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Deterministic vs. random inputs
Data collection

Distribution fitting
= Model “guessing”

= Fitting parametric distributions
Assessment of independence
Parameter estimation
Goodness-of-fit tests

No data?

Non-stationary arrival processes
Multivariate / correlated input data
Case study



Deterministic vs. Random Inputs

0 Deterministic: Nonrandom, fixed values
= Number of units of a resource
= Entity transfer time (?)
= Interarrival, processing times (?)

0 Random: Model as a distribution, “draw’
or “generate” values from to drive
simulation
= Interarrival, processing times

m What distribution? What distributional
parameters?

= Causes simulation output to be random, too
0 Don't just assume randomness away!



Collecting Data

o Generally hard, expensive, frustrating, boring
= System might not exist

= Data available on the wrong things — might have to
change model according to what’s available

= Incomplete, “dirty” data
= Too much data (!)

Sensitivity of outputs to uncertainty in inputs
Match model detail to quality of data

Cost — should be budgeted in project
Capture variability in data — model validity
Garbage In, Garbage Out (GIGO)
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Using Data:
Alternatives and Issues

0 Use data “directly” in simulation

= Read actual observed values to drive the
model inputs (interarrivals, service times, part
types, ...

= All values will be “legal” and realistic

= But can never go outside your observed data

= May not have enough data for long or many
runs

= Computationally slow (reading disk files)

o Or, fit probability distribution to data
= "Draw” or “generate” synthetic observations
from this distribution to drive the model inputs
= Can go beyond observed data (good and bad)
= May not get a good "“fit” to data — validity?



Fitting Distributions: Some Important Issues

0 Not an exact science — no “right” answer
o Consider theoretical vs. empirical

0 Consider range of distribution
= Infinite both ways (e.g., normal)
= Positive (e.g., exponential, gamma)
= Bounded (e.qg., beta, uniform)

o Consider ease of parameter manipulation
to affect means, variances

o Simulation model sensitivity analysis

o Outliers, multimodal data
= Maybe split data set



M a | n Ste pS (continued)

o Guess model using:

= Summary statistics, such as

S | < Estimates
ample mean X_ ) )
Sample variance S CV(X) = o/u = yVar(X) /E(X)

Sample median B /

Sample coefficient of variation Sn/Xn
Sample skewness 1
Z” (X, —X.)? Estimates
i=1 :
: ; E(X - u)*/ 0
Sh

= Skewness close to zero indicates a symmetric distribution

= A skewed distribution with unit coefficient of variation is likely
the exponential

= Histograms (play with interval width to get a reasonably
smooth histogram). They resemble the unknown density

= Box plots
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M a | n Ste pS (continued)

o If a parametric models seems plausible:
= Estimate parameters
= Test goodness-of-fit



Fitting Parametric Distributions

o Assume that the sample data are
independent identically distributed data
from some distribution with density
(probability) function

X, Xypeooy X~ £(X;0)
0=(0,,..,06.)

o All data are complete (no censoring)

o How can we test independence?
= Using the scatter-plot of (X, X,,;), 1 =1,...,n-1
= By means of von-Neumann'’s test
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Von Neumann’s Test

The test statistic is

2

n<—1 N
Un = X[P1‘|‘

n—2

(X1 —Xn)? + (Xn — Xn)?
2 Z?:l(Xi — Xn)z

where
Z?:_% (Xz' - Xn) (Xi—l—l - Xn)

p1 =

estimates the correlation between adjacent observations.

