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Abstract—We propose a new multistatic adaptive microwave
imaging (MAMI) method for early breast cancer detection. MAMI
is a two-stage robust Capon beamforming (RCB) based image
formation algorithm. MAMI exhibits higher resolution, lower
sidelobes, and better noise and interference rejection capabilities
than the existing approaches. The effectiveness of using MAMI
for breast cancer detection is demonstrated via a simulated 3-D
breast model and several numerical examples.

Index Terms—Breast cancer detection, microwave imaging, mul-
tistatic, robust capon beamforming.

I. INTRODUCTION

BREAST cancer persists to be the top threat to women’s
health. In the U.S. alone, in 2006 the number of new cases

of breast cancer in women was estimated to be 212 920.1 As
explained in [1], early diagnosis is the key to beating the breast
cancer. Hence detecting tumors at a nonpalpable early stage
becomes the philosophy that drives the breast cancer screening
technology. Although X-ray mammography remains the stan-
dard for tumor screening, its inherent limitations are also well
recognized [2]. Among the emerging breast cancer imaging
technologies, microwave imaging is one of the most promising
and attractive methods. It is nonionizing, comfortable, sensitive
to tumors, and specific to malignancies. The physical basis
for microwave imaging lies in the significant contrast in the
dielectric properties between the normal breast tissue and the
malignant tissue at microwave frequencies [3]–[7].

During the past several decades, many modalities of mi-
crowave imaging have been considered [1], including passive,
hybrid, and active approaches. The passive microwave imaging
approaches mainly refer to the microwave radiometry [8], [9],
which uses radiometers to measure temperature differences
between the normal breast tissue and tumor due to their dif-
ferent metabolism rate. Hybrid methods use microwave to
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Fig. 1. Antenna array configuration.

selectively heat tumors and ultrasound transducers to detect
pressure waves generated by the expansion of the heated tissues
[10]. The active methods include the tomography image recon-
struction [11], [12] and the ultra-wideband (UWB) confocal
microwave imaging (CMI) methods [13]. The tomography
image reconstruction methods involve illuminating the breast
with microwaves and then measuring transmitted or reflected
microwave signals, to quantitative compute the spatial distri-
butions of the dielectric constant and/or conductivity. UWB
CMI is a more recent approach, where UWB microwave pulses
are transmitted from antennas at different locations near the
breast surface, the backscattered responses from the breast
are recorded, and the backscattered energy distribution is
calculated coherently. The advantages of UWB CMI include
high-resolution resulting from the ultra-wide band signaling,
as well as simple yet effective signal processing algorithms for
image reconstruction.

Depending on how data is acquired, there are monostatic [13],
bistatic [14], and multistatic [15], [16] CMI approaches. In the
monostatic approach, the transmitter is also used as a receiver
and is moved across the breast to form a synthetic aperture. For
the bistatic approach, the transmitting and receiving antennas
are different. In the multistatic approach, a real aperture array
(see Fig. 1) is used for data collection. Each antenna in the array
takes turns to transmit the probing pulse. For each transmit-
ting antenna, all antennas in the array are used to receive the
backscattered signals. The multistatic approach can give better
imaging results than its monostatic or bistatic counterparts when
the synthetic aperture formed by the latter two approaches is
similar to the real aperture array used by the former. An intuitive
explanation for this better performance is that the multistatic ap-
proach exploits multiple received signals that propagate via dif-
ferent routes, accruing more information about the tumor.

For monostatic and bistatic ultra-wideband CMI, the simple
delay-and-sum (DAS) scheme [13], [15], the data-indepen-
dent space-time beamforming (MIST) method [17], [18], and
the data-adaptive robust Capon beamforming (RCB) method
[14] as well as the amplitude and phase estimation (APES)
algorithm [14] have been considered for image formation. The
simulated breast models used to test these methods include

0018-9294/$20.00 © 2006 IEEE



1648 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 8, AUGUST 2006

a two-dimensional (2-D) model based on a breast magnetic
resonance imaging scan, which was used with the monostatic
DAS [13] and MIST [17], [18]; simple three-dimensional (3-D)
cylindrical and planar models were used with the monostatic
DAS [19], [20]; the more realistic 3-D hemispherical model
was used with the monostatic DAS [21], [22] as well as RCB
and APES [14]. For multistatic CMI, only DAS was considered
so far for image formation using the simulated 2-D [15] and
3-D hemispherical breast models [22].

In this paper, we present a multistatic adaptive microwave
imaging (MAMI) method for UWB CMI for early-stage breast
cancer detection. MAMI employs the data adaptive RCB algo-
rithm [23], [24] in two-stages. We use it with a realistic 3-D
breast model to demonstrate its performance. The 3-D breast
model is simulated using the finite-difference time-domain
(FDTD) [25], [26] method. We show that MAMI has much
better resolution and much better interference rejection capa-
bility than the existing methods.

The remainder of this paper is organized as follows. In
Section II, we describe the pre-processing of the received
signals, which precedes adaptive beamforming. Section III
presents the MAMI algorithm for image formation. Numer-
ical examples are presented in Section IV. Finally, Section V
contains our conclusions.

