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Abstract—We present new beampattern synthesis approaches
based on semidefinite relaxation (SDR) for signal power estima-
tion. The conventional approaches use weight vectors at the array
output for beampattern synthesis, which we refer to as the vector
approaches (VA). Instead of this, we use weight matrices at the
array output, which leads to matrix approaches (MA). We consider
several versions of MA, including a (data) adaptive MA (AMA), as
well as several data-independent MA designs. For all of these MA
designs, globally optimal solutions can be determined efficiently due
to the convex optimization formulations obtained by SDR. Numer-
ical examples as well as theoretical evidence are presented to show
that the optimal weight matrix obtained via SDR has few dominant
eigenvalues, and often only one. When the number of dominant
eigenvalues of the optimal weight matrix is equal to one, MA re-
duces to VA, and the main advantage offered by SDR in this case
is to determine the globally optimal solution efficiently. Moreover,
we show that the AMA allows for strict control of main-beam shape
and peak sidelobe level while retaining the capability of adaptively
nulling strong interferences and jammers. Numerical examples are
also used to demonstrate that better beampattern designs can be
achieved via the data-independent MA than via its VA counterpart.

Index Terms—Beamforming, beampattern synthesis, convex op-
timization, main-beam shape control, sidelobe control.

I. INTRODUCTION

ANTENNA arrays play an important role in a wide span
of applications including radar, sonar, communications,

aeroacoustics, and biomedical imaging. One of the fundamental
problems in array signal processing is beampattern synthesis
(for fixed array geometry). Beampattern synthesis is needed for
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both signal estimation and signal power estimation. We focus
herein on signal power estimation, which occurs in applications
such as sonar and passive direction finding as well as aeroa-
coustic noise power measurement.

The conventional formulation of beampattern synthesis (for
both signal estimation and signal power estimation) is to design
a vector of complex-valued weights to form a desired beampat-
tern [1]–[7]. Hereafter we refer to the conventional formulations
as the vector approaches (VA). There is a long history of using
VA for beampattern synthesis (see, e.g., [1], [8], and the refer-
ences therein). Recently, numerical approaches based on convex
optimization techniques [2], [5], [7] have received much atten-
tion. Compared to the early analytical approaches, the recent ap-
proaches can handle more complicated design specifications and
are able to obtain globally optimal solutions efficiently, as long
as the design problems can be formulated as convex optimization
problems. Applications of the convex optimization techniques to
data-independent VA beampattern synthesis were introduced in
[2], where both narrowband and wideband arrays were consid-
ered. In the case of uniform linear arrays (ULA), the beampat-
tern design problem is equivalent to that of a power spectral den-
sity (PSD) constrained finite impulse response (FIR) filter de-
sign. Once the optimal PSD is designed, the optimal beampat-
tern can be recovered using standard spectral factorization tech-
niques [9]–[11]. Because these techniques are not suitable for
nonuniform arrays, related designs for such arrays with norm
constraints on the weight vector were presented in [5]. Due to
lack of convexity, two iterative algorithms were used in [5] to ob-
tain local solutions with no guarantee for their global optimality.
The idea of using semidefinite relaxation (SDR) for beampattern
synthesis and for the related problem of 2-D filtering was pre-
sented recently in [7] and [12]. However, the approaches in the
cited papers are also based on weighting vectors and are obtained
by modifying the SDR solutions via some iterative methods that
provide no guarantee for their global optimality.

In the presence of strong interferences and jammers, data-
adaptive methods are needed due to their adaptive ability of sup-
pressing interferences and jammers. Adaptive arrays, such as the
standard Capon beamformer [13], adjust the weight vector adap-
tively according to the incoming signals. Adaptive arrays can
have much better resolution, lower sidelobe levels, and much
better interference rejection capabilities than their data-indepen-
dent counterparts [1]. Beampattern synthesis methods for adap-
tive arrays have been considered in [6] and [14]–[16] for linear
and 2-D nonuniform arrays. In [15] and [16], peak sidelobe level
control designs were considered using analytical and convex
optimization approaches, respectively. However, these designs
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do not control the main-beam shape. Several methods, such as
those in [6], [17], and [18], can be used to control, to a certain
extent, both the main-beam shape and peak sidelobe level. How-
ever, they cannot control the peak sidelobe level and main-beam
width precisely according to prescribed specifications.

In this paper, we present new beampattern synthesis matrix
approaches based on SDR for signal power estimation. Weight
matrices are used at the array output resulting in matrix ap-
proaches (MA). We consider several versions of MA, including
a (data) adaptive MA (AMA), as well as several data-indepen-
dent MA designs. For all of these designs, globally optimal MA
solutions can be determined efficiently due to the convex op-
timization formulations obtained via SDR. Numerical exam-
ples as well as theoretical evidence are presented to show that
the optimal weight matrix obtained via SDR has few dominant
eigenvalues, and often only one. When the number of dominant
eigenvalues of the optimal weight matrix is one, MA reduces to
VA, and the main advantage offered by SDR in such a case is
to determine the globally optimal solution efficiently. We show
that the AMA allows for strict control of main-beam shape and
peak sidelobe level while retaining the capability of adaptively
nulling strong interferences and jammers. Numerical examples
are also used to demonstrate that better beampattern designs
can be achieved via the data-independent MA than via its VA
counterpart.