If the data are independent and n > 20, U, =~ N(0,1)

We reject the hypothesis of independence when

|Un| > 25/2

where (3 is the type-I error
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Types of Parameters

O Location parameters — they shift the density
function

O Shape parameters — they change the shape of
the density function
O Scale parameters
o Example: For the N(x,o2) distribution
= u is the location parameter because
X ~ N(u,02) < X-u~ N(0,0%)
= ois the scale parameter because
X ~— N(y,02) < X/o— N(x,1)

o Example: In the Weibull(a,4) distribution
= «is a shape parameter
= Ais the scale parameter
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Parameter Estimation Methods

o Method of moments
0 Maximum likelihood estimation
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Method of Moments

o Equate the first m sample (non-central)
moments to the theoretical moments and
solve the resulting system for the
unknown parameters:
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MethOd Of MOmentS (continued)

o Example: The normal distribution

E(X)=u=X

N

E(X?) = yu® +0° = lZx?

no
give

g=X and 6=S,

N



Maximum Likelihood Estimation

o The likelihood function is the joint density
(probability function) of the data:

L(0) = T (X, )

o The Maximum Likelihood Estimator of 4
maximizes L(#) or, equivalently, the log-
likelihood In L(6):

InL(@) > InL() for all @
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Maximum Likelihood Estimation (continued)

0o Example: The exponential distribution

/(A1) =InL(1) = In(ﬁﬁe“'j =nini - zi X,

%zﬂ—in :O:>2:1/)Zn
di A =
Check that d?¢/dA* =-1/1° < 0:

this guarantees that 1 is a maximizer
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MaX|mum le6|lh00d EStImatIOn (continued)

o Example: The normal distribution

f=X

n

—Z(x - X, ) = - —— S
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Maximum Likelihood Estimation (continued)

o Example: The Uniform(0, b) distribution
We wish to find the MLE of b
The likelihood function is

1/b" for 0 < X <b < b>maxX

L(b) =< _
0 otherwise

Notice that L(b) is discontinuous; so don't
take derivatives...

Check that L(b) is maximized at

b = max X
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Maximum Likelihood Estimation (continued)

o Example: The Weibull distribution
The density is given by

f(x) = ad(Az)* texp[-(\x)?],

where « > 0 is the shape parameter and A > 0
IS the scale parameter

The m.l.e.s satisfy the following equations:

D=1 X@QmAXi_i _ >i—1 INX; and X —
Yi=1Xg o 2

We can solve the first equation by Newton’'s

method

~\ —1/a
Z?=1X3>

n
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Maximum Likelihood Estimation (continued)

o MLEs are “nice” because they are
= Asymptotically (n - «) unbiased
= Asymptotically normal
= Invariant, i.e., if g is continuous,

A=g(0)= 4 =9(0)

Example: The MLE of the variance (¢ = 1/4?)
for the exponential distribution is X’
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Testing Goodness-of-Fit

We want to test the null hypothesis

H,: X,,..., X are from f(x) = f(x;0)

a = Type I Error = Pr(reject H, | H, is true)

g = Type II Error = Pr(accept H, | H, is false)

Power =1 - g =Pr(reject H, | H, is false)

p-value =smallest value of type I error that leads
to rejection of H,
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Testing Goodness-of-Fit (continued)

o Graphical approaches

= The Q-Q plot graphs the quantiles of the fitted
distribution vs. the sample quantiles. It emphasizes
poor fitting at the tails

= The P-P plot graphs the fitted CDF vs. the empirical
CDF

— number of X, < x
F(X) = ' ,—00 < X < o0
n

Computation: Sort X, < X, <-- < X, Then

|E(X(i)) :in

It emphasizes poor fitting at the middle of the fitted
CDF
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Testing Goodness-of-Fit (continued)

O Statistical Tests

m T
m T
m T

ne chi-square test
ne Kolmogorov-Smirnov test

ne Anderson-Darling test
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The Chi-square Test

o Split the range of X into k adjacent
intervals

O Let

. =[a_,,a)= ith interval
O.