II. PROBLEM FORMULATION AND DATA PREPROCESSING

A. Problem Formulation

We consider a multistatic imaging system, where antennas
are arranged on a hemisphere relatively close to the breast skin,
at known locations ( ). Here,

denotes the transpose. The configuration of the array
is shown in Fig. 1. The antennas are arranged on layers
with antennas per layer, where . Each an-
tenna takes turns to transmit an UWB probing pulse while
all of the antennas record the backscattered signals. Let

, denote the backscat-
tered signal generated by the probing pulse sent by the th
transmitting antenna and received by the th receiving antenna.
The 3 1 vectors and denote the locations of the th
transmitting and th receiving antennas, respectively, and
denotes an imaging location.

Our goal herein is to form a 3-D image of the backscattered
energy on a grid of points within the breast, with the
goal of detecting the tumor. In our algorithm, the location
is varied to cover the entire grid points of the breast model. The
backscattered energy is estimated from the complete received
data for each location of interest.

B. Data Preprocessing

Before employing the MAMI for image formation, we pre-
process the received signals to remove, as much as possible,
backscattered signals (other than the tumor response), and to
compensate for the propagation loss of the signal amplitude.

First, to remove the undesired content in the received sig-
nals, we use a removal method similar to that in [13]. Note
that the received signals contain the tumor responses but also

other backscattered signals, such as the incident pulse, reflec-
tions from the skin, fatty and glandular tissues and the chest
wall, as well as parasitic signals due to the couplings among the
antennas. In fact the undesired signals are usually much stronger
than the tumor responses. A calibration signal is formed as an
average of the signals containing similar strong undesired sig-
nals. Then the calibration signal is subtracted out from these sig-
nals to remove the undesired signals as much as possible. This
simple removal method could be improved, but the residual of
undesired content can be tolerated by our robust adaptive al-
gorithm to some extent. Advanced methods such as those pre-
sented in [17] can be used here and a better performance may
be achieved. Let denote the signal after subtracting out
the calibration signal.

In the second step, to process the signals coherently, we time-
shift by a number of samples to align the returns
from the focal point (at location ). The discrete time delays for
the received signals can be determined from the corresponding
transmitter and receiver locations , and the imaging lo-
cation of interest

(1)

where stands for rounding to the greatest integer less than ,
denotes the Euclidean norm, is the approximate velocity

of the microwaves propagating in the normal breast tissues, and
is the sampling interval, which is assumed to be well below

the Nyquist interval. Note that (1) assumes that the breast tissue
is homogeneous, which in fact is not true. However, this approx-
imation causes little performance degradations when used with
our robust adaptive algorithm. Let be the time shifted
signal. Then,

(2)

where is the maximum round-trip discrete-time delay re-
quired for a pulse to propagate from the transmitter to the skin
or chest wall and back to the receiver. Hence defines the
maximum duration of interest of the received signal.

Next, we apply a time-window to the time-shifted signals.
The window is given by

otherwise
(3)

where is the approximate time duration of the backscat-
tered signal from the focal point . Note that is determined
by the duration of the known transmitted pulse and the sampling
interval. Let , , denote the windowed
signal.

Finally, we consider the effects of propagation attenuation in
the lossy breast tissues. The major attenuation is caused by a
decrease in the amplitude of the spherical wave as it expands.
To eliminate this attenuation, we multiply each received signal
by a suitable compensation factor. The compensation factor can
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be determined from the locations of the transmitter and receiver,
, , and of the focal point, , as follows:

(4)

Then the compensated signal is given by

(5)

We remark that since our problem is interference (due to un-
desired reflections) limited, rather than noise limited, the loss of
SNR caused by the aforementioned attenuation compensation is
insignificant.

III. MAMI

MAMI is a two-stage adaptive imaging method. First, the
data-adaptive RCB algorithm is used spatially to obtain a vector
of multiple backscattered waveforms for each probing signal.
Second, RCB is employed to recover a scalar waveform based
on the estimated vector of waveforms obtained in the first stage.
The estimated scalar waveform is used to compute the backscat-
tered energy .

A. MAMI-Stage I

For notational simplicity, the dependence of on the
generic location vector is omitted in what follows. Consider
the following model for the preprocessed signal vector:

(6)

where . The scalar denotes
the backscattered signal (from the focal point at location )
corresponding to the probing signal from the th transmitting
antenna. The vector in (6) is referred to as the array steering
vector; note that is approximately equal to since all
the signals have been aligned temporally and their attenuations
compensated for. The vector denotes the residual term at
point , which includes the unmodeled noise and interference
due to undesired reflections.

There are two assumptions with this model. First, we assume
that the steering vector varies with , and is nearly a constant
with respect to . Second, we assume that the backscattered
signal waveform depends only on but not on , the th re-
ceiving antenna. The truth, however, is that the steering vector is
not exactly known and changes slightly with both and due to
array calibration errors and other factors. The signal waveform
should also vary with both and , due to the frequency-de-
pendent lossy medium within the breast [27]. These assump-
tions simplify the problem slightly and cause little performance
degradations when used with robust adaptive algorithms. By as-
suming that the true steering vector is time-varying, we allocate
more “room” for robustness.

Due to the errors induced by waveform distortions, antenna
location uncertainties, time-delay roundoffs, etc., the steering

vector will be imprecise in practice, in the sense that the
elements of may differ slightly from 1. This uncertainty
in the steering vector motivates us to consider using RCB for
waveform estimation. To make the paper as self-contained as
possible, we give a review of the RCB algorithm. RCB is de-
rived from the Standard Capon Beamforming (SCB) algorithm.
SCB aims at estimating the signal waveform (or signal energy),
by choosing a weight vector for the data, which minimizes the
array output power and passes the signal of interest without any
distortion. To improve the performance of SCB in the presence
of steering vector errors and in the case of a low number of snap-
shots, RCB makes an explicit use of an uncertainty set for the
array steering vector. Therefore, we assume that the true steering
vector lies in the vicinity of the assumed steering vector

, and that the only knowledge we have about
is that

(7)

where is used to describe the uncertainty of about , the
choice of which will be discussed later on.