The notations adopted hereafter are standard. denotes
the transpose of a matrix or vector. denotes the conjugate
transpose of a matrix or vector. denotes the absolute value,
and denotes the Euclidean norm of a vector. denotes
the Hermitian square root of the matrix . denotes the
trace and denotes the th diagonal element of the ma-
trix . means that is a positive semidefinite ma-
trix. denotes a vector obtained by stacking the columns
of on top of each other and denotes the Kronecker ma-
trix product. is the complex-valued (real-valued)
matrix space of dimension . Finally, is the identity ma-
trix with its dimension determined from the context.

II. PROBLEM FORMULATION

Consider an -element array with an arbitrary geometry. Let
denote the unknown waveform of a narrowband signal-of-

interest (SOI) (later on we will consider the wideband signal
case by dividing the frequency band occupied by the signal
into narrowband bins). Let denote a generic source location
parameter for the SOI, which may be the direction-of-arrival
(DOA) of the SOI in the far-field of the array or the 3-D co-
ordinates of the SOI in the near-field of the array.

The model for the received data vector is given by (see, e.g.,
[19])

(1)

where is the th data snapshot, , with
denoting the snapshot number; is the array steering vector
for the SOI, which is a known function of , and is a
term that contains noise as well as interferences and jammers
[assumed to be uncorrelated with the signal term in (1)]. The
array steering vector has different expressions, depending on

the array geometry and on whether the source is in the near-
or far-field of the array. For the far-field linear array case, the
steering vector is given by

(2)

where is the speed of propagation, is the carrier frequency,
and is the location of the th array element.

We begin with a discussion of the VA before formulating the
MA that we will consider in this paper. In VA, the signal re-
ceived by the th array element is weighted by a complex-
valued scalar ; the weighted signals are then summed up to
yield the beamformer output

(3)

where

(4)

Under the assumption that and that the second
term in (3) is much smaller than the first term, we can obtain the
following estimate of the signal from (3):

(5)

Furthermore, from either (5) or (3) (after squaring both sides,
averaging over the available snapshots, and neglecting the terms
that depend on ), we can obtain the following signal power
estimate:

(6)

where

(7)

As already mentioned, the in (1) usually contains inter-
ference terms that have the same form as the SOI term, but with
different DOAs and signal sequences. Such interferences will be
attenuated by the beamformer, as was required in the derivation
of both (5) and (6), if and only if takes on small values
at the DOAs of the interfering sources. The quantity ,
as a function of , is called the beampattern; as indicated before,
in the case of VA, it is an important quantity for both signal es-
timation and signal power estimation.

In the MA case, we use a matrix beamformer, in lieu of a
vector beamformer as in VA; put differently, we can say that the
MA uses a bank of VA beamformers. The beamformer output
in the MA case is given by [compare with (3)]

(8)

where

(9)

In this paper, we will consider the use of MA beamformers for
signal power estimation. Interestingly, in the MA case, the prob-
lems of signal estimation and of signal power estimation lead
to rather different methods, unlike in the VA case (see the fol-
lowing for details).
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For signal estimation, we constraint to satisfy

(10)

where is a vector that, like , is part of the design
problem (we assume here that , which is no restric-
tion, to simplify some of the following equations). Under (10)
and assuming, like in the VA case, that the beamformer makes
the second term in (8) much smaller than the first term, we can
obtain the following signal estimate from (8):

(11)

To reduce the estimation error in (11) due to the interfer-
ence terms in , we have to design and such that

takes on small values at . Consequently, in
the signal estimation case it makes sense to let ,
as a function of , define the beampattern. For more details on
this approach, including methods for designing and , we
refer the reader to [20] and [21]. Note that when (so that

becomes a vector) and for , the MA outlined before
for signal estimation reduces to the VA.

For signal power estimation, we now focus on the use of (8).
Like in the VA case, after “squaring,” averaging, and neglecting
the noise-induced terms, we obtain the equation

(12)

where denotes the true signal power. A possible way of
estimating from (12) runs as follows. Let satisfy the
constraint

(13)

where

(14)

Then, we can estimate from (12) as

(15)

The condition for this estimate to not be significantly affected
by the interference terms in is that

takes on small values at . Therefore, the
beampattern of interest for signal power estimation is apparently
given by

as a function of (16)

Note that for , and, therefore, for , the
previous MA reduces to the VA. Because in this paper we are
interested in signal power estimation, as already indicated pre-
viously, we will refer to (16) as the beampattern and will make
use of (15) as the signal power estimate.

In the VA beampattern synthesis problem, the variable to be
designed is the weight vector . The beampattern design prob-
lems involving lower bounds, quadratic equalities, or phase-
only requirements on [22] are nonconvex, so they cannot be
solved in polynomial time and the existing solutions cannot be
guaranteed to be globally optimal.

In the proposed beampattern synthesis approaches, we allow
to have rank higher than one, which leads to the MA. The

resulting formulation is actually the SDR [23], [24] of the cor-
responding VA formulation for the same beampattern synthesis
problem. SDR is often used to obtain approximate solutions
(in the sense that the SDR solution may have rank larger than
one) to rank-constrained optimization problems [23], [24]. Al-
though seemingly MA leads to an increased implementation
complexity, an interesting observation from numerical examples
and some theoretical analysis is that the optimal solution has
few dominant eigenvalues, and often just one, which means that
the hardware implementation cost of MA is not much higher
than that of VA. Moreover, the matrix weighting can be done in
parallel (row-wise) and hence does not require extra processing
time.

Several comments are now in order.
• The trace of is referred to as the total gain of MA and

it determines the power amplification at the beamformer
output. Note that

(17)

where we have used the fact that .
Hence, the total gain constraint on the array weights is
equivalent to the trace constraint on . We will consider
two types of gain constraints: 1) the total gain constraint,
which requires that , where is some given
constant and 2) the uniform elemental gain constraint, i.e.,

, , which requires that each
antenna element contributes an equal gain to the beam-
former output. Both constraints are linear in and hence
are easy to incorporate into the optimal designs discussed
in the following sections.