E

number of observations in interval i
expected number of observations in interval i

nlF(a)-F(a_)]

N

CDF of fitted distribution
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The Chi-square Test (continuea)

o The null hypothesis is rejected (at level « )
if

OE2
Z( )

where s is the number of parameters
replaced by their MLEs

>stla

m One should use E, = 5

m The test has maximum power if the E; are
equal (the intervals are equiprobable)
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The Kolmogorov-Smirnov Test

o It generally assumes that all parameters
are known

o Sort the data and define the empirical CDF

-,y humber of X, <X

F(X) = -
0 if X < X,
= 4 ifX(i)SX<X(i+1),1£i£n-l

!
n
1 if x > X,

\
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The Kolmogorov-Smirnov Test (ontinueq)

o The null hypothesis is rejected (at level «)
if

D, = sup‘FA(x) _ IE(X)‘

= MmaxX {max {

L |£(X(i))}: max{ﬁ(x(i)) B E}} > G

n n —
tabulated
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The Kolmogorov-Smirnov Test (ontinueq)

o We usually simplify the above inequality by
computing a modified test statistic and a
modified critical value cC,:

Adjusted Test Statistic > c,

——
tabulated

o When parameters are replaced by MLEs modified
K-S test statistics exist for the following
distributions:

= Normal
= Exponential
= Weibull
= Log-logistic
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The Kolmogorov-Smirnov Test (continued)

Modified Critical VValues ¢, for Adjusted K-S Statistics

Case Adjusted Test Statistic 0.15 0.10 0.05 0.025 0.01
All parameters (\/ﬁ + 0.12 + %) Dy, 1.138 1.224 1.358 1.480 1.628
known

Nor(X,, S2) (\/_ —0.01 + %) Dy, 0.775 0.819 0.895 0.995 1.035

Expo(1/Xn) (Dn—%) (\/——0.014—%) 0.926 0.990 1.094 1.190 1.308
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The Kolmogorov-Smirnov Test (ontinueq)

Modified Critical Values for the K-S Test
for the Weibull Distribution

@

n 0.10 0.05 0.025 0.01
10 0.760 0.819 0.880 0.944

27N N 770 N QA2 N ON7 N Q72
VAV U.Il 1 J U.0 0 U.JU I U.JI O

50 0.790 0.856 0.922 0.988
oo 0.803 0.874 0.939 1.007
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The Kolmogorov-Smirnov Test (ontinueq)

Modified Critical Values for the K-S Test

for the Log-logistic Distribution

0.10

0.05

0.025

0.01

10
20
50

0.679
0.693
0.708
0.715

0.730
0.755
0.770
0.730

0.774
0.800
0.817
0.827

0.823
0.854
0.873
0.836
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The Anderson-Darling Test

o The null hypothesis is rejected (at level «)
if

,_FFO)-F (T
A= oo roor O

— —Hizﬂl(Zi —1){InF(X(i)) + |n[1_ |£(X(n—i+1))] }_ n>a,, ,

tabulated

o It generally assumes that all parameters
are known
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The Anderson-Darling Test (continued)

o We usually simplify the above inequality by computing a
modified test statistic and a modified critical value a:

Adjusted Test Statistic > a

)
tabulated

o When parameters are replaced by MLEs, modified A-D test
statistics exist for:

= The normal distribution
= The exponential distribution
= The Weibull distribution
= The log-logistic distribution



The Anderson-Darling Test (ontinueq)

Modified Critical Values ao for Adjusted A-D Statistics

(8

Case Adjusted Test Statistic 0.10 0.05 0.025 0.01
All parameters AZ for n > 5 1.933 2.492 3.070 3.857
known

Nor(Xn, S2) (1+g_§_~g) A2 0.632 0.751 0.870 1.029
Expo(1/Xn) (14 98) A2 1.070 1.326 1.587 1.943
Weibull(a, B) (1+%) A2 0.637 0.757 0.877 1.038
Log-logistic(&, B) (1 +@) A2 0.563 0.660 0.769 0.906
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No Data”?

o Happens more often than you would like

o No good solution; some (bad) options:
= Interview “experts”
Min, Max: Uniform
Average, % error or absolute error: Uniform