In Stage I, for a given time , , we can
estimate the true steering vector via the following covari-
ance fitting approach [23] of RCB

(8)

where is the power of the “signal
of interest,” and

(9)

is the sample covariance matrix with

(10)
Observe that both the signal power and the steering
vector are treated as unknowns in (8). Hence there is a
“scaling ambiguity” between these two unknowns (see [28]),
in the sense that and
(for any ) give the same term . To
eliminate this ambiguity, we later impose the norm constraint

(11)

For any given , the solution to (8) is [28]

(12)
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Hence, (8) can be reduced to the following quadratic optimiza-
tion problem with quadratic constraint:

(13)
To exclude the trivial solution , we need to assume
that the uncertainty parameter is sufficiently small

(14)

To determine the solution of (13) under (14), we use the La-
grange multiplier methodology and consider the following func-
tion:

(15)
where is the real-valued Lagrange multiplier satisfying

, so that (15) can be minimized with respect
to . For the unconstrained minimization of , for
a fixed , the solution is given by

(16)

where the matrix inversion lemma [14] has been used to obtain
the second equality. Let denote the uncertainty set defined
in (7). It can be shown that the solution belongs to the
boundary of and, hence, satisfies

(17)

By using (16) in (17), we can obtain the Lagrange multiplier as
the solution to the constraint equation

(18)

Let the eigendecomposition of be

(19)

where the columns of are the eigenvectors of and the
diagonal elements of the diagonal matrix ,

, are the corresponding eigenvalues. Here, the dependencies
of and on are omitted for simplicity. Let and

denote its th element. Then, (18) can be rewritten as

(20)

Note that is a monotonically decreasing function of .
Also, it is clear that by (14), and

. Hence, there is a unique solution to (20), which
can be solved efficiently, say, by the Newton’s method. Inserting

in (16), we readily determine the solution . To eliminate
the aforementioned “scaling ambiguity,” by (11), we replace the
solution with

(21)

To obtain the signal waveform, we apply a weight vector to
the received signals. The weight vector is determined by using
the estimated steering vector in the weight vector expres-
sion formula of SCB (see, e.g., [28]). The weight vector used in
Stage I of MAMI has the form given by

(22)

(23)

The equality to obtain (23) is due to inserting (16) and (21)
in (22). Note that (23) has a diagonal loading form. Diagonal
loading is a popular approach to mitigate the performance degra-
dations of SCB in the presence of steering vector errors or small
sample size problems. The distinction between RCB and the
conventional diagonal loading methods is that RCB directly de-
termines the optimal diagonal loading level needed for a given
steering vector uncertainty set. Note that by diagonal loading,
we can even allow the sample covariance matrix to be rank-de-
ficient.

The beamformer output can be written as a vector

(24)

Here, contains the waveform estimates at of the
backscattered signals (from the focal point ) due to all the
probing signals indexed from 1 to . Repeating the above
process from to , we obtain the complete
multiple backscattered signal waveform estimates.

Note that, at this stage, we have obtained estimates of
the backscattered waveforms corresponding to the probing
signals sent by each of the transmitting antenna. Since these
probing signals are UWB pulses with the same waveform, we
can assume that the backscattered signal waveforms from
due to all the probing signals are (nearly) identical. To estimate
the backscattering energy coherently, in the next stage, a
scalar waveform is recovered from these estimated

-dimensional signal waveform vectors .
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B. MAMI-Stage II

In the second stage of MAMI, the signal waveform vector
, , is treated as a snapshot from an -ele-

ment (fictitious) “array”

(25)

where is approximately equal to for the same reason
as in Stage I. However, the “steering vector” may again be
imprecise, and hence RCB is needed again. In (25), denotes
the nominal backscattered signal waveform, due to all probing
signals, and each element of contains the differences be-
tween the corresponding element in and . Paralleling
the description of Stage I, we estimate via the following
RCB formulation:

(26)

where is the power of the signal of
interest, is a user parameter, and is the following temporal
sample covariance matrix:

(27)

Note that here we can use the same assumed steering vector as
in Stage I. To eliminate the scaling ambiguity, we again impose
the norm constraint

(28)

Similarly to Stage I, the solution to (26) is

(29)

where is the corresponding Lagrange multiplier used in
solving (26), which can be determined similarly to obtaining .
Similar to (28), we replace with

(30)

Therefore, the adaptive weight vector for Stage II is
determined by a formula similar to (23)

(31)

(32)

where (32) shows again the diagonal loading form of the weight
vector.

The weighted output is the estimate of

(33)

Finally, the backscattered energy for the focal point is com-
puted as

(34)

In summary, the MAMI method can be described as follows.

Step 1: Preprocess the received signal, i.e., remove the
unwanted content, time-shift, apply the time-window and
compensate for the propagation loss.

Step 2: From the preprocessed signals, obtain multiple
backscattered signal waveform estimates via RCB.

Step 3: Estimate the scalar waveform from via RCB.
Finally compute the backscattered energy via (34).