• One interesting observation is that, in VA, the design under
the uniform elemental gain constraint leads to the phase-
only problem [22], which is nonconvex and difficult to
solve. The solution to MA can be used as an initial solution
to the phase-only problem.

• The determined by factoring is not unique since
for any unitary matrix with

. Hence, we can pick to be a diagonal matrix
with unit-modulus diagonal elements whose phases are ad-
justed so that each element of is real-valued. For
VA, i.e., with having rank-1, this choice of together
with yields the distortionless response
constraint .

• The beamformer’s output signal vector ,
, obtained when can be used in beamspace

processing applications.

III. (DATA) ADAPTIVE MATRIX APPROACH

Adaptive arrays are ubiquitous: they can be found in many
applications including radar, sonar, aeroacoustics, communica-
tions, and medical imaging. A classical data-adaptive beam-
former, the standard Capon beamformer [13], seeks to minimize
its output power, subject to the constraint that the SOI passes
through the beamformer without distortion. However, one in-
herent problem associated with the Capon data-adaptive beam-
former is the varying main-beam shape (or even the lack of a
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mainlobe) and the uncontrollable peak sidelobe level, due to,
for example, an inadequate estimation of the snapshot covari-
ance matrix [15] or a changing interference environment. Yet
in some applications, such as in radar, sonar, and communica-
tions, a desired main-beam shape must be maintained and the
peak sidelobe level must be lower than a prescribed value [6],
[15]. Another problem of the Capon beamformer is that it is
rather sensitive to model errors, including steering vector errors,
to small-sample problems (which are shown in [25] to be equiv-
alent to steering vector mismatches), and to the presence of in-
terferences that are correlated (or, even worse, coherent) with
SOI. In the last three decades, many approaches have been pro-
posed to make the adaptive Capon beamformer robust (see, e.g.,
the chapters in [26] as well as [27] and [28]). However, the prob-
lems of realizing a desired main-beam shape and of controlling
the peak sidelobe level of a data-adaptive beamformer have not
been solved satisfactorily. In the following, we will present an
AMA algorithm that deals precisely with these problems.

Consider the data model in (1) and the subsequent discussion
[particularly (13) to (16)]. Similarly to the formulation of the
Capon beamformer, we aim at minimizing the beamformer’s
output power under the constraint of unit power gain for the SOI.
We also introduce constraints to control the 3-dB main-beam
width as well as the peak sidelobe level. AMA is, therefore,
formulated as follows:

(18)

subject to (19)

(20)

(21)

(22)

(23)

where is the location parameter of the SOI, is the desired
peak sidelobe level, denotes the sidelobe region, and the in-
terval is the prescribed 3-dB main-beam region. The for-
mulation in (18)–(23) is a semidefinite program (SDP) [23] and
can be solved efficiently via the use of publicly available SDP
solvers (see, e.g., [29] and [30]). Several comments on (18)–(23)
are as follows.

• The 3-dB main-beam width cannot be arbitrarily small
given a certain peak sidelobe level and vice versa, due
to the well-known tradeoff between the beamwidth and the
peak sidelobe level. The problem in (18)–(23) may become
infeasible if these parameters are not properly chosen.

• No constraint on the trace or the diagonal elements of
is imposed in this formulation since we already have the
explicit gain constraints in (19) and (20).

• The constraints for the main-beam region (22) are active
only when the desired main-beam width is very large. They
are used to prevent main-beam splitting.

• The SOI power can be estimated via (15).
• For general arrays, the solution(s) to (18)–(23) may have a

rank larger than one: . However, in the case
of ULA, we have observed in several numerical examples
that

(24)

In the Appendix, we provide a theoretical analysis that
lends support to this observation. More specifically, we
prove that in the ULA case (and assuming that the matrix

is Toeplitz), the SDR problem in (18)–(23) has always
rank-1 solutions, and we show how to obtain them from
a possibly higher-rank solution of (18)–(23). In particular,
this result shows that in the ULA case, the algorithm that
solves the SDR problem in (18)–(23) is a computationally
efficient means of finding the solutions of (18)–(23) with
the rank-1 constraint enforced (i.e., ). In other
words, the said result implies that the VA problem obtained
from (18)–(23) by adding the constraint , al-
though nonconvex, possesses a so-called hidden convexity
property, under the conditions stated.

• If we add to the previous AMA formulation the constraints
that and that the diagonal elements of
are equal to one another, then (18)–(23) becomes the
phase-only adaptive array problem discussed in [25]. The

constraint makes the phase-only problem
nonconvex. By omitting the rank-1 constraint, we obtain
the SDR solution to the phase-only problem, which can be
used as an initial solution to the phase-only problem and
can then be refined via, e.g., a Newton-like search method
[24].

Assuming that there are constraints in the primal formula-
tion of AMA in (18)–(23), the computational complexity needed
by interior point methods to solve (18)–(23) is on the order of

[31]. The dual formulation of (18)–(23) can be
readily derived [23] and the computational complexity can then
be reduced to the order of [31]. Hence, the compu-
tational complexity of AMA is higher than that of the standard
Capon beamformer [13], which is . (These statements
are applicable to the data-independent MA as well, shown in
Section IV.)

IV. DATA-INDEPENDENT MATRIX APPROACHES

We now consider several data-independent MA beampattern
designs, which means that we do not use the received data in the
design process.

