10]

(32)

C. GLRT
TheGLRT for the hypothesis-testing problem in (19) declares
only if is higher than a given threshold, where the

GLRT is given by [38]

(33)

where the last equality is under the assumption that we can use
the low-complexity frequency-deviation estimator, , under
both hypotheses. By substituting (20) in (33), the GLRT is given
by

(34)

Substitution of (22) and (29) in (34) results in the following
GLRT detector:

(35)

By using (28) and (30), the GLRT can be rewritten as

(36)

where is defined in (27) and the sign function is equal
to 1 for positive arguments and 1 otherwise. Since the given
threshold of the GLRT in (33) should be always nonnegative
[38], the detector declares for any nonpositive .
Therefore, the detector declares if . Thus,
by applying a monotonically increasing transformation on the
r.h.s. of (36), the GLRT in this case decides if

(37)

where .
The GLRT for detecting imbalances in (37) can be interpreted

as a detector of the presence of the negative-sequence, which
is consistent with the hypothesis testing as formulated in (19).
That is, the detector is proportional to the unconstrained
estimated negative phasor magnitude, while the estimated phase
of has no impact. Since the positive-sequence appears
in both the balanced and unbalanced situations, the positive-
sequence phasor ML estimator is absent from the GLRT in (37).

D. Special Cases

1) Perfectly Balanced System: In the special case of a per-
fectly balanced system under , i.e., , we obtained
the perfectly-balanced system CML estimators and

. By substituting in (37), the GLRT in this
case decides only if

(38)

The detector in (38), named GLRT under simple null hypothesis
(GLRT-SNH), detects a perfectly balanced versus unbalanced
system. Observing (37) and (38), it can be seen that the GLRT
from (38) can be rewritten as

(39)
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Therefore, for a known frequency deviation, the detection of im-
balances versus imperfect balanced system is identical to the de-
tection of an imbalances versus a perfect balanced system with
a shifted threshold by . As a result, the proposed GLRT can
be enhanced by adjusting the threshold decision, taking into ac-
count the desirable balance level, , and the desirable proba-
bility of detection, which decreases as the threshold increases.
For estimated frequency deviation, however, is a random
parameter and these two detectors are different.
2) Nominal-Frequency System: For , by using

and , we obtain , , and .
By substituting these values in (27), it can be verified that the
unconstrained estimator of the negative phasor given for this
case satisfies

Thus, the estimator is only a function of the negative sequence.
As a result, the GLRT from (37) in this case is only a func-
tion of the negative sequence. This result is consistent with
our result from Section II-B2: For a system operated at nom-
inal-frequency, imbalance is undetectable when based on the
positive-sequence phasors, and the detection should be based
on the negative sequence.

IV. THEORETICAL PERFORMANCE ANALYSIS
AND THRESHOLD ASSESSMENT

In order to calibrate the test threshold and analyze the de-
tector's performance, the GLRT distribution has to be deter-
mined. An exact analysis of the GLRT in (37) is complicated
because of the nonlinear nature of the frequency-deviation esti-
mator and the constrained phasors estimation. Therefore in this
section we provide a theoretical performance analysis of the
GLRT detector for two special cases: 1) known frequency de-
viation for the GLRT in (37); and 2) asymptotic analysis. for
the GLRT-SNH in (38). These analyses provide only an upper
bound on the detection probability [38].
1) Performance Analysis for Known Frequency Deviation:

By using the independence between and for a given fre-
quency deviation, the unconstrained ML estimator of the nega-
tive phasor from (27) satisfies

Under
Under (40)

where represents the complex circularly symmetric
Gaussian pdf with mean and variance . Therefore,
the GLRT-SNH from (38) admits (e.g., [38, pp. 30–32])

Under
Under (41)

where denotes the Rayleigh distribution with the
mode parameter , and denotes the Rician
distribution with the parameters and . By using (39) and (41),
the false alarm probability for the GLRT, i.e., the probability
that is higher than a threshold under , is given by

(42)

where, according to (39), . By substituting the pdf
from (41) in (42), one obtains

(43)

Inverting (43) gives the threshold for the GLRT detector, where,
by using this threshold, the false alarm probability, , does
not exceed a predefined level. The detection probability for the
GLRT detector, , can be calculated in
similar manner.
2) Asymptotic Performance for the GLRT-SNH: In this sub-

section, we consider the asymptotic (i.e., as tends to infinity)
performance of the GLRT-SNH in (38), . In [38,
pp. 205–206], it is shown that under suitable regularity condi-
tions, the GLRT without any constraints, i.e., the GLRT-SNH
with the ML frequency-deviation estimator in this case, has the
following probability of error of the GLRT-SNH:

(44)

for all . By comparing (43) and (44), it can be seen that
for large the GLRT-SNH performance is the same whether
the frequency deviation is known or not. Since the asymptotic
pdf under does not depend on the unknown parameters, the
threshold required to maintain a specific false alarm probability
can be found by (43). This type of detector is referred to as a con-
stant false alarm rate (CFAR) detector [38]. However, the gen-
eral GLRT detector, , is not CFAR since the threshold and
the performance are also functions of , which is function
of the estimated frequency deviation. In addition, it should be
noted that under unknown frequency deviation the noncentrality
parameter is decreased, hence the reduction of detection proba-
bility. This can be interpreted as information reduction caused
by the need to estimate additional parameters for use in the de-
tector [38].

