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Intro

Introduction

Statistics / Simulation experiments are typically per-

formed to compare a “small” number of system de-

signs — say 2 to 200.

The appropriate method depends on the type of com-

parison desired and properties of the output data.

We present ranking & selection and multiple com-

parison procedures.
3



Intro

Examples:

Which of 10 fertilizers produces the largest mean crop

yield? (Normal)

Find the pain reliever that has the highest probability

of giving relief. (Binomial)

Which candidate is the most popular? (Multinomial)
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Intro

R&S selects the best system, or a subset of systems

that includes the best.

* Guarantee a probability of a correct selection.

MCPs treat the comparison problem as an inference

problem.

* Account for simultaneous errors.
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Intro

R&S and MCPs are both relevant in simulation:

* Normally distributed data by batching.

* Independence by controlling random numbers.

* Multiple-stage sampling by retaining the seeds.
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Normal Experiments

2. Find the Normal Distrn with the Largest Mean

We present procedures for selecting the normal distri-

bution that has the largest mean.

We use the indifference-zone approach.

Assumptions: Independent Yi1, Yi2, . . . (1 ≤ i ≤ t) are

taken from t ≥ 2 normal popns Π1, . . . ,Πt. Here Πi has

unknown mean µi and known or unknown variance σ2
i .
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Normal Experiments

Notation: Denote the vector of means by µ = (µ1, . . . , µt)

and the vector of variances by σ2 = (σ2
1, . . . , σ2

t ). The

ordered µi’s are

µ[1] ≤ · · · ≤ µ[t].

The treatment having mean µ[t] is the “best” treat-

ment.
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Normal Experiments

Goal: To select the popn associated with mean µ[t].

Definition: A correct selection (CS) is said to be made

if the Goal is achieved.

Indifference-Zone Probability Requirement: For spec-

ified constants (δ⋆, P ⋆) with 0 < δ⋆ < ∞ and 1/t <

P ⋆ < 1, we require

P{CS} ≥ P ⋆ whenever µ[t] − µ[t−1] ≥ δ⋆. (1)
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Normal Experiments

The probability in (1) depends on the differences µi−

µj (i 6= j, 1 ≤ i, j ≤ t), the sample size n, and σ2.

The constant δ⋆ can be thought of as the “smallest

difference worth detecting.”

Parameter configurations µ satisfying µ[t] − µ[t−1] ≥

δ⋆ are in the preference-zone for a correct selection;

configurations satisfying µ[t] − µ[t−1] < δ⋆ are in the

indifference-zone. Any procedure that guarantees (1)

is said to be employing the indifference-zone approach.
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Normal Experiments

There are > 100 such procedures. Highlights:

* Single-Stage Procedure (Bechhofer 1954)

* Two-Stage Procedure (Rinott 1979)

* Sequential Procedure (Nelson and friends, 2001)
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Single-Stage Procedure

Single-Stage Procedure NB (Bechhofer 1954)

Assumes popns have common known variance.

For the given t and specified (δ⋆/σ, P ⋆), determine

sample size n (usually from a table).

Take a random sample of n observations Yij (1 ≤ j ≤

n) in a single stage from Πi (1 ≤ i ≤ t).
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Single-Stage Procedure

Calculate the t sample means

Y i =
n

∑

j=1
Yij/n (1 ≤ i ≤ t).

Select the popn that yielded the largest sample mean,

Y [t] = max{Y 1, . . . , Y t}, as the one associated with

µ[t].

Very intuitive — all you have to do is figure out n.
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Single-Stage Procedure

δ⋆/σ
t P ⋆ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.75 91 23 11 6 4 3 2 2 2 1
2 0.90 329 83 37 21 14 10 7 6 5 4

0.95 542 136 61 34 22 16 12 9 7 6
0.99 1083 271 121 68 44 31 23 17 14 11
0.75 206 52 23 13 9 6 5 4 3 3

3 0.90 498 125 56 32 20 14 11 8 7 5
0.95 735 184 82 46 30 21 15 12 10 8
0.99 1309 328 146 82 53 37 27 21 17 14
0.75 283 71 32 18 12 8 6 5 4 3

4 0.90 602 151 67 38 25 17 13 10 8 7
0.95 851 213 95 54 35 24 18 14 11 9
0.99 1442 361 161 91 58 41 30 23 18 15

Common Sample Size n per Popn Required by NB
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Single-Stage Procedure

Remark: Don’t really need the above table. . .

n = ⌈2(σZ
(1−P ⋆)
t−1,1/2/δ⋆)2⌉

where Z
(1−P ⋆)
t−1,1/2 is a special case of the upper equico-

ordinate point of a certain multivariate normal distri-

bution.
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Single-Stage Procedure

The constant Z
(α)
p,ρ is determined to satisfy the prob-

ability requirement (1) for any true configuration of

means satisfying

µ[1] = µ[t−1] = µ[t] − δ⋆. (2)

