
Diversity-Multiplexing-Delay Tradeoffs in MIMO
Multihop Networks with ARQ

Yao Xie∗, Andrea Goldsmith∗

∗Department of Electrical Engineering, Stanford University, Stanford, CA.
Email: yaoxie@stanford.edu, andrea@wsl.stanford.edu

Abstract—The tradeoff between diversity, multiplexing, and
delay in multihop MIMO relay networks with ARQ is studied,
where the random delay is caused by queueing and ARQ retrans-
mission. This leads to an optimal ARQ allocation problem with a
per-hop delay or end-to-end delay constraint. The optimal ARQ
allocation has to trade off between the ARQ error that the receiver
fails to decode in the allocated maximum ARQ rounds and the
packet loss due to queueing delay. These two probability of errors
are characterized using the diversity-multiplexing-delay tradeoff
(DMDT) (without queueing) and the tail probability of random
delay derived using large deviation techniques, respectively. Then
the optimal ARQ allocation problem can be formulated as a
convex optimization problem. We show that the optimal ARQ
allocation should balance each link performance as well as avoid
significant queue delay, which is also demonstrated by numerical
examples.

I. INTRODUCTION

In a multihop relaying system, each terminal receives the
signal only from the previous terminal in the route and, hence,
the relays are used for coverage extension. Multiple input-
multiple output (MIMO) systems can provide increased data
rates by creating multiple parallel channels and increasing
diversity by robustness against channel variations. Another
degree of freedom can be introduced by an automatic repeat
request (ARQ) protocol for retransmissions. With the multihop
ARQ protocol, the receiver at each hop feeds back to the
transmitter one-bit indicating on whether the message can be
decoded or not. In case of a failure the transmitter sends addi-
tional parity bits until either successful reception or message
expiration. The ARQ protocol provides improved reliability but
also causes transmission delay of packets. Here we study a
multihop MIMO relay system using the ARQ protocol. Our
goal is to characterize the tradeoff in speed versus reliability
for this system.

The rate and reliability tradeoff for the point-to-point MIMO
system, captured by the diversity-multiplexing tradeoff (DMT),
was introduced in [1]. Considering delay as the third dimension
in this asymptotic analysis with infinite SNR, the diversity-
multiplexing-delay tradeoff (DMDT) analysis for a point-to-
point MIMO system with ARQ is studied in [2], and the
DMDT curve is shown to be the scaled version of the cor-
responding DMT curve without ARQ. The DMDT in relay
networks has received a lot of attention as well (see, e.g., [3].)
In our recent work [4], we extended the point-to-point DMDT
analysis to multihop MIMO systems with ARQ and proposed
an ARQ protocol that achieves the optimal DMDT.

The DMDT analysis assumes asymptotically infinite SNR.
However, in the more realistic scenario of finite SNR, retrans-
mission is not a negligible event and hence the queueing delay

has to be brought into the picture (see discussions in [5]). With
finite SNR and queueing delay, the DMDT will be different
from that under the infinite SNR assumption. The DMDT with
queueing delay is studied in [5] and an optimal ARQ adapted
to the instantaneous queue state for the point-to-point MIMO
system is presented therein.

In this work, we extend the study [5] of optimal ARQ
assuming high but finite SNR and queueing delay in point-to-
point MIMO systems to multihop MIMO networks. This work
is also an extention our previous results in [4] to incorporate
queueing delay. We use the same metric as that used in
[5], which captures the probability of error caused by both
ARQ error, and the packet loss due to queueing delay. The
ARQ error is characterized by information outage probability,
which can be found through a diversity-multiplexing-delay
tradeoff analysis [2], [4]. The packet loss is given by the
limiting probability of the event that a packet delay exceeds
a deadline. Unlike the standard queuing models for networks
(e.g., [6], [7]) where only the number of messages awaiting
transmission is studied, here we also need to study the amount
of time a message has to wait in the queue of each node. Our
approach is slightly different from [5], where the optimal ARQ
decision is adapted per packet; we study the queues after they
enter the stable condition, and hence we use the stationary
probability of a packet missing a deadline. An immediate
tradeoff in the choice of ARQ round is: the larger the number
of ARQ attempts we use for a link, the higher the diversity
and multiplexing gain we can achieve, meaning a lower ARQ
error. However, this is at a price of more packets missing their
deadline. Our goal is to find an optimal ARQ allocation that
balances these two conflicting goals and equalizes performance
of each hop to minimize the overall probability of error.