Min, Mode, Max: Triangular

= Mode can be different from Mean — allows asymmetry
(skewness)

= Interarrivals — independent, stationary
Exponential — still need some value for mean
= Number of “random” events in an interval: Poisson
= Sum of independent “pieces”: normal
= Product of independent “pieces”: lognormal
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Non-stationary Arrival Processes

o External events (often arrivals) whose rate
varies over time

= Lunchtime at fast-food restaurants

= Rush-hour traffic in cities

= Telephone call centers

= Seasonal demands for a manufactured product

o It can be critical to model this non-
stationarity for model validity

= Ignoring peaks, valleys can mask important
behavior

= Can miss rush hours, etc.

0 Good model: Non-stationary Poisson
pProcess
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Non-stationary Arrival Processes (continued)

O Two issues:
= How to specify/estimate the rate function

= How to generate from it properly during the simulation
(will be discussed during the Output Analysis session)
o Several ways to estimate rate function — we’ll
just do the piecewise-constant method

= Divide time frame of simulation into subintervals of time
over which you think rate is fairly flat

= Compute observed rate within each subinterval
= Be very careful about time units!
Model time units = minutes

Subintervals = half hour (= 30 minutes)
45 arrivals in the half hour; rate = 45/30 = 1.5 per minute

37



Multivariate and Correlated Input Data

o Usually we assume that all generated
random observations across a simulation
are independent (though from possibly
different distributions)

0O Sometimes this isn’t true:

= A “difficult” part may require longer service
times by a set of machines

= This indicates positive correlation

o Ignoring such relations can invalidate
model
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Case Study: Times-to-Failure

O A data set contains 200 times-to-failure
for a piece of equipment

0o We use ExpertFit®

O To assess independence, we create a
scatter plot
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Case Study — Scatter Plot

The data appear to be independent
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Case Study — Data Summary

Data Characteristic
Source file
Observation type
Number of observations
Minimum observation
Maximum observation
Mean

Median

Variance

Coefficient of variation
Skewness

o Can the data be from

Value
TTF.DAT
Real valued
200
162.26205
2,351.98858
768.91946
709.90162
157,424.22579
0.51601
1.02670

= The normal distribution?
= The exponential distribution?
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Case Study — Histogram with 16 Intervals

Histogram

0.20

0.15

0.10

Proportion

0.05

0.00

2.3e2 5.2e2 10.9e2 13.8e2 19.5e2 22.4e2

Interval Midpoint

. 16 intervals of width 143.325 between 160 and 2,453.2



Case Study — Model Guessing

o We will allow ExpertFit to choose a
continuous distribution automatically

o We will tell it that

= the left limit for the underlying random
variable is zero and

= the tight limit is infinity
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Case Study — ExpertFit’s Choice...

alysis - <unnamed:: - Results =10l

Relative Evaluation of Candidate Models

Apply Relative
Done Model Score Parameters
1 - Weibull(E]) 100.00 Location 16174177

i

Styles | Scale 673.46506 WElbU”(E) . WE|bU”

Print Shape 1.54741

Copy 2 - Beta 95.45 Lower endpoint 54 43617 d i St ri b u ti o n W i t h a

Upper endpoint  12.916.87962

Shape #1  3.00707 location parameter

Shape #2 51.12749
3 - Gamma 89.77 Location 0.00000

Scale 197.09191

Shape 3.90132

23 models are defined with scores between 0.00 and 100.00

Absolute Evaluation of Model 1 - Weibull[E]

Evaluation: Good
Suggestion: Additional evaluations using Comparizons Tab might be informative.

Additional Information About Model 1 - Weibull[E]

Results of the Anderson-Darling
goodness-of-fit test at level 0.1 Mot applicable

"Ermror” in the model mean
relative to the zample mean 1.35980 = 0.18%
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Case Study — Histogram Comparisons

0.20

Density/Histogram Overplot

0.15

0.10

Density/Proportion

0.05

0.00
2.3e2 5.2e2

The gamma
distribution does not
fit well at the left tail...