V. SIMULATIONS

In this section, the performances of the ML frequency devi-
ation estimation and the proposed GLRT in (37) are evaluated.
We consider a single PMU and a sampling rate of sam-
ples per cycle of the nominal grid frequency, ,
and frequency samples. The performance is evaluated
using 5000 Monte Carlo simulations. Unless otherwise speci-
fied, the frequency of the input signal is assumed to have a

offset from the nominal-frequency. The SNR is defined
as . The voltage magnitudes and phases are
considered to be , per unit (p.u.),
and . For an almost balanced system, we
set , , , and

. A single-phase voltage magnitude and angle imbalance
is implemented by setting and . The
authorized level of imbalances of the GLRT is chosen to be

.



ROUTTENBERG et al.: PMU-BASED DETECTION OF IMBALANCE IN THREE-PHASE POWER SYSTEMS 1973

Fig. 1. MSE of the normalized frequency deviation, , estimators for
, , and for (a) ; and (b) .

A. Frequency Estimation Performance
The estimation performance of the normalized frequency

deviation, , is evaluated for an imbalanced model with
and . The mean-square error (MSE) of the

state-of-the-art frequency-estimator from (32) and the CML
estimators from (31), under both and , are presented
in Fig. 1(a) and (b) for and ,
respectively. It can be seen that for low SNR, the CML es-
timators under and perform well and have similar
performances for both frequencies. However, for high SNR,
the CML estimator that assumes unbalanced system is signifi-
cantly better than the CML estimator which assumes balanced
system. The MSE of the CML estimator under , i.e. under
the unbalanced system assumption, is the lowest for any SNR.
However, the CML estimators suffer from high complexity and
are affected by the search resolution. It can be seen that the
state-of-the-art frequency-estimator from (32) performs well
for small frequency deviations, which is the typical scenario in
real-world power systems [42]. For higher frequency deviations
we derived in [34] a low-complexity frequency estimation
method for unbalanced system, which is beyond of the scope
of this paper.

B. Single-Phase Magnitude and Phase Imbalances
The performance of the proposed GLRT is compared with

the performance of the commonly-used VUF method for de-
tecting voltage imbalance [4], [16], [17]. The VUF test is de-
fined as the ratio of the negative-sequence voltage magnitude
to the positive-sequence voltage magnitude. In order to make a
fair comparison, we use the VUF definition with phasor mea-
surements of the positive- and negative-sequence:

(45)

which is based only on the voltage magnitudes. It should
be noted that there is no analytical procedure for setting the
threshold of the VUF detector, . In the following, we
chose the threshold to maximize the probability of detection
for each scenario.
In addition, in order to demonstrate power loss due to the un-

known frequency deviation, i.e. reduction in detection proba-
bility for a given probability of error ratio, we also compare the
results with a GLRT for known frequency deviation, . This de-
tector is given by the GLRT in (37), in which we substitute the
known frequency deviation in , , , and , which affects
the ML phasor estimators and . When the estimation error
is small, the known frequency-deviation GLRT is expected to be
close to the proposed GLRT.
In this case, single-phase voltage magnitude and phase

imbalance is considered by changing the voltage magnitude
and phase of the single-phase , i.e., by changing and .
In Fig. 2(a) and (b), the probability of detection is presented
versus different values of and , respectively, for a constant
false alarm probability of 15%. When approaches 1.03 or
approaches , a reduction occurs in the detection

probability since the magnitude or phase voltage imbalance
is smaller and identical to the balanced scenario. In this case,
the probability of detection is equal to the probability of error,
i.e. equal to 0.15. It can be seen that the detection probability
of the GLRT is significantly higher than that of the VUF for
any scenario. In addition, for high SNR the performance of
the GLRT with estimated frequency deviation coincides with
the known-frequency GLRT. It can be seen that the GLRT
and VUF are robust to this scenario outside the local region
of small insignificant imbalances and these detectors are able
to distinguish between true imbalances (higher than 3%) and
low unbalances. The GLRT detection probability is higher
than that of the VUF in this case too. Fig. 2(b) examines that
the proposed methods are symmetric w.r.t. clockwise and
anticlockwise movement of phasor .
In order to examine the influence of the number of samples

at the frequency domain, , on the detection performance, the
probability of detection is presented versus in 3 for a constant
false alarm probability of 15% and SNR dB. It can be seen
that for a large number of frequency domain samples, , the ef-
fect of frequency deviation is reduced. In particular, for ,
the performance of the GLRT with estimated frequency devia-
tion is very close to the performance of the known-frequency
GLRT for both SNR. In contrast to the GLRTs, for low SNR an
increase in does not improve the performance since the VUF
is not robust to the local-imbalances scenario. For high SNR,
the probability of detection of the VUF increases with but it
is lower than the probability of detection of the two GLRTs.