The remainder of this paper is organized as follows. Section
II introduces system models and the ARQ protocol. Section III
presents our formulation and main results. Numerical examples
are shown in Section IV. Finally Section V concludes the paper.

II. MODELS AND BACKGROUND

A. Channel and ARQ Protocol Models

Consider a multihop MIMO network consisting of N nodes:
with the source corresponding to i = 1, the destination
corresponding to i = N , and i = 2, · · · , N − 1 corresponding
to the intermediate relays, as shown in Fig. 1. Each node is
equipped with Mi antennas. The packets enter the network
from the source node, and exit from the destination node,
forming an open queue. The network uses a multihop automatic
repeat request (ARQ) protocol for retransmission. With the
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multihop ARQ protocol, in each hop, the receiver feeds back to
the transmitter one-bit indicating about whether the message
can be decoded or not. In case of a failure the transmitter
retransmits. Each channel block for the same message is called
an ARQ round. We consider the fixed ARQ allocation, where
each link i has a maximum of ARQ rounds Li, i = 1, · · ·N−1.
The packet is discarded once the maximum number of rounds
has been reached. The total number of ARQ rounds is limited
to L:

∑N−1

i=1
Li ≤ L. This fixed ARQ protocol has been studied

in our recent paper [4].
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Fig. 1: Upper: relay network with direct link from source to destina-
tion. Lower: multihop MIMO relay network without direct link.

Assume the packets are delay sensitive: the end-to-end trans-
mission delay cannot exceed k. One strategy to achieve this
goal is to set a deadline ki for each link i with

∑N−1

i=1
ki ≤ k.

Once a packet delays more than ki it is removed from the
queue. This per-hop delay constraint corresponds to the finite
buffer at each node. Another strategy is to allow large per-hop
delay while imposing an end-to-end delay constraint. Other
assumptions we have made for the channel models are

(i) The channel between the ith and (i+1)th nodes is given
by:

Y i,l =

√
SNR

Mi

Hi,lXi,l +W i,l, 1 ≤ l ≤ Li. (1)

The message is encoded by a space-time encoder into a
sequence of L matrices {Xi,l ∈ C

Mi×T , : l = 1, · · · , L},
where T is the block length, and Y i,l ∈ C

Mi+1×T , i =
1, · · · , N − 1, is the received signal at the (i+1)th node,
in the lth ARQ round. The rate of the space-time code is
R. Channels are assumed to be frequency non-selective,
block Rayleigh fading and independent of each other, i.e.,
the entries of the channel matrices Hi,l ∈ CMi+1×Mi

are independent and identically distributed (i.i.d.) complex
Gaussian with zero mean and unit variance. The additive
noise terms W i,l are also i.i.d. complex Gaussian with
zero mean and unit variance. The forward links and ARQ
feedback links only exist between neighboring nodes.

(ii) We consider both the full-duplex and half-duplex relays
(see, e.g., [4]) where the relays can or cannot transmit and
receive at the same time, respectively, as shown in Fig. 2.
We assume the relays use a decode-and-forward protocol
(see, e.g., [4]).

(iii) We assume a short-term power constraint at each node
for each block code. Hence we do not consider power
control.

(iv) We consider both the long-term static channel, where
Hi,l = Hi for all l, i.e. the channel state remains constant
during all the ARQ rounds, and independent for different
i. Our results can be extended to the short-term static
channel using the DMDT analysis given in [4].
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Fig. 2: Left: full duplex multihop relay network. Right: half duplex
relay multihop MIMO relay network.
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Fig. 3: The logarithm of the cost function (7) for the (4, 1, 2) multihop
MIMO relay networks. SNR is 20 dB.