Configurations (2) are termed least-favorable (LF)

because, for fixed n, they minimize the P{CS} among

all configurations satisfying the preference-zone re-

quirement µ[t] − µ[t−1] ≥ δ⋆.
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Single-Stage Procedure

Example: Suppose t = 4 and we want to detect a

difference in means as small as 0.2 standard devia-

tions with probability 0.99. The table shows that NB

calls for n = 361 observations per popn. Increasing δ⋆

and/or decreasing P ⋆ requires a smaller n. For exam-

ple, when δ⋆/σ = 0.6 and P ⋆ = 0.95, NB requires only

n = 24 observations per treatment.
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Single-Stage Procedure

Robustness of Normal Theory Procedure

How does NB do under different types of violations of

the underlying assumptions on which it’s based?

* Lack of normality — not so bad.

* Different variances — sometimes a big problem.

* Dependent data —usually a very big problem (es-

pecially in simulations).
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Two-Stage Procedure

Two-Stage Procedure NR (Rinott 1979)

Assumes popns have unknown (unequal) variances.

For the given t, specify (δ⋆, P ⋆).

Specify a common first-stage sample size n0 ≥ 2.

Look up the constant h(P ⋆, n0, t) in an appropriate

table.
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Two-Stage Procedure

Take an i.i.d. sample Yi1, Yi2, . . . , Yin0
from each of the

t scenarios simulated independently.

Calculate the first-stage sample means

Ȳ
(1)
i =

n0
∑

j=1
Yij/n0,

and marginal sample variances

S2
i =

∑n0
j=1

(

Yij − Ȳ
(1)
i

)2

n0 − 1
,

for i = 1,2, . . . , t.
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Two-Stage Procedure

Compute the final sample sizes

Ni = max
{

n0,
⌈

(hSi/δ⋆)2
⌉}

for i = 1,2, . . . , t, where ⌈·⌉ is the integer “round-up”

function.

Take Ni − n0 additional i.i.d. observations from sce-

nario i, independently of the first-stage sample and

the other scenarios, for i = 1,2, . . . , t.
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Two-Stage Procedure

Compute overall sample means ¯̄Yi =
∑Ni

j=1 Yij/Ni ∀i.

Select the scenario with the largest ¯̄Yi as best.

Bonus: Simultaneously form “multiple comparisons

with the best” confidence intervals

µi−max
j 6=i

µj ∈



−

(

¯̄Yi − max
j 6=i

¯̄Yj − δ⋆
)−

,

(

¯̄Yi − max
j 6=i

¯̄Yj + δ⋆
)+





for i = 1,2, . . . , t, where (a)+ = max{0, a} and −(b)− =

min{0, b}.
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Two-Stage Procedure

n0 = t
P ⋆ ν + 1 2 3 4 5 6 7

9 2.656 3.226 3.550 3.776 3.950 4.091
10 2.614 3.166 3.476 3.693 3.859 3.993
11 2.582 3.119 3.420 3.629 3.789 3.918
12 2.556 3.082 3.376 3.579 3.734 3.860
13 2.534 3.052 3.340 3.539 3.690 3.812
14 2.517 3.027 3.310 3.505 3.654 3.773
15 2.502 3.006 3.285 3.477 3.623 3.741

0.95 16 2.489 2.988 3.264 3.453 3.597 3.713
17 2.478 2.973 3.246 3.433 3.575 3.689
18 2.468 2.959 3.230 3.415 3.556 3.669
19 2.460 2.948 3.216 3.399 3.539 3.650
20 2.452 2.937 3.203 3.385 3.523 3.634
30 2.407 2.874 3.129 3.303 3.434 3.539
40 2.386 2.845 3.094 3.264 3.392 3.495
50 2.373 2.828 3.074 3.242 3.368 3.469

h Constant Required by NR
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Rinott Example

Example: A Simulation Study of Airline Reservation

Systems

Consider t = 4 different airline reservation systems.

Objective: Find the system with the largest expected

time to failure (E[TTF]). Let µi denote the E[TTF]

for system i (1 ≤ i ≤ 4).
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Rinott Example

From past experience we know that the E[TTF]’s are

roughly 100,000 minutes (about 70 days) for all four

systems.

Goal: Select the best system with probability at least

P ⋆ = 0.90 if the difference in the expected failure

times for the best and second best systems is ≥ δ⋆ =

3000 minutes (about two days).
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Rinott Example

The competing systems are sufficiently complicated

that computer simulation is required to analyze their

behavior.

Let Tij (1 ≤ i ≤ 4, j ≥ 1) denote the observed time to

failure from the jth independent simulation replication

of system i.
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Rinott Example

Application of the Rinott procedure NR requires i.i.d.

normal observations from each system.

