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Overview

Deterministic vs. random inputs
Data collection
Distribution fitting

Model “guessing”
Fitting parametric distributions

Assessment of independence
Parameter estimation
Goodness-of-fit tests

No data?
Non-stationary arrival processes
Multivariate / correlated input data
Case study
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Deterministic vs. Random Inputs

Deterministic: Nonrandom, fixed values
Number of units of a resource
Entity transfer time (?)
Interarrival, processing times (?)

Random: Model as a distribution, “draw”
or “generate” values from to drive 
simulation

Interarrival, processing times
What distribution? What distributional 
parameters?
Causes simulation output to be random, too

Don’t just assume randomness away!
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Collecting Data

Generally hard, expensive, frustrating, boring
System might not exist
Data available on the wrong things — might have to 
change model according to what’s available
Incomplete, “dirty” data
Too much data (!)

Sensitivity of outputs to uncertainty in inputs
Match model detail to quality of data
Cost — should be budgeted in project
Capture variability in data — model validity
Garbage In, Garbage Out (GIGO)



5

Using Data:
Alternatives and Issues

Use data “directly” in simulation
Read actual observed values to drive the 
model inputs (interarrivals, service times, part 
types, …)
All values will be “legal” and realistic
But can never go outside your observed data
May not have enough data for long or many 
runs
Computationally slow (reading disk files)

Or, fit probability distribution to data
“Draw” or “generate” synthetic observations 
from this distribution to drive the model inputs
Can go beyond observed data (good and bad)
May not get a good “fit” to data — validity?
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Fitting Distributions: Some Important Issues

Not an exact science — no “right” answer
Consider theoretical vs. empirical
Consider range of distribution

Infinite both ways (e.g., normal)
Positive (e.g., exponential, gamma)
Bounded (e.g., beta, uniform)

Consider ease of parameter manipulation 
to affect means, variances
Simulation model sensitivity analysis
Outliers, multimodal data

Maybe split data set
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Main Steps (continued)

Guess model using:
Summary statistics, such as

Sample mean
Sample variance
Sample median
Sample coefficient of variation
Sample skewness

Skewness close to zero indicates a symmetric distribution
A skewed distribution with unit coefficient of variation is likely 
the exponential

Histograms (play with interval width to get a reasonably 
smooth histogram). They resemble the unknown density
Box plots
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Main Steps (continued)

If a parametric models seems plausible:
Estimate parameters
Test goodness-of-fit



9

Fitting Parametric Distributions

Assume that the sample data are 
independent identically distributed data 
from some distribution with density 
(probability) function

All data are complete (no censoring)
How can we test independence?

Using the scatter-plot of 
By means of von-Neumann’s test
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Von Neumann’s Test
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Types of Parameters

Location parameters — they shift the density 
function
Shape parameters — they change the shape of 
the density function
Scale parameters
Example: For the N(µ,σ2) distribution

µ is the location parameter because
X ~ N(µ,σ2) ⇔ X-µ ~ N(0,σ2)

σ is the scale parameter because
X ~ N(µ,σ2) ⇔ X/σ ~ N(µ,1)

Example: In the Weibull(α,λ) distribution
α is a shape parameter
λ is the scale parameter
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Parameter Estimation Methods

Method of moments
Maximum likelihood estimation
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Method of Moments

Equate the first m sample (non-central) 
moments to the theoretical moments and 
solve the resulting system for the 
unknown parameters:
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Method of Moments (continued)

Example: The normal distribution
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Maximum Likelihood Estimation

The likelihood function is the joint density 
(probability function) of the data:

The Maximum Likelihood Estimator of θ
maximizes L(θ ) or, equivalently, the log-
likelihood ln L(θ ):
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Maximum Likelihood Estimation (continued)

Example: The exponential distribution
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Maximum Likelihood Estimation (continued)

Example: The normal distribution
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Maximum Likelihood Estimation (continued)

Example: The Uniform(0, b) distribution
We wish to find the MLE of b
The likelihood function is

Notice that L(b) is discontinuous; so don’t 
take derivatives…
Check that L(b) is maximized at 
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Maximum Likelihood Estimation (continued)

Example: The Weibull distribution
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Maximum Likelihood Estimation (continued)

MLEs are “nice” because they are
Asymptotically (n → ∞) unbiased
Asymptotically normal
Invariant, i.e., if g is continuous,

Example: The MLE of the variance (σ2 = 1/λ2)
for the exponential distribution is 
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Testing Goodness-of-Fit
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Testing Goodness-of-Fit (continued)

Graphical approaches
The Q-Q plot graphs the quantiles of the fitted 
distribution vs. the sample quantiles. It emphasizes 
poor fitting at the tails
The P-P plot graphs the fitted CDF vs. the empirical 
CDF

It emphasizes poor fitting at the middle of the fitted 
CDF
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Testing Goodness-of-Fit (continued)

Statistical Tests
The chi-square test
The Kolmogorov-Smirnov test
The Anderson-Darling test
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The Chi-square Test

Split the range of X into k adjacent 
intervals
Let
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The Chi-square Test (continued)

The null hypothesis is rejected (at level α ) 
if

One should use Ei ≥ 5
The test has maximum power if the Ei are 
equal (the intervals are equiprobable)
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The Kolmogorov-Smirnov Test

It generally assumes that all parameters 
are known
Sort the data and define the empirical CDF
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The Kolmogorov-Smirnov Test (continued)