B. Queueing Network Model

We use an M/M/1 queue tandem to model the multihop
relay networks. The packets arrive at the source as a Poisson
process with mean inter-arrival time μ, (i.e., the time between
the arrival of the nth packet and (n − 1)th packet.) The
random service time depends on the channel state and is upper
bounded by the maximum ARQ rounds allocated Li. As an
approximation we assume the random service time at Node
i for each message is i.i.d. with exponential distribution and
mean Li. With this assumption we can treat each node as
an M/M/1 queue. This approximation makes the problem
tractable and characterizes the qualitative behavior of MIMO
multihop relay network. Node i has a finite buffer size. The
packets enter into the buffer and are first-come-first-served
(FCFS). Assume μ ≥ Li so that the queues are stable, i.e.,
the waiting time at a node does not go to infinity as time goes
on. Burke’s theorem (see, e.g., [7]) says that the packets depart
from the source and arrive at each relay as a Poisson process
with rate pi/μ, where pi is the probability that a packet can
reach the ith node. With high SNR, the packet reaching the
subsequent relays is high probability: pi ≈ 1 (equivalently the
probability of a packet dropping is small because it uses up the
maximum ARQ round.) Hence all nodes have packets arrive
as a Poisson process with mean inter-arrival time μ.

C. Throughput

Denote by b the size of the information messages in bits,
B[t] the number of bits removed from the transmission buffer
at the source at time slot t. Define a renewal event as the event
that the transmitted message leaves the source and eventually
is received by the destination node possibly after one or more
ARQ retransmissions. We assume that under full-duplex relays
the transmitter cannot send a new message until the previous
message has been decoded by the relay at which point the
relay can begin transmission over the next hop (Fig. 2a.)
Under half duplex relays we assume transmitter cannot send
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2) MIMO relay network. SNR is 20 dB. (The optimal k∗
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a new message until the relay to the next hop completes its
transmission (Fig. 2b.)

The number of bits B̄ transmitted in each renewal event, for
full-duplexing B̄ = (N−1)b, and for half-duplexing B̄ = (N−
1)b/2 when N is odd, and B̄ = Nb/2 when N is even. The
long-term average throughput of the ARQ protocol is defined
as the transmitted bits per channel use (PCU) [2], which can
be found using renewal theory [8]:

η = lim inf
s→∞

1

Ts

s∑
t=1

B[t] =
B̄

E(τ)

.
=

B̄

(N − 1)T

=

⎧⎨
⎩

R, Full duplex;
R
2
, Half duplex, N is odd;

R
(
1

2
+ 1

2N

)
, Half duplex, N is even.

(2)

where τ is the average duration from the time a packet arrives
at the source until it reaches the destination node, and

.
=

denotes asymptotic equality. A similar argument as in [2]
shows E(τ)

.
= (N − 1)T for high SNR.

D. Diversity-Multiplexing-Delay Tradeoff

The probability of error Pe in the transmission has two
sources: from the ARQ error: the packet is dropped because
the receiver fails to decode the message within the allocated
number of ARQ rounds, denoted as PARQ, and the probability
that a message misses its deadline at any node due to large
queueing delay, denoted as PQueue. We will give Pe for various
ARQ relay networks. Following the framework of [1], we
assume the size of information messages b(ρ) depends on the
operating signal-to-noise ratio (SNR) ρ, and a family of space
time codes {Cρ} with block rate R(ρ) = b(ρ)/T � r log ρ. We
use the effective ARQ multiplexing gain and the ARQ diversity
gain [2]

re � lim
ρ→∞

η(ρ)

log ρ
, d � − lim

ρ→∞

logPe(ρ)

log ρ
. (3)

We cannot assume infinite SNR because otherwise the queue-
ing delay will be zero, as pointed out in [5]. However we
assume high SNR to use the DMDT results in our subsequent
analysis.

III. DIVERSITY, MULTIPLEXING, AND DELAY TRADEOFF

VIA OPTIMAL ARQ ROUND ALLOCATION

A. Full-Duplex Relay in Multihop Relay Network

1) Per-Hop Delay Constraint: The probability of error
depends on the ARQ window length allocation Li, deadline
constraint ki, multiplexing rate r, and SNR ρ. For a given r
and ρ, we have

Pe({Li}, {ki}|ρ, r) =

PARQ(ρ, {Li}) +

N−1∑
i=1

PQueue(Di > ki). (4)

Here Di denotes the random delay at the ith link when the
queue is stationary. This Pe expression is similar to that given
by Equation (33) of [5]. Our goal is to allocate per-hop
ARQ round {Li} and delay constraint {ki} to minimize the
probability of error Pe.