For RCB used in Stages I and II of MAMI, the choice of
and should be made as small as possible. It can be experimen-
tally observed that as or increases, the resolution of RCB
decreases. When or is large, the ability of RCB to suppress
interferences that are close to the signal of interest degrades.
Also, the smaller the sample size or the larger the steering
vector and the system errors, the larger should and be chosen
[23], [24]. Such qualitative guidelines are usually sufficient for
the choice of uncertainty size parameters, as the performance of
RCB dose not depend very critically on them (as long as they
take on “reasonable values”) [28]. In our numerical examples,
we choose two reasonable initial values of them and then make
adjustment experimentally to obtain the best image quality.

Regarding the computational complexity of MAMI, the
major computational cost of MAMI is due to RCB used in
Stages I and II. The major flop count of using RCB comes from
the eigen-decomposition of the sample covariance matrices
[23], [24] ( for Stage I and for Stage II), each
requiring flops. Also, RCB is used times in Stage
I and once in Stage II. Hence MAMI requires flops
for a given focal point, which is larger than the flops
of DAS.

IV. NUMERICAL EXAMPLES

A. Breast Model and Data Acquisition

In our numerical examples, we consider a 3-D simulated
breast model. Two cross sections of the model are shown in
Fig. 2. The 3-D model includes randomly distributed fatty
breast tissue, glandular tissue, 2-mm-thick skin, as well as
the nipple and chest wall. To reduce the reflections from the
skin, the breast model is immersed in a lossless liquid with
permittivity similar to that of the breast fatty tissue. The breast
is a hemisphere with 100 mm in diameter. A 6 mm-diameter
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Fig. 2. Cross sections of a 3-D hemisphere breast model at (a) z = 60 mm

and (b) y = 90 mm.

TABLE I
NOMINAL DIELECTRIC PROPERTIES OF BREAST TISSUES

tumor (a 4 mm-diameter tumor at the same location will be
treated in our fourth example) is located 27 mm under the skin
(at , , ). The diameter of the
tumor is larger than that of the smallest 2–mm-diameter tumor
considered in the literature [17]. However, the smaller tumor
considered there was for a 2-D model, which is equivalent to
an infinitely long cylindrical tumor in the 3-D model. Thus
it has significantly larger backscattered energy in the FDTD
simulations than our spherical tumor in the 3-D model.

The dielectric properties of the breast tissues are assumed to
be Gaussian random variables with variations of around
their nominal values. This variation represents the upper bound
reported in the literature [3], [6]. The nominal values are chosen
to be typical of the reported data [3]–[7], which is given in
Table I. The dielectric constants of glandular tissues are be-
tween and . Since the transmitted signal is an
UWB pulse, the dispersive properties of the fatty breast tissue
and those of the tumor are also considered in the model. The
frequency dependencies of permittivity and conductivity

are modeled by the single-pole Debye model [13]. The
randomly distributed breast tissues with variable dielectric prop-
erties are representative of the nonhomogeneity of the breast
from an actual patient.

As shown in Fig. 1, a hemispherical antenna array consisting
of omnidirectional antennas is used, with each an-
tenna being approximated as a point source. The antennas are 1
cm away from the breast skin, on in the -axis di-
mension. The layers of the antenna are arranged along the -axis
between 5.0 cm and 7.5 cm, with 0.5-cm spacing between the
layers. Within each layer, antennas are placed on a
cross-sectional circle with uniform spacing.

The UWB signal used in our simulations is a Gaussian pulse,
with the pulse interval being about 120 ps. The spectrum of this
source waveform has a peak near 5 GHz. The probing signals

Fig. 3. Comparison of 3-D images of a 6 mm in diameter tumor obtained via
six different imaging algorithms, in the absence of thermal noise. The intensity
scale is logarithmic with a 20-dB dynamic range. The shaded hemisphere is the
contour of the breast, and the dotted shades inside correspond to the intensity of
the backscattered energy estimates. (a) MAMI with � = ~� = 2:4, (b) multistatic
DAS, (c): RCB, (d) APES, (e) MIST, and (f) monostatic DAS.

are emitted by each of the 72 antennas sequentially. For each
probing signal, the backscattered signals are recorded by all the
antennas, resulting in 72 received backscattered signals. We use
the FDTD method in our simulations to obtain the backscat-
tered signals. The grid cell size used by FDTD is 1 mm 1
mm 1 mm and the time step is 1.667 ps (about 600-GHz sam-
pling frequency). The model is terminated according to per-
fectly match layer absorbing boundary conditions [29]–[31].
The transform [32], [33] is used to implement the FDTD
method whenever materials with frequency-dependent proper-
ties are involved. Finally, the length of the time window in the
preprocessing step is 150 samples, therefore for each
of the preprocessed signal.

B. Imaging Results

In this section, several numerical examples are provided to
demonstrate the performance of MAMI under various condi-
tions. For comparison purposes, the multistatic DAS scheme
presented in [15], and several monostatic methods, namely RCB
[14], APES [34], [35], MIST [17], and the monostatic DAS [13]
(see Table II), are also applied to the same datasets. The mono-
static and multistatic DAS are simple schemes that estimate the
signal waveform using the data-independent weight vector

(35)

Then the estimated backscattered signal waveform for the
monostatic case is

(36)
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TABLE II
VARIOUS MEASUREMENTS OF FIG. 3

where is a vector consisting of all the diagonal elements of
. For the multistatic case,

(37)

MIST uses a data-independent weight vector that is designed to
pass the backscattered signals from with unit gain and atten-
uate signals from other locations [17]. We have generalized the
2-D algorithm in [17] to the 3-D case. APES and RCB [14] are
data-adaptive approaches for monostatic or bistatic microwave
imaging.