A. Beampattern Matching Design

Assume that we have a desired beampattern defined
over a region of interest . Let be a fine grid of points
covering . Our design goal is to find a matrix such that

matches or rather approximates [in a mean-squared error
(MSE) sense] the desired beampattern , over the region of
interest under either the uniform elemental gain constraint or
the total gain constraint. Therefore, mathematically, we want to
solve the following problem:

(25)

subject to

or (26)

(27)
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where , , is the weighting factor for the th
grid point, and is a variable that controls the magnitude
of the desired beampattern . We remark that in (25), the
scaling factor is introduced for the reason that typically
is given in a “normalized form” (e.g., satisfying

), and our interest lies in approximating an appropriately scaled
version of , not itself.

We will use techniques similar to those used in [32] to show
that the previous problem is a convex optimization problem, or
more specifically, a semidefinite quadratic programming (SQP)
problem [33] (note that the present receive beampattern design
problem is the counterpart of the multi-input–multi-output
(MIMO) transmit beampattern design problem considered in
[32]). Let denote the real-valued vector made from

and the real and imaginary parts of
( ; ). Then, given the Hermitean

symmetry of , we can write

(28)

for a suitable matrix whose elements are easily
derived constants (0, , and 1). Making use of (28) and of
some simple properties of the operator, we have

(29)

Inserting (29) into (25) yields the following more compact form
of the design cost function:

(30)

where the vector

(31)

contains all the variables, and

(32)

The matrix might be rank deficient. For example, in the case
of an -sensor ULA with half-wavelength or smaller inter-el-
ement spacing, it can be verified that the rank of is .
The rank deficiency of , however, does not pose any serious
problem for the SQP solver (see, e.g., [30]).

By making use of (30), the beampattern matching design in
(25)–(27) becomes the following SQP (see, e.g., [33]):

subject to

or

(33)

where we have indicated explicitly the (linear) dependence of
on . For practical values of , the previous SQP can be

efficiently solved on a personal computer using public domain
software (see, e.g., [29] and [30]).

In some applications, we may wish that the synthesized beam-
pattern at some given locations be exactly (or very close to)
some prescribed values, or that one peak at a certain location
have a power related (let us say by a factor of ) to the power of
a different peak at another location. The first requirement can be
met by adding the following equality constraints to the original
formulation (25)–(27)

(34)

where are the prescribed values and are the corre-
sponding locations. The second requirement can be added to
(25)–(27) by using the following equality constraints:

for some (35)

where and are the locations at which we wish to have
a power ratio equal to . The extended problems with the pre-
vious additional constraints are also SQPs and can be solved
efficiently using the aforementioned SQP solvers.

B. Minimum Sidelobe Level Design

In some applications, it is important to control the peak side-
lobe level of the beampattern (see, e.g., [6], [15]), while main-
taining the shape of the main-lobe (e.g., direction, prescribed
3-dB beamwidth, etc.). For such purposes, we will consider
the following minimum sidelobe level design. Assume that the
main-beam is directed toward , the prescribed 3-dB angles are

and (the 3-dB beamwidth is , with and
), the 3-dB main-beam region is and the sidelobe

region is . Then a minimum sidelobe level design problem
can be formulated as follows:

(36)

subject to

(37)

(38)

(39)

or (40)

(41)

where the constraints in (38) guarantee that the gain in the 3-dB
main-beam region is at least half of the gain at . The con-
straints in (38) are used to prevent main-beam splitting and are
active only in some special cases. The formulation (36)–(41) is
an SDP [23] and can be solved efficiently in polynomial time
using public domain software (e.g., [30]).

Note that, if we want, we can somewhat relax the constraints
in (39) defining the 3-dB mainbeam width; for instance, we can
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replace them by
, , for some small value of

. Such a relaxation can lead to designs with lower peak
sidelobe levels (in fact in some designs, such as for 2-D arrays,
the problem can become infeasible without proper relaxation).
If needed, we can also relax the uniform elemental gain con-
straints somewhat by allowing the elemental gain to be within
a certain range around , while still maintaining the same
total gain of . We found out via numerical simulations that such
a relaxation can result in lower sidelobe levels and smoother
beampatterns (we omit the corresponding examples due to space
limitations).

Remark: The VA counterparts can be readily obtained from
the previously described beampattern matching or minimum
sidelobe level beampattern design formulations of MA by
adding the constraint to (25)–(27) and (36)–(41),
respectively. However, due to the nonconvexity of the rank-1
constraint, the problem becomes much harder to solve and
no globally optimal solution is guaranteed. In the numerical
examples that follow, we have used the Newton-like algorithm
presented in [24] to find the solution of the rank-1 constrained
problems. The said algorithm uses the solution to SDR as an
initial solution, and then uses the tangent-and-lift procedure
to iteratively find the solution satisfying the rank-1 constraint.
Although the convergence of the Newton-like algorithm is not
guaranteed [24], we did not encounter any numerical problem
in our simulations.

C. Constant Beamwidth Design for Wideband Arrays

Beamformers with frequency-invariant main-beam widths
are desirable in many wideband signal processing applications,
such as aeroacoustics [34]–[36], radar, sonar, and communica-
tions [37]. A widely used wideband array processing approach
is to sample the spectrum of the wideband signal at each array
element output to form narrowband frequency bins, and then
process the samples in each frequency bin separately using
narrowband array processing techniques [26]. A constant
beamwidth beamformer is needed to form consistent estimates
of the source location and power across all frequency bins.
However, the beamwidth of most beamformers, such as the
delay-and-sum (DAS) and the Capon method [19], decreases
as the center frequency of the frequency bin increases, due to
a larger effective array aperture at a higher frequency. One
way to mitigate this problem is to use shading, i.e., to apply
frequency-dependent weights to the sensor outputs. Various
shading vectors exist for regular arrays including ULA [38] and
the so-called small aperture directional array (SADA) [34].