If each simulation replication is initialized from a par-

ticular system under the same operating conditions,

but with independent random number seeds, the re-

sulting Ti1, Ti2, . . . will be i.i.d. for each system.

However, the Tij aren’t normal — in fact, they’re

skewed right.
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Rinott Example

Instead of using the raw Tij in procedure NR, apply the

procedure to the so-called macroreplication estimators

of the µi.

These estimators group the {Tij : j ≥ 1} into disjoint

batches and use the batch averages as the “data” to

which NR is applied.
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Rinott Example

Fix an integer number m of simulation replications

that comprise each macroreplication (that is, m is the

batch size) and let

Yij ≡
1

m

m
∑

k=1

Ti,(j−1)m+k

(1 ≤ i ≤ 4, 1 ≤ j ≤ bi) where bi is the number of

macroreplications to be taken from system i.
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Rinott Example

The macroreplication estimators from the ith system,

Yi1, Yi2, . . . , Yibi
, are i.i.d. with expectation µi.

If m is sufficiently large, say at least 20, then the CLT

yields approximate normality for each Yij.

No assumptions are made concerning the variances of

the macroreplications.
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Rinott Example

To apply NR, first conduct a pilot study to serve as the

first stage of the procedure. Each system was run for

n0 = 20 macroreplications with each macroreplication

consisting of the averages of m = 20 simulations of

the system.

Rinott table with t = 4 and P ⋆ = 0.90 gives h = 2.720.

The total sample sizes Ni are computed for each sys-

tem and are displayed in the summary table.
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Rinott Example

i 1 2 3 4

y
(1)
i 108286. 107686. 96167.7 89747.9
si 29157.3 24289.9 25319.5 20810.8
Ni 699 485 527 356

yi 110816.5 106411.8 99093.1 86568.9
sȳi

872.0 1046.5 894.2 985.8

Summary of Airline Rez Example
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Rinott Example

E.g., System 2 requires an additional N2 − 20 = 465

macroreplications in the second stage (each macrorepli-

cation again being the average of m = 20 system sim-

ulations).

In all, a total of about 40,000 simulations of the

four systems were required to implement procedure

NR. The combined sample means for each system

are listed in row 4 of the summary table.

Clearly establish System 1 as having the largest E[TTF].
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Sequential Procedure

Multi-Stage Procedure NKN (Kim & Nelson 2001)

Assumes popns have unknown (unequal) variances.

For the given t, specify (δ⋆, P ⋆), and a common initial

sample size from each scenario n0 ≥ 2.

Calculate the constant

η =
1

2











2(1 − P ⋆)

t − 1





−2/(n0−1)

− 1





 .
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Sequential Procedure

Set I = {1,2, . . . , t} and let h2 = 2η(n0 − 1).

Take a random sample of n0 observations Yij (1 ≤ j ≤

n0) from population i (1 ≤ i ≤ t).

For treatment i compute the sample mean based on

the n0 observations, Ȳi(n0) =
∑n0

j=1 Yij/n0 (1 ≤ i ≤ t).

For all i 6= ℓ, compute the sample variance of the

difference between treatments i and ℓ,

S2
iℓ =

1

n0 − 1

n0
∑

j=1

(

Yij − Yℓj − [Ȳi(n0) − Ȳℓ(n0)]
)2

.
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Sequential Procedure

For all i 6= ℓ, set

Niℓ =
⌊

h2S2
iℓ/δ⋆2

⌋

,

where ⌊·⌋ is the floor function, and

Ni = max
ℓ6=i

Niℓ.

If n0 > maxi Ni, stop and select the population with

the largest sample mean Ȳi(n0) as one having the

largest mean. Otherwise, set the sequential counter

r = n0 and go to the Screening phase of the proce-

dure.
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Sequential Procedure

Screening: Set Iold = I and re-set

I = {i : i ∈ Iold and Ȳi(r) ≥ Ȳℓ(r) − Wiℓ(r),

for all ℓ ∈ Iold, ℓ 6= i},

where

Wiℓ(r) = max







0,
δ⋆

2r





h2S2
iℓ

δ⋆2
− r











.

Keep those surviving populations that aren’t “too far”

from the current leader.

37



Sequential Procedure

Stopping Rule: If |I| = 1, then stop and select the

treatment with index in I as having the largest mean.

If |I| > 1, take one additional observation Yi,r+1 from

each treatment i ∈ I. Increment r = r + 1 and go to

the screening stage if r < maxi Ni+1. If r = maxi Ni+

1, then stop and select the treatment associated with

the largest Ȳi(r) having index i ∈ I.
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Extensions

Normal Extensions

Correlation between populations.

Better fully sequential procedures.

Better elimination of popns that aren’t competitive.

Different variance estimators.
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Bernoulli Experiments

3. Find the Bernoulli Distrn with the Largest

Success Probability

Again use the indifference-zone approach.

Examples:

* Which anti-cancer drug is most effective?