Fig. 3 shows the 3-D images obtained via MAMI and the
aforementioned methods. Fig. 4 shows the corresponding -
and - cross section images. The images are displayed on
a logarithmic scale with a 20-dB dynamic range. In Fig. 3(a)
as well as in 4(a1) and 4(a2), which correspond to MAMI, the
tumor is conspicuously shown at the true location in the -
plane, with negligible clutter. The resolution in the - plane
is poorer due to the geometry of the array. The images ob-
tained with the other methods are poorer or much poorer than
the MAMI images. Note that the images in Figs. 3(c)–(f) and
4(c1)–(f2) are worse than those in [14]. The reason is that the
antennas in our examples are away from the breast skin, instead
of being on the skin as in [14]. Consequently the strengths of
the tumor responses in our examples are lower than those in the
examples of [14]. In all the numerical examples, the user pa-
rameters and are adjusted to obtained the best image quality.
Note that the resolution in the direction is poorer than those
in the and directions, due to the geometry of our array (the
array aperture is smaller in the - dimension than in its -
counterpart.)

The second example shows the imaging results when additive
Gaussian noise with zero-mean and variance is added to the
data in Example 1. The signal-to-noise ratio (SNR) is defined as

(38)

The in (38) is the received signal due to the tumor only,
which is not available in practice. Hence, to compute the SNR,
we performed the simulation twice, with and without the tumor,
and took the difference of the two received signals as an approx-
imation to . In the preprocessing, a simple low-pass filter
is applied to the raw data to remove some noise.

Fig. 4. Comparison of cross sections of the images in Fig. 3. The intensity
scale is logarithmic with a 20-dB dynamic range. (a1) and (a2) MAMI with
� = ~� = 2:4, (b1) and (b2) multistatic DAS, (c1) and (c2): RCB, (d1) and (d2)
APES, (e1) and (e2) MIST, and (f1) and (f2) monostatic DAS.
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Fig. 5. Comparison of the cross section images obtained via six imaging al-
gorithms. A 6 mm-diameter tumor is present with thermal noise added to yield
SNR = �22 dB. The intensity scale is logarithmic with a 20-dB dynamic
range. (a1) and (a2) MAMI with � = ~� = 2:4, (b1) and (b2) multistatic DAS,
(c1) and (c2) RCB, (d1) and (d2) APES, (e1) and (e2) MIST, and (f1) and (f2)
monostatic DAS.

The noise suppression capability of MAMI is demonstrated
in Fig. 5, where . At such a low SNR, the
received tumor responses are completely buried in noise. Note
from Fig. 5(a1) and (a2) that MAMI can still produce quite clear
images, with the tumor only slightly blurred by noise. The other
methods perform much worse. In particular, in all monostatic
images, the tumor is completely buried in the noise and clutter.
This superior performance of MAMI demonstrates the effec-

Fig. 6. Comparison of the cross section images obtained using MAMI and mul-
tistatic DAS for 18 antennas. A 6 mm-diameter tumor is present with thermal
noise added to yield SNR = �22 dB. Presented on a log magnitude with a
20-dB dynamic range. (a1) and (a2) MAMI with � = ~� = 2:4, and (b1) and
(b2) multistatic DAS.

Fig. 7. Images of 6 mm-diameter tumor obtained via MAMI with different �

and ~�. The intensity scale is logarithmic with a 20-dB dynamic range. (a) � =

~� = 0:6, (b) � = ~� = 1:8, (c) � = ~� = 2:4, and (d) � = ~� = 3:6.

tiveness of the two-stage RCB scheme in suppressing the noise.
We also varied SNR in our numerical experiments, and as ex-
pected, the image quality of all imaging methods degrade with
decreased SNR.

In the third example, the number of antennas is decreased
to one quarter of the original number: only 18 antennas are
used, arranged on the same hemisphere as before. The original
6 layers of antennas are reduced to 3 layers in that every other
layer is eliminated; for each remaining layer, the original 12
antennas are reduced to 6 antennas in that every other antenna
is eliminated. Again, the thermal noise is added, with

. In the practical imaging system design, the size of the
antenna array is one of the most important concerns: due to the
limited available space around the breast, a small number of an-
tennas is desirable. Yet reducing the antenna number poses a
challenge to any imaging methods, due to the greatly reduced
amount of information for imaging. Fig. 6(a) and (a2) show the
cross section images produced by MAMI. The tumor stands out
by more than 10 dB compared to the neighboring clutter and in-
terference. In Fig. 6(b1) and (b2), which are produces by multi-
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TABLE III
VARIOUS MEASUREMENTS OF THE 2-D X-Y CROSS SECTION IMAGES IN FIG. 4–8

Fig. 8. Cross section images in the presence of a 4 mm-diameter tumor, in the
absence of thermal noise, and with 72 antennas. The intensity scale is loga-
rithmic with a 20-dB dynamic range. (a1) and (a2) MAMI with � = ~� = 2:4,
(b1) and (b2) multistatic DAS, (c1) and (c2) RCB, (d1) and (d2) APES, (e1) and
(e2) MIST, and (f1) and (f2) monostatic DAS.

static DAS, the tumor is complete buried in clutter. The quality
of the images produced by MAMI using 18 antennas is compa-

rable to that corresponding to the best monostatic methods using
72 antennas.