The MA can be readily used to achieve constant beamwidth
beampattern designs for wideband arrays. For example, we can
use the minimum sidelobe level MA design with a common
3-dB main-beam width for all frequency bins and thus obtain
a weight matrix for each narrowband frequency bin using
(36)–(41). The resulting beampattern for each frequency bin
will have a constant main-beam width and the lowest possible
sidelobe level. The beampattern matching MA design can
be modified as well to yield constant beamwidth designs for
wideband arrays. Similarly, AMA can also be extended to
achieve constant main-beam width across all frequency bins

while retaining its adaptive array capabilities of suppressing
interferences and jammers. In the wideband numerical exam-
ples in the next section, we will only consider the minimum
sidelobe level MA designs, for conciseness reasons.

V. NUMERICAL EXAMPLES

We present several numerical examples to demonstrate the
performance of beampattern synthesis via MA compared with
other approaches. We will consider three types of arrays with
different geometries: ULA, minimum redundancy array (MRA)
[1], and SADA [34], [35]. The ULA comprises
antennas with half-wavelength spacing between adjacent an-
tennas, and is used for far-field sources. The MRA consists of

antennas, and it has the same physical aperture as the
10-element ULA. The inter-element spacings for the 5-element
MRA are [1], in units of half-wavelength at the carrier
frequency (for narrowband signals). SADA (see [34] for more
details) is a directional array designed for aeroacoustic noise
measurement, which consists of 33 microphones arranged
in four circles of eight microphones each, and one micro-
phone at the array center. The maximum radius of the array
is 3.89 inches. The weight vector for the DAS beamformer is

[see (2) for ULA and MRA].

A. AMA

We compare the performance of the data-adaptive AMA with
the performance of the standard Capon beamformer [13] and
of the robust Capon beamformer (RCB) [39]. We collect sim-
ulated data from the ten-element ULA using the data model
in (1). The noise is assumed to be a spatially and temporally
white circularly symmetric complex Gaussian random process
with zero-mean and covariance matrix . Unless speci-
fied otherwise, the SOI is at 0 and a strong interference is at
40 . For the RCB [39], we assume that the array steering vector
is within a spherical uncertainty set with uncertainty parameter

. The SOI power estimates presented below are ob-
tained via averaging over 100 Monte Carlo trials.

First, we study the performance of AMA with respect to
maintaining the main-beam shape and controlling the peak
sidelobe level. The beampatterns in Fig. 1 are obtained via
100 Monte Carlo trials when the snapshot number is ,
the SOI power is 10 dB, and the interference power is 60 dB.
Fig. 1(a) corresponds to the standard Capon beamformer, for
which the peak sidelobe level is as high as 10 dB. No main-beam
exists and in fact a null is formed at 0 . We see from Fig. 1(b)
that RCB [40] has a lower peak sidelobe level of about 10 dB,
but the main-beam shape still varies slightly from one trial to
another. Fig. 1(c) corresponds to AMA, with the desired 3-dB
points set to be about the same as those of the standard Capon
beamformer obtained in one of the trials (i.e., 5.5 and 5 ),
and with the sidelobe region: . From
Fig. 1(c), we observe that AMA can effectively push the peak
sidelobe level down to below 14 dB and maintain a constant
main-beam shape from trial to trail. If the peak sidelobe level
must be very low, for example, lower than 40 dB, we must
broaden the desired 3-dB main-beam to between 7.35 and
7.35 due to the well-known tradeoff between the sidelobe
level and the main-beam width; the corresponding sidelobe



LI et al.: BEAMPATTERN SYNTHESIS VIA A MATRIX APPROACH FOR SIGNAL POWER ESTIMATION 5649

Fig. 1. Comparison of beampatterns from 100 Monte Carlo trials obtained via several adaptive beamforming methods when N = 50. (a) Capon. (b) RCB.
(c) AMA with the desired 3-dB points at �5.5 and 5 and the peak sidelobe level below &(dB) = � 14 dB. (d) AMA with the desired 3-dB points at �7.35
and 7.35 and the peak sidelobe level below &(dB) = �40 dB. The vertical dashed line corresponds to the angle of the 60 dB interference.

Fig. 2. Comparison of beampatterns formed by several data-adaptive methods. (a) Snapshot number is (N = 100) and there is no steering angle error. (b) In the
presence of small sample size (N = 10) and of 2 steering angle error problems. The vertical dashed lines correspond to the SOI angle and the angle of the 60
dB interference. The horizontal dashed line corresponds to �3 dB.

region is also reduced to . As shown
in Fig. 1(d), AMA can achieve the 40 dB peak sidelobe level
and yet maintain a constant main-beam shape from one trail to
another.

Next we examine the robustness of AMA in the presence of
small sample size and steering angle error problems. As be-
fore, the SOI power is 10 dB and the interference power is
60 dB. Fig. 2(a) shows the beampatterns obtained from one
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Fig. 3. Comparison of SOI power estimates obtained via several data-adaptive methods when the interference power is 60 dB. (a) SOI power estimates versusN
in the absence of steering angle error. (b) SOI power estimates versus N in the presence of a 2 steering angle error.

Fig. 4. SOI power estimates versus the variance of the array steering vector
perturbation when the interference power is 20 dB.