* Which simulated system is most likely to meet cer-

tain design specs?
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Bernoulli Experiments

There are > 100 such procedures. Highlights:

* Single-Stage Procedure (Sobel and Huyett, 1957)

* Sequential Procedure (Bechhofer, Kiefer, Sobel, 1968)

* “Optimal” Procedures (Bechhofer, et al., 1980’s)
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Single-Stage Procedure

A Single-Stage Procedure (Sobel and Huyett 1957)

t competing Bern populations Πi with success param-

eters p1, p2, . . . , pt.

Ordered p’s: p[1] ≤ p[2] ≤ · · · ≤ p[t].

Probability Requirement: For specified constants (∆⋆, P ⋆)

with 0 < ∆⋆ < 1 and 1/t < P ⋆ < 1, we require

P{CS} ≥ P ⋆ whenever p[t] − p[t−1] ≥ ∆⋆. (3)
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Single-Stage Procedure

Note that the indifference requirement is defined in

terms of the difference p[t] − p[t−1].

The probability in (3) depends on the entire vector

p = (p1, p2, . . . , pt) and on the common number n of

independent observations taken from each of the t

treatments.

The constant ∆⋆ can be interpreted as the “smallest

p[t] − p[t−1] difference worth detecting.”
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Single-Stage Procedure

Procedure BSH

For the specified (∆⋆, P ⋆), find n from a table.

Take a sample of n observations Xij (1 ≤ j ≤ n) in a

single stage from each Πi (1 ≤ i ≤ t).

Calculate the t sample sums Yin =
∑n

j=1 Xij.

Select the treatment that yielded the largest Yin as the

one associated with p[t]; in the case of ties, randomize.
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Two-Stage Procedure

P ⋆

t ∆⋆ 0.60 0.75 0.80 0.85 0.90 0.95 0.99

0.10 20 52 69 91 125 184 327
0.20 5 13 17 23 31 46 81

3 0.30 3 6 8 10 14 20 35
0.40 2 4 5 6 8 11 20
0.50 2 3 3 4 5 7 12

0.10 34 71 90 114 150 212 360
0.20 9 18 23 29 38 53 89

4 0.30 4 8 10 13 17 23 39
0.40 3 5 6 7 9 13 21
0.50 2 3 4 5 6 8 13

Smallest Sample Size for BSH to Guarantee PR
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Two-Stage Procedure

Example: Suppose we want to select the best of t = 4

treatments with probability at least P ⋆ = 0.95 when-

ever p[4] − p[3] ≥ 0.10.

The table shows that we need n = 212 observations.

Suppose that, at the end of sampling, we have Y1,212 =

70, Y2,212 = 145, Y3,212 = 95 and Y4,212 = 102.

Then we select Π2 as the best.
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Sequential Procedure

A Sequential Procedure (BKS 1968).

New Probability Requirement: For specified constants

(θ⋆, P ⋆) with θ⋆ > 1 and 1/t < P ⋆ < 1, we require

P{CS} ≥ P ⋆ (4)

whenever the odds ratio

p[t]/(1 − p[t])

p[t−1]/(1 − p[t−1])
≥ θ⋆.
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Sequential Procedure

Procedure BBKS

For the given t, specify (θ⋆, P ⋆).

At the mth stage of experimentation (m ≥ 1), observe

the random Bernoulli vector (X1m, . . . , Xtm).

Let Yim =
∑m

j=1 Xij (1 ≤ i ≤ t) and denote the ordered

Yim-values by Y[1]m ≤ · · · ≤ Y[t]m.
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Sequential Procedure

After the mth stage of experimentation, compute

Zm =
t−1
∑

i=1
(1/θ⋆)

Y[t]m−Y[i]m.

Stop at the first value of m (call it N) for which Zm ≤

(1 − P ⋆)/P ⋆. Note that N is a random variable.

Select the treatment that yielded Y[t]N as the one

associated with p[t]; in the case of ties, randomize.
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Sequential Procedure

Example: For t = 3 and (θ⋆, P ⋆) = (2,0.75), sup-

pose the following sequence of vector-observations is

obtained using BBKS.

m x1m x2m x3m y1m y2m y3m y[3]m − y[2]m y[3]m − y[1]m zm

1 1 0 1 1 0 1 0 1 1.5
2 0 1 1 1 1 2 1 1 1.0
3 0 1 1 1 2 3 1 2 0.75
4 0 0 1 1 2 4 2 3 0.375
5 1 1 1 2 3 5 2 3 0.375
6 1 0 1 3 3 6 3 3 0.25

Since z6 ≤ (1−P ⋆)/P ⋆ = 1/3, sampling stops at stage

N = 6 and treatment Π3 is selected as best.
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Extensions

Bernoulli Extensions

Correlation between populations.

More-efficient sequential procedures.