The null hypothesis is rejected (at level α) 
if

{( ) ( ) ,

tabulated

ˆsup ( ) ( )

1ˆ ˆmax max ( ) , max ( )

n

i i n

D F x F x

i i
F X F X d

n n α

= −

⎧ ⎫−⎡ ⎤ ⎡ ⎤= − − >⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭



28

The Kolmogorov-Smirnov Test (continued)

We usually simplify the above inequality by 
computing a modified test statistic and a 
modified critical value    :

When parameters are replaced by MLEs modified 
K-S test statistics exist for the following 
distributions:

Normal
Exponential
Weibull
Log-logistic

{α>
tabulated

Adjusted Test Statistic c

αc
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The Kolmogorov-Smirnov Test (continued)
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The Kolmogorov-Smirnov Test (continued)
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The Kolmogorov-Smirnov Test (continued)
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The Anderson-Darling Test

The null hypothesis is rejected (at level α) 
if

It generally assumes that all parameters 
are known
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The Anderson-Darling Test (continued)

We usually simplify the above inequality by computing a 
modified test statistic and a modified critical value    :

When parameters are replaced by MLEs, modified A-D test 
statistics exist for:

The normal distribution
The exponential distribution
The Weibull distribution
The log-logistic distribution

αa

{α>
tabulated

Adjusted Test Statistic a



34

The Anderson-Darling Test (continued)
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No Data?

Happens more often than you would like
No good solution; some (bad) options:

Interview “experts”
Min, Max: Uniform
Average, % error or absolute error: Uniform
Min, Mode, Max: Triangular

Mode can be different from Mean — allows asymmetry 
(skewness)

Interarrivals — independent, stationary
Exponential — still need some value for mean

Number of “random” events in an interval: Poisson
Sum of independent “pieces”: normal
Product of independent “pieces”: lognormal
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Non-stationary Arrival Processes

External events (often arrivals) whose rate 
varies over time

Lunchtime at fast-food restaurants
Rush-hour traffic in cities
Telephone call centers
Seasonal demands for a manufactured product

It can be critical to model this non-
stationarity for model validity

Ignoring peaks, valleys can mask important 
behavior
Can miss rush hours, etc.

Good model: Non-stationary Poisson 
process
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Non-stationary Arrival Processes (continued)

Two issues:
How to specify/estimate the rate function
How to generate from it properly during the simulation 
(will be discussed during the Output Analysis session)

Several ways to estimate rate function — we’ll 
just do the piecewise-constant method

Divide time frame of simulation into subintervals of time 
over which you think rate is fairly flat
Compute observed rate within each subinterval
Be very careful about time units!

Model time units = minutes
Subintervals = half hour (= 30 minutes)
45 arrivals in the half hour; rate = 45/30 = 1.5 per minute
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Multivariate and Correlated Input Data

Usually we assume that all generated 
random observations across a simulation 
are independent (though from possibly 
different distributions)
Sometimes this isn’t true:

A “difficult” part may require longer service 
times by a set of machines
This indicates positive correlation

Ignoring such relations can invalidate 
model
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Case Study: Times-to-Failure

A data set contains 200 times-to-failure 
for a piece of equipment
We use ExpertFit®

To assess independence, we create a 
scatter plot
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Case Study ⎯ Scatter Plot

200 observations
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The data appear to be independent
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Case Study ⎯ Data Summary

Data Characteristic Value
Source file TTF.DAT
Observation type Real valued
Number of observations 200
Minimum observation 162.26205
Maximum observation 2,351.98858
Mean 768.91946
Median 709.90162
Variance 157,424.22579
Coefficient of variation 0.51601
Skewness 1.02670

Can the data be from
The normal distribution?
The exponential distribution?
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Case Study ⎯ Histogram with 16 Intervals

16 intervals of width 143.325 between 160 and 2,453.2
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Case Study ⎯ Model Guessing

We will allow ExpertFit to choose a 
continuous distribution automatically
We will tell it that 

the left limit for the underlying random 
variable is zero and
the tight limit is infinity
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Case Study ⎯ ExpertFit’s Choice…

Weibull(E): Weibull
distribution with a 
location parameter
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Case Study ⎯ Histogram Comparisons 

16 intervals of width 143.325 between 160 and 2,453.2 1 - Weibull(E) 3 - Gamma
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The gamma 
distribution does not 
fit well at the left tail…
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Case Study ⎯ Graphical Goodness-of-Fit Tests

Range of sample 1 - Weibull(E) (discrepancy=0.02285) 3 - Gamma (discrepancy=0.03057)
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Case Study ⎯ Graphical Goodness-of-Fit Tests 
(continued)

Range of sample 1 - Weibull(E) (discrepancy=0.05400) 3 - Gamma (discrepancy=0.05316)
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Case Study ⎯ A-D & K-S Goodness-of-Fit Tests
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Case Study ⎯ Chi-square Goodness-of-Fit Tests

What distribution 
gives a better fit?

Beware:

Outcomes depend on the 
number of intervals!
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Case Study ⎯ Additional Graphical Comparisons

7-point sample box plot 1 - Weibull(E) 3 - Gamma

-122 378 878 1378 1878 2378

Box-Plot Comparisons
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Case Study ⎯ Arena Code for the Winner…

Arena Representation of Model 1 - Weibull(E)

Use:

161.741769 + WEIB(673.465060, 1.547408, <stream>)

Estimate for location 
parameter. Check the 
translation…

Estimate for scale-1

parameter

Estimate for shape 
parameter

We haven’t used 
this yet…