For the long-term static channel, using the DMDT analysis
results [4] we have:

PARQ(ρ, {Li}) =

N−1∑
i=1

ρ
−fi

(
r
Li

)
. (5)

Here fi(r) is the diversity-multiplexing tradeoff (DMT) for
a point-to-point MIMO system formed by nodes i and i +
1. Assuming sufficient long block lengths, fi(r) is given by
Theorem 2 in [1] quoted in the following:

Theorem 1: [1] For sufficiently long block lengths, the
diversity-multiplexing tradeoff (DMT) f(r) for a MIMO system
with Mt transmit and Mr receive antennas is given by the
piece-wise linear function connecting the points (r, (Mt −
r)(Mr − r)), for r = 0, · · · ,min(Mt,Mr).

Denote the amount of time spent in the ith node by the nth
message as Di

n. The probability of packet loss PQueue(Di > ki)
can be found as the limiting distribution of limn→∞ P (Di

n >
ki) (adapted from Theorem 7.4.1 of [8]):

Lemma 2: The limiting distribution of the event that the
delay at node i exceeds its deadline ki, for M/M/1 queue
models, is given by:

PQueue(Di > ki) = lim
n→∞

P (Di
n > ki) =

Li

μ
e
−ki

(
1
Li
− 1

μ

)
. (6)

Here the difference in the service rate and packet arrival rate
1

Li
− 1

μ
≥ 0 and utility factor Li

μ
both indicate how “busy”

node m is. Using the above results, (4) can be written as

Pe ({Li}, {ki}|ρ, r) =
N−1∑
i=1

[
ρ
−fi

(
r
Li

)
+

Li

μ
e
−ki

(
1
Li
− 1

μ

)]
. (7)

Note that the queueing delay message loss error probability is
decreasing in Li, and the ARQ error probability is increasing
in Li. Hence an optimal ARQ rounds allocation at each node
Li should trade off these two terms. Also, the optimal ARQ
allocation should also equalize the performance of each link,
as the weakest link determines the system performance [4].

Hence the optimal ARQ allocation can be formulated as the
following optimization problem:

min
{Li},{ki}∈A

Pe({Li}, {ki}|ρ, r) (8)
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where

A =

⎧⎨
⎩

∑N−1

i=1
Li ≤ L,

1 ≤ Li ≤ μ, i = 1, · · · , N − 1∑N−1

i=1
ki ≤ k.

⎫⎬
⎭ (9)

The following lemma (proof omitted due to the space limit)
shows that the total transmission distortion function (15) is
convex in the interior of A.

Lemma 3: The transmission distortion function (15) is con-
vex jointly in Li and ki in the convex set{

{Li}, {ki} : ki >
Li

2( μ
Li
− 1)

, i = 1, · · ·N − 1.

}
,

Lemma 3 says that except for the “corners” of A the cost
function is convex. However these “corners” have higher
probability of error: ki and Li take extreme values and hence
one link may have a longer queueing delay then the others. So
we only need to search interior of A where the cost function
is convex.

To gain some insights into where the optimal solution resides
in the feasible domain for the above problem, we present
a marginal cost interpretation. Note that the probability of
error can be decomposed as a sum of probability of errors
on the ith link. The optimal ARQ rounds allocated on this
link should equalize the “marginal cost” of the ARQ error and
the packet loss due to queueing delay. For node i, with fixed
ki, the marginal costs (partial differentials) of the ARQ error
probability, and the packet loss probability due to queueing
delay, with respect to Li are given by

∂ρ
−fi

(
r
Li

)

∂Li

=
r

L2
i

f ′i

(
r

Li

)
ρ
−fi

(
r
Li

)
ln ρ < 0, (10)

and

∂PQueue(Di > ki)

∂Li

=
1

μ

(
1 +

k

Li

)
e
−ki

(
1
Li
− 1

μ

)
> 0. (11)

Note that f ′i < 0. The optimal solution equalizes these two
marginal costs by choosing Li ∈ [1, μ]. Note that these
marginal cost functions are monotone in Li, hence the equaliz-
ing L∗i exists and 1 < L∗i < μ if the following two conditions
are true for Li = 1 and Li = μ:

(i) :
∂PQueue(Di > ki)

∂Li

∣∣∣∣
L=1

< −
∂ρ
−fi

(
r
Li

)