Elimination of populations that aren’t competitive.
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Multinomial Experiments

Multinomial Selection and Screening

Overview

We present procedures for selecting the multinomial

category that has the largest probability of occur-

rence. We use both the indifference-zone and subset

selection approaches.
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Multinomial Experiments

Example:

• Who is the most popular political candidate?

• Which television show is most watched during a

particular time slot?

• Which simulated warehouse configuration maximizes

throughput?
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Multinomial Experiments

Organization

1. Motivational examples.

2. Notation.

3. Several procedures.

4. Simulation applications.
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Motivational Examples

Motivational Examples

Experimental Set-Up:

• t possible outcomes (categories).

• pi is the probability of the ith category.

• n independent replications of the experiment.

• Yi is the number of outcomes falling in category i

after the n observations have been taken.
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Motivational Examples

The t-variate discrete vector random variable Y =

(Y1, Y2, . . . , Yt) has the probability mass function

P{Y1 = y1, Y2 = y2, . . . , Yt = yt} =
n!

∏t
i=1 yi!

t
∏

i=1
p
yi
i ,

and Y has a multinomial distribution with parameters

n and p = (p1, . . . , pt).
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Motivational Examples

Example: Suppose three of the faces of a fair die

are red, two are blue, and one is green, i.e., p =

(3/6,2/6,1/6). Toss it n = 5 times. Then the prob-

ability of observing exactly three reds, no blues and

two greens is

P{Y = (3,0,2)} =
5!

3!0!2!
(3/6)3(2/6)0(1/6)2 = 0.03472.
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Motivational Examples

Example (continued): Suppose we did not know the

probabilities for red, blue and green in the previous

example and that we want to select the most prob-

able color. The selection rule is to choose the color

that occurs the most frequently during the five trials,

using randomization to break ties.
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Motivational Examples

Let Y = (Yr, Yb, Yg) denote the number of occurrences

of (red, blue, green) in five trials. The probability that

we correctly select red is given by

P{red wins in 5 trials}

= P{Yr > Yb and Yg} + 0.5P{Yr = Yb, Yr > Yg}

+0.5P{Yr > Yb, Yr = Yg}

= P{Y = (5,0,0), (4,1,0), (4,0,1), (3,2,0), (3,1,1), (3,0,2)

+0.5P{Y = (2,2,1)} + 0.5P{Y = (2,1,2)}.
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Motivational Examples

We can list the outcomes favorable to a correct se-

lection (CS) of red, along with the associated proba-

bilities of these outcomes, randomizing for ties.
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Motivational Examples

Outcome Contribution
(red, blue, green) to P{red wins in 5 trials}

(5,0,0) 0.03125
(4,1,0) 0.10417
(4,0,1) 0.05208
(3,2,0) 0.13889
(3,1,1) 0.13889
(3,0,2) 0.03472
(2,2,1) (0.5)(0.13889)
(2,1,2) (0.5)(0.06944)

0.60416
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Motivational Examples

The probability of correctly selecting red as the most

probable color based on n = 5 trials is 0.6042. This

P{CS} can be increased by increasing the sample size

n.
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Motivational Examples

Example: The most probable alternative might be

preferable to that having the largest expected value.

Consider two inventory policies, A and B, where

Profit from A = $5 with probability 1

and

Profit from B =







$0 with probability 0.99
$1000 with probability 0.01

.
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Motivational Examples

Then

E[Profit from A] = $5 < E[Profit from B] = $10

but

P{Profit from A > Profit from B} = 0.99.

So A has a lower expected value than B, but A will

win almost all of the time.
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Assumptions and Notation

Assumptions and Notation

• Xj = (X1j, . . . , Xtj) (j ≥ 1) are independent obser-

vations taken from a multinomial distribution having

t ≥ 2 categories with associated unknown probabilities

p = (p1, . . . , pt).

• Xij = 1 [0] if category i does [does not] occur on

the jth observation.
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Assumptions and Notation

• The (unknown) ordered pi’s are p[1] ≤ · · · ≤ p[t].

• The category associated with p[t] is the most prob-

able or best.

• The cumulative sum for category i after m multino-

mial observations have been taken is yim =
∑m

j=1 xij.

• The ordered yim’s are y[1]m ≤ · · · ≤ y[t]m.

66



IZ Procedures

Indifference-Zone Procedures

Goal: Select the category associated with p[t].

A correct selection (CS) is made if the Goal is achieved.

Probability Requirement: For specified constants (θ⋆, P ⋆)

with 1 < θ⋆ < ∞ and 1/t < P ⋆ < 1, we require

P{CS |p} ≥ P ⋆ whenever p[t]/p[t−1] ≥ θ⋆. (5)
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IZ Procedures

The probability in (5) depends on the entire vector p

and on the number n of independent multinomial ob-

servations to be taken. The constant θ⋆ is the “small-

est p[t]/p[t−1] ratio worth detecting.”