8.0e2 10.9e2 13.8e2

Interval Midpoint

. 16 intervals of width 143.325 between 160 and 2,453.2

B 1 - weibull(E) [] 3-Gamma
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Case Study — Graphical Goodness-of-Fit Tests
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Case Study — Graphical Goodness-of-Fit Tests

(continued)
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Case Study — A-D & K-S Goodness-of-Fit Tests

Anderson-Darling Test With Model 1 - Weibull(E)

Sample size
Test statistic

200
033184

K.olmogorov-Smirnoy Test With Model 1 - Weibull[E]

Sample size

Hormal test statistic
Modified test stahistic

200
0.04426
062593

Hote: Mo critical values exist for this special case. . ) . .
. ot Mote: Mo critical values exist for thiz special case.
The following critical values are for the case where . .
. The following critical values are for the case where
all parameters are known, and are conservative. .
all parameters are known, and are conservative.
Critical Yalues for Level of Significance [alpha) Critical Values for Level of Significance [alpha)
Sample Size 0.250 0.100 0.050 0.025 0.010 0.005 Sample Size 0.150 0.100 0.050 0.025 0.010
200 1.248 1.933 2.492 3.070 3.857 4.500 200 1.128 1.213 1.346 1.467 1.613
Reject? Mo Reject? No
Anderson-Darling Test With Model 3 - Gamma Kolmogorov-Smirnoy Test With Model 3 - Gamma
. Sample size 200
Sample s_lz"? 200 Mormal test statistic 0.04957
Test statistic  0.48640 Modified test statistic 0.70106
Hote: The following critical values are approximate. Mote: Mo critical values exist for thiz special case.
The following critical values are for the case where
Critical Yalues for Level of Significance [alpha) all parameters are known, and are conservative.
Sample Size | 0.250 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 Critical Values for Level of Significance (alpha)
Sample Size 0.150 0.100 0.050 0.025 0.010
200 0474 | 0638 | D761 0.884 1.047 1.176
- 200 1.128 1.213 1.346 1.467 1.613
Reject? | Yes No Reject? | No
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Case Study — Chi-square Goodness-of-Fit Tests

Equal-Probable Chi-5quare Test With Model 1 - Weibull(E]

Mumber of intervals 20

Expected [model] count 10

Test statistic 14.6 BeW are:
Warning: The test may not be statistically valid because a method

other than maximum likelihood was used to estimate parameters.

Outcomes depend on the

Degrees Observed Leyel | Critical Yalues for Level of Significance (alphal . I
of Freedom | of Significance 0.25 0.15 0.10 0.05 0.01 num be r Of N te F'va I S!
16 0.554 19.369 | 21.793 | 23.542 | 26.296 | 32.000
19 0.748 22118 | 25.329 | 27.204 | 30.144 | 36.191
Reject? No
Equal-Probable Chi-5quare Test With Model 3 - Gamma
What dlStFIbUtIOﬂ Number of intervals 20
. . Expected [model] count 10
glves d better ﬂt? Test statistic 28
Degrees Ohzerved Level Critical ¥alues for Level of Significance [alpha)
of Freedom of Significance 0.2% 0.15 0.10 0.05 0.01
17 0.045 200489 | 22977 | 24.769 | 27587 | 33.409
19 0.083 22.718 | 25329 | 27.204 | 30144 | 36197
Reject? Yes Mo




Case Study — Additional Graphical Comparisons
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Case Study — Arena Code for the Winner...

Arena Representation of Model 1 - Weibull(E)

Use:

161.741769 + WEIB(673.465060, 1.547408, <stream>)

N\

We haven’t used
this yet...
Estimate for location _
parameter. Check the Estimate for shape
translation... parameter

Estimate for scale-!
parameter
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