Monte Carlo trial in the absence of any steering angle error when
the snapshot number is . In Fig. 2(b), the number of
snapshots is and the assumed SOI angle is 0 while the
true angle is 2 . We note that in the presence of these problems,
RCB’s gain at 0 is slightly above 0 dB while AMA maintains
the main-beam shape and the peak sidelobe level.

Fig. 3 shows the SOI power estimates when the SOI power
is 20 dB and the interference power is 60 dB. The main-beam
shape and the peak sidelobe level specifications of AMA are the
same as those for Fig. 2. Fig. 3(a) and (b), respectively, show the
SOI power estimates versus the snapshot number without and
with a 2 steering angle mismatch. Note that AMA and RCB
perform similarly.

Fig. 4 considers array calibration errors, which are simulated
by perturbing each element of the array steering vector with
a zero-mean circularly symmetric complex Gaussian random
variable. The perturbing random variables are independent of
each other. Fig. 4 shows the SOI power estimates versus the
variance of the perturbing random variables when and
the interference power is 20 dB. Note that AMA and RCB yield
much more accurate SOI power estimates than the standard
Capon beamformer. AMA performs similarly to RCB in most

Fig. 5. SOI power estimates versus the correlation coefficient between the SOI
and the 50 dB interference, obtained via several data-adaptive methods using
the theoretical R.

cases but outperforms RCB when the variance of the perturbing
random variables is large. When the interference is stronger,
though AMA is more sensitive to array steering vector errors
than RCB.

The next example shows that AMA can function properly
even when the interference is highly correlated with the SOI,
due to its strict main-beam shape and peak sidelobe level con-
trol. Fig. 5 shows the SOI power estimates, as a function of the
correlation coefficient between the SOI and the interference, ob-
tained using the theoretical (i.e., ). The SOI power
is 20 dB, and the interference power is 50 dB. The main-beam
shape and the peak sidelobe level specifications of AMA are
the same as those for Fig. 2. Note that AMA significantly out-
performs both RCB and the standard Capon beamformer in the
presence of a highly correlated interference (the latter two algo-
rithms are known to fail to function properly when the correla-
tion coefficient becomes close to 1). When the highly correlated
interference becomes even stronger, though, AMA will eventu-
ally fail since the peak sidelobe level of AMA, which is set to

40 dB, will not be sufficient for the adequate suppression of a
very strong interference.



LI et al.: BEAMPATTERN SYNTHESIS VIA A MATRIX APPROACH FOR SIGNAL POWER ESTIMATION 5651

Fig. 6. SOI power estimates, versus the number of interferences, obtained using the theoreticalR. The equal-power interferences are uniformly distributed in the
sidelobe region. (a) Each interference power is 40 dB and (b) each interference power is 60 dB.

Fig. 7. Data-independent beampatterns synthesized for a five-element MRA via beampattern matching design, with each desired pulse width of 20 and under
the uniform elemental gain constraint. (a) MA. (b) VA.

Finally, we study the number of strong interferences that the
adaptive beamformers can handle. The interference angles are
uniformly distributed in the sidelobe region, at angles

as well as at their positive angle counterparts.
Fig. 6(a) and (b) show the SOI power estimates obtained using
the theoretical when the interference powers are 40 and
60 dB, respectively. Note that AMA outperforms RCB. AMA
performs similarly to the standard Capon beamformer when
the interference power is 40 dB, but the latter performs better
when the interference power increases. Due to the increased
robustness of RCB and AMA, their capability of suppressing
many interferences diminishes while the standard Capon beam-
former performs at its best in this example because of the
perfect conditions: a theoretical , no steering vector errors,
and uncorrelated interferences.

We conclude the subsection by noting that in all of the pre-
vious examples shown in Figs. 1–6 (and in all of the Monte
Carlo trails), the number of dominant eigenvalues of the optimal
matrix obtained by AMA was always one. The remaining
eigenvalues of the optimal matrix were several orders of mag-
nitude smaller and their effects on the synthesized beampattern
were negligible. Because in all these examples the array was
uniform and linear, this behavior of AMA is not completely sur-

prising in view of the analysis in the Appendix. Indeed, the said
analysis supports the existence of rank-1 solutions. However, it
does not imply that the rank-1 solutions are the only ones, so the
fact that AMA always produced a rank-1 solution in our exam-
ples is a bit surprising, after all. Hence, in the previous exam-
ples, we considered AMA (with no spectral factorization step,
see the Appendix for details) served as a computationally effi-
cient way of computing globally optimal adaptive VA weight
vectors to achieve desired main-beam shape and peak sidelobe
level control.

B. Beampattern Matching Design

Consider the beampattern matching design in (25)–(27) for
the five-element MRA under the uniform elemental gain con-
straint with . The desired beampattern has three pulses
centered at , , and , each with a
width of 20 . Fig. 7 is obtained using a mesh grid size of 0.1 ,
and the weight in (25) is set to 100 when the corresponding

is in the sidelobe region and is set to 1 when is in the pulse
region. We remark that the mesh grid size has no significant im-
pact on the resulting beampattern. We also note that setting in
the sidelobe region to a larger value (such as 100 times larger)
than that in the pulse region can bring down slightly the side-
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Fig. 8. Beampatterns synthesized for a ten-element ULA via minimum sidelobe level design with the 3 dB main-beam width equal to 20 and under the uniform
elemental gain constraint. (a) MA. (b) VA.