Now we will consider a number of procedures to guar-

antee probability requirement (5).
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Single-Stage Procedure

Single-Stage Procedure MBEM (Bechhofer, Elmaghraby,

and Morse 1959):

For the given t, θ⋆ and P ⋆, find n from the table.

Take a n multinomial observations Xj = (X1j, . . . , Xtj)

(1 ≤ j ≤ n) in a single stage.
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Single-Stage Procedure

Calculate the ordered sample sums y[1]n ≤ · · · ≤ y[t]n.

Select the category with the largest sample sum, y[t]n,

as the one associated with p[t], randomizing to break

ties.

Remark: The n-values are computed so that MBEM

achieves the nominal P{CS}, P ⋆, when the cell proba-

bilities p are in the least-favorable (LF) configuration,

p[1] = p[t−1] = 1/(θ⋆+ t−1) and p[t] = θ⋆/(θ⋆+ t−1)

(6)

as first determined by Kesten and Morse (1959).
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Single-Stage Procedure

Example: A soft drink producer wants to find the

most popular of t = 3 proposed cola formulations.

The company will give a taste test to n people. The

sample size n is to be chosen so that P{CS} ≥ 0.95

whenever the ratio of the largest to second largest true

(but unknown) proportions is at least 1.4. Entering

Table ?? with t = 3, P ⋆ = 0.95, and θ⋆ = 1.4, we find

that n = 186 individuals must be interviewed.
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t = 2 t = 3 t = 4 t = 5
P ⋆ θ⋆ n n0 n n0 n n0 n n0

3.0 1 1 5 5 8 9 11 12
2.0 5 5 12 13 20 24 29 34

0.75 1.8 5 7 17 18 29 35 41 50
1.6 9 9 26 32 46 57 68 86
1.4 17 19 52 71 92 124 137 184
1.2 55 67 181 285 326 495 486 730
3.0 7 ∞ 11 12 16 19 21 24
2.0 15 15 29 34 43 53 58 71

0.90 1.8 19 27 40 50 61 75 83 104
1.6 31 41 64 83 98 126 134 172
1.4 59 79 126 170 196 274 271 374
1.2 199 267 437 670 692 1050 964 1460
3.0 9 11 17 20 23 26 29 34
2.0 23 27 42 52 61 74 81 98

0.95 1.8 33 35 59 71 87 106 115 142
1.6 49 59 94 125 139 180 185 240
1.4 97 151 186 266 278 380 374 510
1.2 327 455 645 960 979 1500 1331 2000

Sample Size n for Procedure MBEM , and Truncation Numbers

n0 for Procedure MBG to Guarantee (5)
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Curtailed Procedure

A Curtailed Procedure (Bechhofer and Kulkarni 1984)

Suppose we specify the maximum total number of ob-

servations to be n. Procedure MBK employs curtail-

ment and achieves the same P{CS} as does MBEM

with the same n. In fact,. . .

73



Curtailed Procedure

P{CS using MBK |p} = P{CS using MBEM |p}

and

E{N using MBK |p} ≤ n using MBEM

uniformly in p, where N is the (random) number of

observations to the termination of sampling.
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Curtailed Procedure

Remark: Unlike procedure MBEM , the distance mea-

sure θ⋆ does not play a role. The choice of the maxi-

mum number n of multinomial observations permitted

can be made using criteria such as cost or availability

of observations. Of course, one could also choose n

to guarantee the probability requirement (5).
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Curtailed Procedure

Procedure MBK

For the given t, specify n prior to the start of sampling.

At the mth stage of experimentation (m ≥ 1), take

the random observation Xm = (X1m, . . . , Xtm).

Calculate the sample sums yim through stage m (1 ≤

i ≤ t). Stop sampling at the first stage m for which

there exists a category satisfying

yim ≥ yjm + n − m for all j 6= i (1 ≤ i, j ≤ t). (7)
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Curtailed Procedure

Let N (a random variable) denote the value of m at

the termination of sampling. Select the category hav-

ing the largest sum as the one associated with p[t],

randomizing to break ties.

77



Curtailed Procedure

Remark: The LHS of (7) is the current total number

of occurrences of category i; the RHS is the current

total of category j plus the additional number of po-

tential occurrences of j if all of the (n−m) remaining

outcomes after stage m were also to be associated

with j. Thus, curtailment takes place when one of

the categories has sufficiently more successes than all

of the other categories, i.e., sampling stops when the

leader can do no worse than tie.
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Curtailed Procedure

Example: For t = 3 and n = 2, stop sampling if

m x1m x2m x3m y1m y2m y3m
1 1 0 0 1 0 0

and select category 1 because y1m = 1 ≥ yjm+n−m =

0 + 2 − 1 = 1 for j = 2 and 3.
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Curtailed Procedure