In the fourth example, we vary and . Fig. 7(a)–(c) shows
the images of the 6-mm-diameter tumor formed by MAMI with
different and (here we choose for simplicity). We note
that the image quality does not vary significantly with and .

The fifth example is similar to the first one except that the
tumor size is now reduced to 4 mm in diameter. The backscat-
tered microwave energy is much smaller in this case since the
backscattered energy from tumor is proportional to the square
of the tumor diameter. Fig. 8(a1) and (a2) show the MAMI im-
ages, where the tumor is still observable, about 10 dB higher
than the neighboring clutter. The other methods, as shown in
Fig. 8(b1)–(f2), give much poorer performance.

We measure the tumor localization accuracy based on the
maximum pixel value in the image, and measure the tumor size
based on the full-width at half-maximum the tumor response
[20]. To quantify the image quality, we use the signal-to-clutter
ratio [20], which is defined as the ratio of the maximum tumor
response to the maximum clutter value in the same image. The
maximum clutter value is determined as the maximum pixel
value outside the volume containing the tumor. Such measure-
ments for the images in Figs. 3–8 are summarized in Tables II
and III.

V. CONCLUSION

We have considered adaptive multistatic microwave imaging
for breast cancer detection. A real aperture array is used for data
collection. Each antenna in the array takes turns to transmit an
ultra-wideband pulse while all antennas receive the backscat-
tered signals. The data-adaptive algorithm, referred to as the
MAMI algorithm, is a two-stage robust Capon beamforming
algorithm. Using a 3-D breast model simulated via the finite-
difference time-domain (FDTD) method, we have shown that
MAMI exhibits higher resolution, lower sidelobes, and better
noise and interference rejection capability than other existing
approaches.

ACKNOWLEDGMENT

The authors would like to thank Mr. W. Roberts for his
helpful comments on the paper.

REFERENCES

[1] E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A.
Stuchly, “Enhancing breast tumor detection with near-field imaging,”
IEEE Microw. Magazine, vol. 3, no. 1, pp. 48–56, Mar. 2002.



1656 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 53, NO. 8, AUGUST 2006

[2] S. J. Nass, I. C. Henderson, and J. C. Lashof, Mammography and
Beyond: Developing Techniques for the Early Detection of Breast
Cancer. Washington, D.C: Inst. Med., Nat. Acad. Press, 2001.

[3] S. S. Chaudhary, R. K. Mishra, A. Swarup, and J. M. Thomas, “Di-
electric properties of normal and malignant human breast tissues at ra-
diowave and microwave frequencies,” Indian J.f Biochem. Biophys.,
vol. 21, pp. 76–79, Feb. 1984.

[4] A. J. Surowiec, S. S. Stuchly, J. R. Barr, and A. Swarup, “Dielec-
tric properties of breast carcinoma and the surrounding tissues,” IEEE
Trans. Biomed. Eng., vol. 35, no. 4, pp. 257–263, Apr. 1988.

[5] A. Swarup, S. S. Stuchly, and A. J. Surowiec, “Dielectric properties of
mouse MCA1 fibrosarcoma at different stages of development,” Bio-
electromagnetics, vol. 12, no. 1, pp. 1–8, 1991.

[6] W. T. Joines, Y. Zhang, C. Li, and R. L. Jirtel, “The measured electrical
properties of normal and malignant human tissues from 50 to 900 mhz,”
Med. Phys., vol. 21, pp. 547–550, Apr. 1994.

[7] C. Gabriel, R. W. Lau, and S. Gabriel, “The dielectric properties of
biological tissues: II. measured in the frequency range 10 Hz to 20
GHz,” Phys. Med. Biol., vol. 41, pp. 2251–2269, Nov. 1996.

[8] K. L. Carr, “Microwave radiometry: Its importance to the detection
of cancer,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 12, pp.
1862–1869, Dec. 1989.

[9] B. Bocquet, J. C. van de Velde, A. Mamouni, Y. Leroy, G. Giaux, J.
Delannoy, and D. Del Valee, “Microwaves radiometric imaging at 3
GHz for the exploration of breast tumors,” IEEE Trans. Microw. Theory
Tech., vol. 38, no. 6, pp. 791–793, Jun. 1990.

[10] L. V. Wang, X. Zhao, H. Sun, and G. Ku, “Microwave-induced
acoustic imaging of biological tissues,” Rev. Scientif. Instrum., vol.
70, pp. 3744–3748, 1999.

[11] P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen,
“A clinical prototype for active microwave imaging of the breast,”
IEEE Trans. Microw. Theory Tech., vol. 48, no. 11, pp. 1841–1853,
Nov. 2000.

[12] A. E. Souvorov, A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and
G. P. Tatsis, “Two-demensional computer analysis of a microwave flat
antenna array for breast cancer tomography,” IEEE Trans. Microw.
Theory Tech., vol. 48, no. 8, pp. 1413–1415, Aug. 2000.

[13] X. Li and S. C. Hagness, “A confocal microwave imaging algorithm for
breast cancer detection,” IEEE Microw. Wireless Compon. Lett., vol.
11, no. 3, pp. 130–132, Mar. 2001.