Fig. 9. Wideband constant beamwidth designs for ULA and MRA obtained via the minimum sidelobe level MA design under the total gain constraint. The
normalized frequency band is from 0.4 to 1. (a) Beampatterns for a ten-element ULA. (b) Beampatterns for a five-element MRA. (c) 3-dB main-beam width versus
normalized frequency. (d) Peak sidelobe level versus normalized frequency.

lobe levels of the synthesized beampatterns. In this example,
the number of the dominant eigenvalues of the optimal matrix

obtained via MA is 3. Note from Fig. 7 that MA can provide a
much better beampattern matching than VA, especially for this
case of nonuniform MRA.

C. Minimum Sidelobe Level Design

Consider the minimum sidelobe level MA design in (36)–(41)
for the ten-element ULA under the uniform elemental gain con-

straint with . The main-beam is centered at with
a 3-dB width equal to 20 ( , ). The side-
lobe region is chosen to be to
allow for some roll-off regions of the beampattern. Fig. 8 is ob-
tained with a mesh grid size of 0.1 . The number of the dominant
eigenvalues of the optimal matrix obtained via MA for this
example is 2. Note that VA fails to produce a proper main-beam
and that the peak sidelobe level of the VA beampattern is more
than 5 dB higher than that of MA.
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D. Constant Beamwidth Design for Wideband Arrays

Case I: Linear Arrays, Far-Field Sources: Consider first the
constant beamwidth design for both ULA and MRA wideband
arrays. Assume that the frequency band of interest is . To
avoid grating lobes, the inter-element spacing of ULA is chosen
to be half-wavelength of the highest frequency component, i.e.,

. The inter-element spacings of MRA are still
but in units of . For convenience, let ; then
the corresponding normalized frequency band is .
Assume that . We choose the desired common 3-dB
beamwidth for ULA and MRA to be 20 ( ,

). The sidelobe and main-lobe regions are the same as for
Fig. 8. The beampatterns are obtained by using (36)–(41) for
each frequency bin under the total gain constraint and with a
mesh grid size of 0.1 .

Fig. 9(a) and (b) show the constant beamwidth beampatterns
obtained via MA, for ULA and MRA, respectively. We observe
that these beampatterns maintain a constant 3-dB beamwidth
across the entire frequency band. Fig. 9(c) shows the 3-dB main-
beam widths of the beampatterns obtained via MA and via the
DAS beamformer, as functions of the normalized frequency.
The corresponding peak sidelobe levels are shown in Fig. 9(d).
Note again that MA can be used to achieve constant main-beam
width across the frequency bins for both ULA and MRA. At
lower frequencies, the peak sidelobe levels of the beampatterns
obtained via MA are slightly higher than those of DAS, but at
higher frequencies, the peak sidelobe levels of the beampatterns
obtained via MA are lower. The number of dominant eigen-
values of the optimal matrix obtained via MA, for the ULA
case, is one for all the frequency bands, whereas for the MRA
case it is one at low frequencies and it increases to two or three
at high frequencies.

Case II: 2-D Circular Array, Near-Field Sources: Consider
now the wideband constant beamwidth MA design for SADA.
The fact that SADA is a 2-D array and that it is used for near-
field noise power measurements makes the problem more chal-
lenging. For a near-field source at location , the array steering
vector for the th narrowband frequency bin has the form

(42)

where is the location vector of the th sensor.
We again obtain the beampatterns using the minimum side-

lobe level MA design in (36)–(41) under the total gain con-
straint. The beampatterns shown in Fig. 10 are formed by scan-
ning the locations on a plane parallel to the array and situated 4
ft above the array. The beam is steered to (feet),
which is the center of the images shown in Fig. 10. The ranges
of the - and -axes of the images are from 2 to 2 ft. (For com-
parison purposes, these parameters are chosen as in [34].) The
mesh grid size on both the - and -axes is 0.5 in. We choose the
radius of the desired 3-dB beam circle for MA to be 4 in, which
is roughly the same as that achieved by the shading scheme in
[34] at 10–40 KHz. Like the shading scheme in [34], which uses
real-valued shading parameters, we use a real-valued in this

Fig. 10. Beampatterns for SADA at various frequencies (8, 20, 40, 65 KHz),
obtained via (a)–(d) the frequency dependent shading vector designed in [34]
and (e)–(h) the minimum sidelobe level MA design under the total gain con-
straint. The labelled values are in decibels. (a) Shading, 8 KHz; (b) shading,
20 KHz; (c) shading, 40 KHz; (d) shading, 65 KHz; (e) MA, 8 KHz; (f) MA,
20 KHz; (g) MA, 40 KHz; (h) MA, 65 KHz.

case. (The results obtained with a complex-valued are sim-
ilar, but with slightly lower sidelobe levels.)

The beampatterns in Fig. 10(a)–(d) are obtained by using
DAS shaded by the frequency-dependent weight vector de-
signed in [34]. The frequency-dependent weight vector was
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designed to maintain a constant beamwidth within the fre-
quency band of 10–40 KHz. We observe that the radius of the
3-dB circle at 8 KHz in Fig. 10(a) is larger than those at 20
and 40 KHz in Fig. 10(b) and (c). Also, the radius of the 3-dB
circle at 65 KHz in Fig. 10(d) is narrower than those at 20
and 40 KHz. The beampatterns obtained via MA, on the other
hand, have a constant 3-dB circle and reasonably low sidelobe
levels throughout the 8 to 65 KHz frequency band, as shown in
Fig. 10(e)–(h). This demonstrates that beampattern synthesis
via MA is capable of extending the working frequency band
of SADA (for which a constant beamwidth is guaranteed) to
8–65 KHz. Interestingly, the optimal matrix obtained via MA
has only one dominant eigenvalue, which means that we have
actually found better weighting vectors than those presented
in [34].