Example: For t = 3 and n = 3 or 4, stop sampling if

m x1m x2m x3m y1m y2m y3m
1 0 1 0 0 1 0
2 0 1 0 0 2 0

and select category 2 because y2m = 2 ≥ yjm+n−m =

0 + n − 2 for n = 3 or n = 4 and both j = 1 and 3.
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Curtailed Procedure

Example: For t = 3 and n = 3 suppose that

m x1m x2m x3m y1m y2m y3m
1 1 0 0 1 0 0
2 0 0 1 1 0 1
3 0 1 0 1 1 1

Because y13 = y23 = y33 = 1, we stop sampling and

randomize among the three categories.
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Sequential Procedure

Sequential Procedure with Curtailment (Bechhofer and

Goldsman 1986)

Procedure MBG

For the given t and specified (θ⋆, P ⋆), find the trunca-

tion number n0 from the table.

At the mth stage of experimentation (m ≥ 1), take

the random observation Xm = (X1m, . . . , Xtm).
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Sequential Procedure

At stage m, calculate the ordered category totals y[1]m ≤

· · · ≤ y[t]m and

zm =
t−1
∑

i=1
(1/θ⋆)

(y[t]m−y[i]m).

Stop sampling at the first stage when either

zm ≤ (1 − P ⋆)/P ⋆ (8)

or m = n0 or y[t]m − y[t−1]m ≥ n0 − m.
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Sequential Procedure

Let N denote the value of m at the termination of

sampling. Select the category that yielded y[t]N as

the one associated with p[t]; randomize in the case of

ties.

Remark: Procedure MBG satisfies the probability re-

quirement (5), and has the same LF-configuration as

MBEM ; this determines the truncation numbers given

in the table.
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Sequential Procedure

Example: Suppose t = 3, P ⋆ = 0.75 and θ⋆ = 3.0.

The table tells us to truncate sampling at n0 = 5

observations. For the data

m x1m x2m x3m y1m y2m y3m
1 0 1 0 0 1 0
2 0 1 0 0 2 0

we stop sampling by the first criterion in (8) because

z2 = (1/3)2 +(1/3)2 = 2/9 ≤ (1− P ⋆)/P ⋆ = 1/3, and

we select category 2.
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Sequential Procedure

Example: Again suppose t = 3, P ⋆ = 0.75 and θ⋆ =

3.0 (so that n0 = 5). For the data

m x1m x2m x3m y1m y2m y3m
1 0 1 0 0 1 0
2 1 0 0 1 1 0
3 0 1 0 1 2 0
4 1 0 0 2 2 0
5 1 0 0 3 2 0

we stop sampling by the second criterion in (8) be-

cause m = n0 = 5 observations, and we select cate-

gory 1.
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Sequential Procedure

Example: Yet again suppose t = 3, P ⋆ = 0.75 and
θ⋆ = 3.0 (so that n0 = 5). For the data

m x1m x2m x3m y1m y2m y3m
1 0 1 0 0 1 0
2 1 0 0 1 1 0
3 0 1 0 1 2 0
4 1 0 0 2 2 0
5 0 0 1 2 2 1

we stop according to the second criterion in (8) be-

cause m = n0 = 5. However, we now have a tie be-

tween y1,5 and y2,5 and thus randomly select between

categories 1 and 2.
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Sequential Procedure

Example: Still yet again suppose t = 3, P ⋆ = 0.75
and θ⋆ = 3.0 (so that n0 = 5). Suppose we observe

m x1m x2m x3m y1m y2m y3m
1 0 1 0 0 1 0
2 1 0 0 1 1 0
3 0 1 0 1 2 0
4 0 0 1 1 2 1

Because categories 1 and 3 can do no better than tie

category 2 (if we were to take the potential remaining

n0−m = 5−4 = 1 observation), the third criterion in

(8) tells us to stop; we select category 2.
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Sequential Procedure

Remark: Procedure MBG usually requires fewer ob-

servations than MBEM .

Example: Suppose t = 4, θ⋆ = 1.6, P ⋆ = 0.75. The

single-stage procedure MBEM requires 46 observa-

tions to guarantee (5), whereas procedure MBG (with

a truncation number of n0 = 57) has E{N |LF} = 31.1

and E{N |EP} = 37.65 for p in the LF-configuration

(6) and equal-probability (EP) configuration, p[1] =

p[t], respectively.
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Applications

Applications

1. Selection of the Treatment Having the Largest

Location Parameter (see Bechhofer and Sobel 1958).