∂Li

∣∣∣∣∣∣
L=1

, (12)

(ii) :
∂PQueue(Di > ki)

∂Li

∣∣∣∣
L=μ

> −
∂ρ
−fi

(
r
Li

)

∂Li

∣∣∣∣∣∣
L=μ

, (13)

These conditions involve nonlinear inequalities involving μ, ρ,
r, Mi and Mi+1, which defines the case when the optimal
solution is in the interior of A. Analyzing these conditions
reveals that these conditions tend to be satisfied at lower
multiplexing gain r, small Mi or Mi+1, small ki, and larger μ
(light traffic). Note that with high SNR condition (ii) is always
true for moderate k values. When (i) and (ii) are violated,
which means one error dominates the other, then the optimal
solution lies at the boundary of A. With the total ARQ rounds
constraint in (8), using the Lagrangian multiplier an argument

similar to above still holds.
2) End-to-End Delay Constraint: When the buffer per node

is large enough the per hop delay constraint is not needed,
and we can instead impose an end-to-end delay constraint. The
exact expression for the tail probability of the end-to-end delay
is intractable. However a large deviation result is available. The
following theorem can be derived using the main theorem in
[9]:

Theorem 4: For a stationary M/M/1 queue tandem (with
full-duplex relays):

lim
k→∞

lim
n→∞

1

k
logPQueue

(
N−1∑
i=1

Di
n ≥ k

)
= −θ∗,

where θ∗ = minN−1

i=1

{
1

Li
− 1

μ

}
.

This theorem says that the bottleneck of the queueing network
is the link with longest mean service time Li. Hence the
optimal ARQ round allocation problem can be formulated as:

min
{Li}∈B

Pe({Li}, {ki}|ρ, r) (14)

where

Pe ({Li}, {ki}|ρ, r)

= PARQ(ρ, {Li}) + PQueue

(
N−1∑
i=1

Di
n ≥ k

)
,

.
=

N−1∑
i=1

ρ
−fi

(
r
Li

)
+ e−θ∗k. (15)

B =

{ ∑N−1

i=1
Li ≤ L,

1 ≤ Li ≤ μ, i = 1, · · · , N − 1

}
(16)

For high SNR, this can be shown to be a convex optimization
problem. A simple argument can show that the packet loss
probability of the per-hop delay constraint is larger than that
using flexible end-to-end constraint.

B. Half-duplex Relay in a Multihop Network

Half-duplex relay is not a standard queue tandem model.
However we can also derive a large deviation result for the
tail probability for the end-to-end delay of a multihop network
with half-duplex relays (proof in the Appendix):

Theorem 5: For a stationary M/M/1 queue tandem (with
half-duplex relays), when the number of node N is large:

lim
k→∞

lim
n→∞

1

k
logPQueue

(
N−2∑
i=1

Di
n ≥ k

)
= −θ∗. (17)

From this theorem we conclude that the optimal ARQ alloca-
tion problem with the end-to-end constraint and half-duplex
relays can be formulated similarly to that with full-duplex
relays (14).

IV. NUMERICAL EXAMPLES

Consider a MIMO relay network consists of a source, a
relay, and a destination node. The relay is full-duplex. The
number of antennas on each node is (M1,M2,M3), M1 = 4,
M2 = 1, and M3 = 2, where the relay has a single antenna.
Other parameters are: ρ = 20dB, k = 30, L = 8, and the
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multiplexing gain is r = 2. The base 10 logarithm of the cost
function (7) is shown in Fig. 3. We have optimized the cost
function with respect to L2 and k2 so we can display it in three
dimensions. Note that the surface is convex in the interior of
the feasible region. The optimal L∗1, L

∗
2, k

∗
1 are shown in Fig. 4.

Also note that as r increases to the maximum possible r = 4,
the total number of ARQ rounds allocated L∗1 + L∗2 gradually
increases to the upper bound L = 8 as k increases.

V. CONCLUSIONS AND FUTURE WORK

We have studied the diversity-multiplexing-delay tradeoff in
multihop MIMO networks by considering an optimal ARQ
allocation problem to minimize the probability of error, which
consists of the ARQ error and the packet loss due to queueing
delay. Our contribution is two-fold: we combine the DMDT
analysis with queueing network theory, and we use the tail
probability of random delay to find the probability of packet
loss due to queueing delay. Numerical results show that optimal
ARQ should equalize the performance of each link and avoid
long service times that cause large queueing delay. Work in
progress uses results therein to investigate the joint source-
channel coding in multihop MIMO relay networks, extending
the results of [5].