[14] B. Guo, Y. Wang, J. Li, P. Stoica, and R. Wu, “Microwave imaging via
adaptive beamforming methods for breast cancer detection,” J. Elec-
tromagn. Waves Applicat., vol. 20, no. 1, pp. 53–63, 2006.

[15] R. Nilavalan, A. Gbedemah, I. J. Craddock, X. Li, and S. C. Hagness,
“Numerical investigation of breast tumour detection using multi-static
radar,” Inst. Elect. Eng. Electron. Lett. vol. 39, Dec. 2003, Online No.
20031183.

[16] I. J. Craddock, R. Nilavalan, J. Leendertz, and A. Preece, “Experi-
mental investigation of real aperture synthetically organised radar for
breast cancer detection,” in Proc. IEEE Antennas and Propagation
Symp., Jul. 2005, vol. 1B, pp. 179–182.

[17] E. J. Bond, X. Li, S. C. Hagness, and B. D. Van Veen, “Microwave
imaging via space-time beamforming for early detection of breast
cancer,” IEEE Trans. Antennas Propagat., vol. 51, no. 8, pp.
1690–1705, Aug. 2003.

[18] S. K. Davis, E. J. Bond, S. C. Hagness, and B. D. Van Veen, “Mi-
crowave imaging via space-time beamforming for early detection of
breast cancer: Beamforming design in the frequency domain,” J. Elec-
tromagn. Waves Applicat., vol. 17, pp. 357–381, Feb. 2003.

[19] E. C. Fear and M. A. Stuchly, “Microwave detection of breast cancer,”
IEEE Trans. Microw. Theory Tech., vol. 48, no. 11, pp. 1854–1863,
Nov. 2000.

[20] E. C. Fear, X. Li, S. C. Hagness, and M. A. Stuchly, “Confocal mi-
crowave imaging for breast cancer detection: Localization of tumors
in three dimensions,” IEEE Trans. Biomed. Eng., vol. 49, no. 8, pp.
812–822, Aug. 2002.

[21] E. C. Fear and M. Okoniewski, “Confocal microwave imaging for
breast cancer detection: Application to hemispherical breast model,”
in Dig., 2002 IEEE MTT-S Int. Microwave Symp. , Jun. 2002, vol. 3,
pp. 1759–1762.

[22] M. A. Hernández-López, M. Quintillán-González, S. G. García, A. R.
Bretones, and R. G. Martín, “A rotating array of antennas for confocal
microwave breast imaging,” Microw. Opt. Technol. Lett., vol. 39, pp.
307–311, Nov. 2003.

[23] J. Li, P. Stoica, and Z. Wang, “On robust capon beamforming and
diagonal loading,” IEEE Trans. Signal Process., vol. 51, no. 7, pp.
1702–1715, Jul. 2003.

[24] P. Stoica, Z. Wang, and J. Li, “Robust capon beamforming,” IEEE
Signal Process. Lett., vol. 10, no. 6, pp. 172–175, Jun. 2003.

[25] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method, 3rd ed. Boston, MA: Artech
House, 2005.

[26] D. M. Sullivan, Electromagnetic Simulation Using FDTD Method, 1st
ed. Piscataway, NJ: Wiley–IEEE Press, 2000, RF and Microwave
Technology.

[27] P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD
method for microwave breast cancer detection,” IEEE Trans. Microw.
Theory Tech., vol. 52, no. 8, pp. 1890–1897, Aug. 2004.

[28] J. Li and P. Stoica, Eds., Robust Adaptive Beamforming New York,
Wiley, 2005.

[29] S. D. Gedney, “An anisotropic perfectly matched layer-absorbing
medium for the truncation of FDTD lattices,” IEEE Transactions on
Antennas and Propagation, vol. 44, pp. 1630–1639, Dec. 1996.

[30] J. P. Berenger, “A perfectly matched layer for the absorption of electro-
magnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, Oct. 1994.

[31] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly
matched anisotropic absorber for use as an absorbing boundary condi-
tion,” IEEE Trans. Antennas Propagat., vol. 43, no. 12, pp. 1460–1463,
Dec. 1995.

[32] D. M. Sullivan, “Frequency-dependent FDTD methods using Z

transforms,” IEEE Trans. Antennas Propagat., vol. 40, no. 10, pp.
1223–1230, Oct. 1992.

[33] ——, “Z-transform theory and the FDTD method,” IEEE Trans. An-
tennas Propagat., vol. 44, no. 1, pp. 28–34, Jan. 1996.

[34] J. Li and P. Stoica, “An adaptive filtering approach to spectral estima-
tion and SAR imaging,” IEEE Trans. Signal Process., vol. 44, no. 6,
pp. 1469–1484, Jun. 1996.

[35] P. Stoica, H. Li, and J. Li, “A new derivation of the APES filter,” IEEE
Signal Process. Lett., vol. 6, no. 8, pp. 205–206, Aug. 1999.

Yao Xie (S’04) received the B.Sc. degree from the
University of Science and Technology of China
(USTC), Hefei, China, in 2004, and the M.Sc. degree
from the University of Florida, Gainesville, in 2006,
both in electrical engineering. She is currently
working towards the Ph.D. degree in the Department
of Electrical Engineering, Stanford University,
Stanford, CA.

Her research interests include signal processing,
medical imaging, and optimization.