C. Case Study: Imbalance Detection in the Presence of Higher
Order Harmonics

Usually, there are additional harmonics where the harmonics
frequencies are multiples of the prevailing off-nominal network
frequency [1]. The performance of the GLRT is influenced by
the imbalance degree and the voltage signal harmonic distortion.
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Fig. 2. Magnitude and phase imbalances: The probability of detection of VUF
and GLRT with known/unknown frequency deviation for a constant probability
of false alarm of 15% and , , , ,

and are presented: (a) versus for ; and
(b) versus for .

Fig. 3. The probability of detection of VUF and GLRT with known/unknown
frequency deviation versus for a constant probability of false alarm of 15%
and , , , , , and

.

In order to model the influence of the harmonics, we replace the
model in (1) by (e.g., [1])

where we set , , , , and .
The other parameters are chosen to be the same parameters as
in Section V-B. The detectors' performance is presented for the
case of non-sinusoidal and voltage imbalance in Fig. 4. By com-
paring the probabilities of detection in 4 and 2 it can be seen that

Fig. 4. Magnitude and phase imbalances for non-sinusoidal signals: The prob-
ability of detection of VUF and GLRT with known/unknown frequency devia-
tion for a constant probability of false alarm of 15% and , ,

, , and and with two
additional harmonics are presented: (a) versus for ; and (b) versus for

.

Fig. 5. Asymptotic and simulated probability of error of the GLRT and
GLRT-SNH with known/unknown frequency deviation for ,

, , , , , , and
.

the performance degradation is not significant and the proposed
GLRT methods, as well as the existing VUF method, is not
sensitive to inter-harmonics. Therefore, the proposed methods
for detection of unbalances can be used also in the presence of
harmonics.

D. Probability of Error
The simulated false alarm probability of the GLRT and

GLRT-SNH with known/unknown frequency deviation and
the theoretical probability of error from (43) are presented in
Fig. 5 versus the threshold, , for an unbalanced system with

, , frequency samples, and for an SNR of
10 dB. According to (43), the probability of error is a function
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of the threshold and , but is independent of the noise level.
Therefore, Fig. 5 represents the results for any SNR. It can be
seen that the theoretical false alarm probability captures the
behavior of the actual false alarm probability of the GLRT and
GLRT-SNH even in the unknown-frequency case. That is, the
theoretical asymptotic performance (or equivalently, the per-
formance in the known frequency-deviation case) adequately
summarizes the actual performance for data records as short
as samples. Thus, we can conclude that although the
asymptotic bound theoretically requires an infinite number of
observations, it still provides a tight lower bound on the prob-
ability of error when there is a sufficiently large observation
window for both GLRT and GLRT-SNH. In addition, it can be
verified that for the same threshold value, the GLRT-SNH has
higher probability of error.

VI. CONCLUSION
In this study we demonstrate the detection of imbalances by

using the PMU output of the symmetrical components when
the voltage measurements are noise contaminated. We formu-
late the detection of imbalance as a hypothesis testing problem
with unknown constrained parameters within the framework of
detection theory. The GLRT is derived for this problem and
the CML phasors' estimators are developed for both balanced
and unbalanced systems and can be used for general state-es-
timation in a smart grid. The known-frequency and asymptotic
performance of the proposed GLRT detector has been provided
and can be used as a benchmark. In detection theory, different
tests induce different thresholds that the likelihood ratio is com-
pared to [38]. Thus, the threshold setting is the key component
of the hypothesis testing. In this context, a new formulation is
devised for setting the threshold that also interpolates the autho-
rized level of imbalances.
Simulation results have verified that the proposed GLRTwith

either known or estimated frequency deviation yields competi-
tive performance, compared to the state-of-the-art VUF method
and is better for magnitude imbalance detection. In addition, we
demonstrate that the proposed method is not sensitive to addi-
tional harmonics. Topics for future research include the deriva-
tion of mitigation techniques that use the proposed GLRT as
an imbalance measure in order to correct unbalanced voltage
problems more efficiently. In addition, real-time implementa-
tion of the proposed detectors can be very important, especially
the derivation of a change detection method for imbalances.
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