VI. CONCLUSION

We have presented new MAs for optimal beampattern
synthesis based on SDR for signal power estimation. SDR
converts the original nonconvex optimization problem into a
convex one by omitting the troublesome rank-1 constraint on
the weighting matrix. We have presented a (data) AMA design
as well as several data-independent designs. For all of these de-
signs, globally optimal solutions can be determined efficiently
due to the convex optimization formulations obtained by using
SDR. Numerical examples have been used to show that the
AMA allows for strict control of main-beam shape and peak
sidelobe level while retaining the capability of adaptive nulling
of strong interferences and jammers. AMA has been shown
to be robust against steering vector errors, small sample size
problems, as well as interferences that are highly correlated or
even coherent with the signal-of-interest. Numerical examples
have also been provided to show the effectiveness of using
the data-independent MA for beampattern synthesis for both
uniform and nonuniform as well as both narrowband and
wideband arrays.

APPENDIX

ON THE RANK-1 SOLUTIONS OF AMA IN THE ULA CASE

The AMA formulation in (18)–(23) can be viewed as an SDR
of the following VA design problem:

(43)

subject to
... (44)

where to simplify the writing, we have used the symbol
...
...
... to

denote any of the equalities and inequalities occurring in (19)
and (23). Indeed, letting , we can rewrite (43) and
(44) as

(45)

subject to
... (46)

(47)

(48)

and the SDR of (45) obtained by omitting the rank-1 constraint
on is nothing but the AMA formulation

(49)

subject to
... (50)

(51)

In the following, we will obtain (49)–(51) not via SDR, but via
a reparameterization of the original VA problem (43) and (44).
To be able to do so, we consider the case of ULA and we also as-
sume that is a Toeplitz matrix (which is a reasonable assump-
tion, as it is well-known that in the case of ULA and of uncor-
related signals, the true covariance matrix of the array output is
Toeplitz). The ULA assumption implies that the steering vector
can be written as (by a slight abuse of notation)

(52)

where is the spatial frequency [see, e.g.,
(2)], with denoting the inter-element spacing of the ULA.
Also, the assumption made on allows us to write this ma-
trix as (for some )

. . .
...

...
. . .

. . .
(53)

where

. . .

for (54)

The reparameterization of (43), referred to previously, is in-
spired by results on moving-average parameterization and esti-
mation [40], [41]. However, the required results can be obtained
without any reference to the moving-average theory, as we ex-
plain next.

Let

for

(55)

and observe that the objective function in (43) can be written as
a linear function of

(56)



LI et al.: BEAMPATTERN SYNTHESIS VIA A MATRIX APPROACH FOR SIGNAL POWER ESTIMATION 5655

The left-hand sides of the constraints in (44) can also be
rewritten as linear functions of . Indeed, for a generic

. . .
...

...
. . .

. . .

(57)

We have thus shown that both the objective and the constraints
in (43) and (44) can be rewritten as linear functions of .
However, are not free to vary in , but they must
be constrained to belong to an appropriate subset of .
Indeed, it follows from (57) that must be such that

(58)

[otherwise, there is no that satisfies (57), which is a contradic-
tion]. The following simple (linear) parameterization of
spans the allowed set of these variables:

and arbitrary (59)

Indeed, any in the said set is of the previous form [see (55)
for which ]. Moreover, for any of the form in
(59), we have that

(60)

and, therefore, any given by (59) belong to the allowed
set.

Combining (56), (57), and (59), leads to the following repa-
rameterized form of the original VA problem (43):

(61)

subject to (62)

... (63)

which is identical to the AMA (SDR-based) formulation in
(49)–(51). Once the solution to (49)–(51) has been deter-
mined, we compute the corresponding using (59) and
then via the spectral factorization of the right-hand side

of (57) (see, e.g., [42] for a recent discussion about available
spectral factorization algorithms).

To conclude, under the assumptions made in this appendix,
the solution to the VA problem in (43) and (44) can be com-
puted from the solution of the MA (SDR) problem (49)–(51),
regardless of the rank of the latter, by means of a spectral fac-
torization algorithm. Whenever the solution matrix has rank
one (as it happened in all our numerical examples), can be
obtained as the dominant eigenvector of and the spectral fac-
torization step can of course be bypassed.

Remark: Consider the following special instance of the
problem (43), (44), with only one equality constraint:

subject to (64)

Because multiplication of by , for any , does
not change anything in (64), it follows that the formulation in
(64) is equivalent to the standard Capon beamformer design
problem:

subject to (65)

The solution to (65), let us say , is well-known to be unique
(see, e.g., [19]). Hence, the solution to (64) is “unique” up to
a phase factor. On the other hand, the analysis in this appendix
suggests otherwise: indeed, let be the coefficient vector of a
polynomial obtained from
by reflecting some roots with respect to the unit circle; then
and give the same values of the “parameters” defined
in (55), and, therefore, both these vectors should be solutions to
(64). This contradiction to the “uniqueness” of the solution to
(64) disappears if and only if all the roots of lie on the
unit circle (in which case ). This property of can in
fact be shown via a direct calculation (see [43]).

The interesting implication of this discussion is, therefore,
that in the case of ULAs (and assuming that is Toeplitz), the
standard Capon beamformer, that is the solution to the VA de-
sign problem (65) [or (64)], has a logarithmic beampattern with
infinitely deep nulls due to the aforementioned all-roots-on-the-
unit-circle property (a fact that has apparently passed unnoticed
in the previous beamforming literature).
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