APPENDIX

Proof of Theorem 5
For node i, i = 1 · · ·N , let the random variable Si

n denotes
the service time required by the nth customer at the ith node
(the number of ARQs used for the nth packet), and Ai

n be the
inter arrival time of the nth packets (i.e., the time between the
arrival of the nth and (n − 1)th packages to this node). The
waiting time of the nth packet at the ith node W i

n satisfies
Lindley’s recursion (see [9]):

W i
n = (W i

n−1 + Si+1

n−1
−Ai

n)
+, 2 ≤ i ≤ N − 2, (18)

where (x)+ = max(x, 0). The total time a message spent in a
node is its waiting time plus its own service time, hence

Di
n = W i

n + Si
n. (19)

The arrival process to the (i+1)th node is the departure process
from the ith node, which satisfies the recursion:

Ai
n = Ai−1

n +Di−1
n −Di

n−1, 2 ≤ i ≤ N − 2. (20)

with Ai
n a Poisson process with rate 1/μ. Also the waiting

time at the source satisfies:

W 1
n = (W 1

n−1 + S1
n−1 + S2

n−1 −A1
n)

+. (21)

A well-known result is that (see, e.g. [9]), if the arrival
and service processes satisfy the stability condition, then the
Lindley’s recursion has the solution:

W i
n = max

ji≤n
(σi

ji,n−1 − τ iji+1,n), i = 2, · · ·N − 2,

W 1
n = max

j1≤j2
(σ1

j1,j2−1 + σ2
j1,j2−1 − τ1j1+1,j2

). (22)

where the partial sum τ il,p =
∑p

k=l A
i
k and σl,p =

∑p

k=l S
i
k.

Hence

Di
n = max

ji≤n
(σi

ji,n−1 + Si
n − τ iji+1,n), i = 2, · · ·N − 2. (23)

From (20) we have τ il,p = τ i−1

l,p +Di−1
p −Di−1

l−1
for l ≤ p+1,

and 0 otherwise. Plug this into (23) we have

Di
n = max

ji≤n
(σi+1

ji,n−1
+ Si

n − τ i−1

ji+1,n −Di−1
n +Di−1

ji
). (24)

Hence the recursive relation if we move Di−1
n to the left-hand-

side:

Di
n +Di−1

n = max
ji≤n

(σi+1

ji,n−1
+ Si

n − τ i−1

ji+1,n +Di−1

ji
). (25)

Now from (23) we have Di−1

ji
= maxji−1≤ji(σ

i
j(i−1) ,ji−1 +

Si−1

ji
− τ i−1

j(m−1)+1,jm
). Plug this in the above (25) we have

Di
n +Di−1

n

= max
j(i−1)≤ji≤n

(σi+1

ji,n−1
+ Si

n + σi
j(i−1) ,ji−1 + Si−1

ji
− τ i−1

j(i−1)+1,n)

Do this inductively, we have

N−2∑
i=2

Di
n = max

j2≤···≤jN−1=n

[
N−2∑
m=2

(σi+1

ji,j(i+1)−1
+ Si

ji+1
)− τ1j2+1,n

]
.

If we also add D1
n = W 1

n + S1
n to the above equation, after

rearranging terms we have:

N−2∑
i=1

Di
n =

N−2∑
i=2

(σi
j(i−1) ,ji−1 + Si

j(i+1)
)− τ1j2+1,n

+S1
j2
+ σ1

j1,j2−1 + S2
j2
+ σN−1

jN−2,j(N−1)−1
. (26)

Note that σi
j(i−1),ji−1 is independent of Si

j(i+1)
. For long queue

we can ignored the last four terms caused by edge effect (the
source and end queue of the multihop relay network). By
stationarity of the service process σi

j(i−1),ji−1+Si
j(i+1)

has the
same distribution as σi

0,ji−j(i−1)
. Then (26) reduces to the case

studied in [9] and we can borrow the large deviation argument
therein to derive the exponent θ∗.
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