Suppose Wi1, Wi2, . . . is the ith of t mutually inde-

pendent random samples. Assume the Wij (j ≥ 1)

are continuous random variables with p.d.f. f(w − µi)

where the µi (1 ≤ i ≤ t) are unknown location param-

eters.
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Applications

Goal: Select the p.d.f. f(w − µi) that has the highest

probability of producing the largest observation from

the vector (W1j, . . . , Wtj).
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Applications

Define Xij = 1 if Wij > maxi′ 6=i Wi′j on trial j and

Xij = 0 if not (1 ≤ i ≤ t, j ≥ 1). Then (X1j, . . . , Xtj)

(j ≥ 1) has a multinomial distribution with probability

vector p, where

pi = P{Wi1 > Wi′1 (i′ 6= i; 1 ≤ i′ ≤ t)} (1 ≤ i ≤ t).

Let p[1] ≤ · · · ≤ p[t] denote the ordered pi-values.
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Applications

The goal of selecting the category associated with p[t]

can be investigated using the multinomial selection

procedures described in this chapter.

Remark: The p.d.f. having the highest probability, p[t],

of producing the largest observation is the p.d.f. with

the largest µi-value.
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Applications

Warning: However, the multinomial probability re-

quirement (5) involving the pi’s does not translate

into any easily interpretable probability requirement

involving the µi’s.
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Applications

Example: Use MBG to solve the following location

problem. Suppose independent observations Wij are

taken from t = 3 treatments. The p.d.f. of Wij is

assumed to be of the same unknown form f(w − µi)

(1 ≤ i ≤ 3), differing only with respect to the unknown

location parameters µi. We want to select the treat-

ment associated with µ[3] = max{µ1, µ2, µ3}. This is

equivalent to selecting the multinomial cell associated

with p[3].
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Applications

Suppose we specify P ⋆ = 0.75 and θ⋆ = 3.0. The
truncation number n0 = 5 from the table for proce-
dure MBG applied to the following data tells us to
stop sampling if

m w1m w2m w3m x1m x2m x3m y1m y2m y3m

1 15 17 9 0 1 0 0 1 0
2 21 7 6 1 0 0 1 1 0
3 7 11 8 0 1 0 1 2 0
4 16 6 2 1 0 0 2 2 0
5 14 13 9 1 0 0 3 2 0

and select treatment 1. In doing so we are guaranteed

that P{CS} ≥ 0.75 whenever p[3] ≥ 3p[2].
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Applications

2. A General Nonparametric Application.

Suppose we take i.i.d. vector-observations Wj = (W1j, . . . , Wtj

(j ≥ 1), where the Wij can be either discrete or con-

tinuous random variables. For a particular vector-

observation Wj, suppose the experimenter can deter-

mine which of the t observations Wij (1 ≤ i ≤ t) is

the “most desirable.” The term “most desirable” is

based on some criterion of goodness designated by the

experimenter, and it can be quite general, e.g.,. . .
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Applications

• The largest crop yield based on a vector-observation

of t agricultural plots using competing fertilizers.

• The smallest sample average customer waiting time

based on a simulation run of each of t competing

queueing strategies.

• The smallest estimated variance of customer waiting

times (from the above simulations).
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Applications

For a particular vector-observation Wj, suppose Xij =

1 or 0 according as Wij (1 ≤ i ≤ t) is the “most

desirable” of the components of Wj or not. Then

(X1j, . . . , Xtj) (j ≥ 1) has a multinomial distribution

with probability vector p, where

pi = P{Wi1 is the “most desirable” component of W1}.
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Applications

Selection of the category corresponding to the largest

pi can be thought of as that of finding the compo-

nent having the highest probability of yielding the

“most desirable” observation of those from a par-

ticular vector-observation. This problem can be ap-

proached using the multinomial selection methods de-

scribed in this chapter.
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Applications

Example: Suppose we want to find which of t = 3 job

shop configurations is most likely to give the shortest

expected times-in-system for a certain manufactured

product. Because of the complicated configurations

of the candidate job shops, it is necessary to simulate

the three competitors. Suppose the jth simulation

run of configuration i yields Wij (1 ≤ i ≤ 3, j ≥ 1),

the proportion of 1000 times-in-system greater than

20 minutes. Management has decided that the “most

desirable” component of Wj = (W1j, W2j, W3j) will be

that component corresponding to min1≤i≤3 Wij.
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Applications

If pi denotes the probability that configuration i yields

the smallest component of Wj, then we seek to se-

lect the configuration corresponding to p[3]. This is

equivalent to selecting the multinomial category asso-

ciated with p[3] = max{p1, p2, p3}. Specify P ⋆ = 0.75

and θ⋆ = 3.0. The truncation number from the table

for MBG is n0 = 5. We apply the procedure to the

data
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m w1m w2m w3m x1m x2m x3m y1m y2m y3m
1 0.13 0.09 0.14 0 1 0 0 1 0
2 0.24 0.10 0.07 0 0 1 0 1 1
3 0.17 0.11 0.12 0 1 0 0 2 1
4 0.13 0.08 0.02 0 0 1 0 2 2
5 0.14 0.13 0.15 0 1 0 0 3 2

. . . and select shop configuration 2.