Ms. Xie is a member of Tau Beta Pi and Etta Kappa
Nu. She was the first place winner in the Student Best Paper Contest at the 2005
Annual Asilomar Conference on Signals, Systems, and Computers, for her work
on breast cancer detection.

Bin Guo (S’06) received the B.E. and M.Sc. degree
in electrical engineering from Xian Jiaotong Univer-
sity, Xian, China, in 1997 and 2000 respectively. He
is working towards the Ph.D. degree in electrical en-
gineering in the Department of Electrical and Com-
puter Engineering, University of Florida, Gainesville.

From April 2002 to July 2003, he was an Asso-
ciate Research Scientist with the Temasek Labora-
tories, National University of Singapore, Singapore.
Since August 2003, he has been a Research Assistant
with the Department of Electrical and Computer En-

gineering, University of Florida. His current research interests include biomed-
ical applications of signal processing, microwave imaging, and computational
electromagnetics.

Luzhou Xu (S’05) received the B.Eng. and M.S. de-
grees in electrical engineering from Zhejiang Uni-
versity, Hangzhou, China, in 1996 and 1999, respec-
tively. He is currently working towards the Ph.D. de-
gree in the Department of Electrical and Computer
Engineering, University of Florida, Gainesville.

From 1999 to 2001, he was with the Zhongxing RD
institute, Shanghai, China, where he was involved in
the system and algorithm design of mobile communi-
cations equipment. From 2001 to 2003, he was with
Wireless Communications Group, Philips Research,

Shanghai. His research interests include statistical signal processing and its ap-
plications.



XIE et al.: MULTISTATIC ADAPTIVE MICROWAVE IMAGING FOR EARLY BREAST CANCER DETECTION 1657

Jian Li (S’88–M’90–SM’97–F’05) received the
M.Sc. and Ph.D. degrees in electrical engineering
from The Ohio State University, Columbus, in 1987
and 1991, respectively.

From July 1991 to June 1993, she was an Assis-
tant Professor with the Department of Electrical En-
gineering, University of Kentucky, Lexington. Since
August 1993, she has been with the Department of
Electrical and Computer Engineering, University of
Florida, Gainesville, where she is currently a Pro-
fessor. Her current research interests include spectral

estimation, statistical and array signal processing, and their applications.
Dr. Li is a fellow of Institution of Electrical Engineers (IEE). She received

the 1994 National Science Foundation Young Investigator Award and the 1996
Office of Naval Research Young Investigator Award. She has been a member of
the Editorial Board of Signal Processing, a publication of the European Associ-
ation for Signal Processing (EURASIP), since 2005. She is presently a member
of two of the IEEE Signal Processing Society technical committees: the Signal
Processing Theory and Methods (SPTM) Technical Committee and the Sensor
Array and Multichannel (SAM) Technical Committee.

Petre Stoica (SM’91–F’94) received the D.Sc. de-
gree in automatic control from the Polytechnic Insti-
tute of Bucharest (BPI), Bucharest, Romania, in 1979
and an honorary doctorate degree in science from Up-
psala University (UU), Uppsala, Sweden, in 1993.

He is a Professor of Systems Modeling with the
Division of Systems and Control, the Department
of Information Technology, UU. He was a Professor
of System Identification and Signal Processing with
the Faculty of Automatic Control and Computers,
BPI. He held longer visiting positions with Eind-

hoven University of Technology, Eindhoven, The Netherlands; Chalmers
University of Technology, Gothenburg, Sweden (where he held a Jubilee
Visiting Professorship); UU; The University of Florida, Gainesville, FL; and
Stanford University, Stanford, CA. His main scientific interests are in the
areas of system identification, time series analysis and prediction, statistical
signal and array processing, spectral analysis, wireless communications, and
radar signal processing. He has published nine books, ten book chapters,
and some 500 papers in archival journals and conference records. The most
recent book he coauthored, with R. Moses, is Spectral Analysis of Signals
(Prentice-Hall, 2005). He is on the editorial boards of six journals: Journal
of Forecasting, Signal Processing, Circuits, Signals, and Signal Processing,
Digital Signal Processing, ICA Review Journal, Signal Processing Magazine,
and Multidimensional Systems and Signal Processing. He was a co-guest editor
for several special issues on system identification, signal processing, spectral
analysis, and radar for some of the aforementioned journals, as well as for the
IEE Proceedings.

Dr. Stoica was corecipient of the IEEE ASSP Senior Award for a paper on
statistical aspects of array signal processing. He was also recipient of the Tech-
nical Achievement Award of the IEEE Signal Processing Society. In 1998, he
was the recipient of a Senior Individual Grant Award of the Swedish Founda-
tion for Strategic Research. He was also co-recipient of the 1998 EURASIP Best
Paper Award for Signal Processing for a work on parameter estimation of ex-
ponential signals with time-varying amplitude, a 1999 IEEE Signal Processing
Society Best Paper Award for a paper on parameter and rank estimation of re-
duced-rank regression, a 2000 IEEE Third Millennium Medal, and the 2000 W.
R. G. Baker Prize Paper Award for a paper on maximum likelihood methods
for radar. He was a member of the international program committees of many
topical conferences. From 1981 to 1986, he was a Director of the International
Time-Series Analysis and Forecasting Society, and he was also a member of the
IFAC Technical Committee on Modeling, Identification, and Signal Processing.
He is also a member of the Royal Swedish Academy of Engineering Sciences,
an honorary member of the Romanian Academy, and a fellow of the Royal Sta-
tistical Society.


