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Abstract. Sparse cutting-planes are often the ones used in mixed-integer
programing (MIP) solvers, since they help in solving the linear pro-
grams encountered during branch-&-bound more efficiently. However,
how well can we approximate the integer hull by just using sparse cutting-
planes? In order to understand this question better, given a polyope P
(e.g. the integer hull of a MIP), let Pk be its best approximation us-
ing cuts with at most k non-zero coefficients. We consider d(P,Pk) =
maxx∈Pk (miny∈P ‖x− y‖) as a measure of the quality of sparse cuts.
In our first result, we present general upper bounds on d(P,Pk) which
depend on the number of vertices in the polytope and exhibits three
phases as k increases. Our bounds imply that if P has polynomially many
vertices, using half sparsity already approximates it very well. Second,
we present a lower bound on d(P,Pk) for random polytopes that show
that the upper bounds are quite tight. Third, we show that for a class of
hard packing IPs, sparse cutting-planes do not approximate the integer
hull well. Finally, we show that using sparse cutting-planes in extended
formulations is at least as good as using them in the original polyhedron,
and give an example where the former is actually much better.

1 Introduction

Most successful mixed integer linear programming (MILP) solvers are based on
branch-&-bound and cutting-plane (cut) algorithms. Since MILPs belong to the
class of NP-hard problems, one does not expect the size of branch-&-bound tree
to be small (polynomial is size) for every instance. In the case where the branch-
&-bound tree is not small, a large number of linear programs must be solved.
It is well-known that dense cutting-planes are difficult for linear programming
solvers to handle. Therefore, most commercial MILPs solvers consider sparsity
of cuts as an important criterion for cutting-plane selection and use [4, 1, 7].

Surprisingly, very few studies have been conducted on the topic of sparse
cutting-planes. Apart from cutting-plane techniques that are based on generation
of cuts from single rows (which implicitly lead to sparse cuts if the underlying
row is sparse), to the best of our knowledge only the paper [2] explicitly discusses
methods to generate sparse cutting-planes.

The use of sparse cutting-planes may be viewed as a compromise between
two competing objectives. As discussed above, on the one hand, the use of sparse
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cutting-planes aids in solving the linear programs encountered in the branch-&-
bound tree faster. On the other hand, it is possible that ‘important’ facet-defining
or valid inequalities for the convex hull of the feasible solutions are dense and thus
without adding these cuts, one may not be able to attain significant integrality
gap closure. This may lead to a larger branch-&-bound tree and thus result in
the solution time to increase.

It is challenging to simultaneously study both the competing objectives in
relation to cutting-plane sparsity. Therefore, a first approach to understanding
usage of sparse cutting-planes is the following: If we are able to separate and
use valid inequalities with a given level of sparsity (as against completely dense
cuts), how much does this cost in terms of loss in closure of integrality gap?

Considered more abstractly, the problem reduces to a purely geometric ques-
tion: Given a polytope P (which represents the convex hull of feasible solutions
of a MILP), how well is P approximated by the use of sparse valid inequalities.
In this paper we will study polytopes contained in the [0, 1]n hypercube. This
is without loss of generality since one can always translate and scale a polytope
to be contained in the [0, 1]n hypercube.

1.1 Preliminaries

A cut ax ≤ b is called k-sparse if the vector a has at most k nonzero components.
Given a set P ⊆ Rn, define Pk as the best outer-approximation obtained from
k-sparse cuts, that is, it is the intersection of all k-sparse cuts valid for P.

For integers k and n, let [n] := {1, . . . , n} and let
(

[n]
k

)
be the set of all subsets

of [n] of cardinality k. Given a k-subset of indices I ⊆ [n], define RĪ = {x ∈ Rn :
xi = 0 for all i ∈ I}. An equivalent and handy definition of Pk is the following:

Pk =
⋂
I∈([n]

k )

(
P + RĪ

)
. Thus, if P is a polytope, Pk is also a polytope.

1.2 Measure of Approximation

There are several natural measures to compare the quality of approximation
provided by Pk in relation to P. For example, one may consider objective value

ratio: maximum over all costs c of expression zc,k

zc , where zc,k is the value of
maximizing c over Pk, and zc is the same for P. We discard this ratio, since this
ratio can become infinity and not provide any useful information1. Similarly, we
may compare the volumes of P and Pk. However, this ratio is not useful if P is
not full-dimensional and Pk is.

In order to have a useful measure that is well-defined for all polytopes con-
tained in [0, 1]n, we consider the following distance measure:

d(P,Pk) := max
x∈Pk

(
min
y∈P
‖x− y‖

)
,

where ‖·‖ is the `2 norm. It is easily verified that there is a vertex of Pk attaining
the maximum above. Thus, alternatively the distance measure can be interpreted
as the Euclidean distance between P and the farthest vertex of Pk from P.
1 Take P = conv{(0, 0), (0, 1), (1, 1)} and compare with P1 wrt c = (1,−1).



Observation 1 (d(P,Pk) is an upper bound on depth of cut) Suppose αx ≤
β is a valid inequality for P where ‖α‖ = 1. Let the depth of this cut be the small-
est γ ≥ 0 such that αx ≤ β+γ is valid for Pk. It is straightforward to verify that
γ ≤ d(P,Pk). Therefore, the distance measure gives an upper bound on additive
error when optimizing a (normalized) linear function over P and Pk.

Observation 2 (Comparing d(P,Pk) to
√
n) Notice that the largest distance

between any two points in the [0, 1]n hypercube is at most
√
n. Therefore in the

rest of the paper we will compare the value of d(P,Pk) to
√
n.

1.3 Some Examples

In order to build some intuition we begin with some examples in this section. Let
P := {x ∈ [0, 1]n : ax ≤ b} where a is a non-negative vector. It is straightforward

to verify that in this case, Pk := {x ∈ [0, 1]n : aIx ≤ b ∀I ∈
(

[n]
k

)
}, where

aIj := aj if j ∈ I and aIj = 0 otherwise.

Example 1: Consider the simplex P = {x ∈ [0, 1]n :
∑n
i=1 xi ≤ 1}. Using the

above observation, we have that Pk = conv{e1, e2, . . . , en, 1
ke}, where ej is the

unit vector in the direction of the jth coordinate and e is the all ones vector.

Therefore the distance measure between P and Pk is
√
n( 1

k −
1
n ) ≈

√
n
k , attained

by the points 1
ne ∈ P and 1

ke ∈ Pk. This is quite nice because with k ≈
√
n

(which is pretty reasonably sparse) we get a constant distance. Observe also that
the rate of change of the distance measure follows a ‘single pattern’ - we call this
a single phase example. See Figure 1(a) for d(P,Pk) plotted against k (in blue)
and k · d(P,Pk) plotted against k (in green).
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Fig. 1. (a) Sparsity is good. (b) Sparsity is not so good. (c) Example with three phases.

Example 2: Consider the set P = {x ∈ [0, 1]n :
∑
i xi ≤

n
2 }. We have that

Pk := {x ∈ [0, 1]n :
∑
i∈I xi ≤

n
2 , ∀I ∈

(
[n]
k

)
}. Therefore, for all k ∈ {1, . . . , n/2}

we have Pk = [0, 1]n and hence d(P,Pk) =
√
n/2. Thus, we stay with distance

Ω(
√
n) (the worst possible for polytopes in [0, 1]n) even with Θ(n) sparsity. Also

observe that for k > n
2 , we have d(P,Pk) = n

√
n

2k −
√
n

2 . Clearly the rate of
change of the distance measure has two phases, first phase of k between 1 and
n
2 and the second phase of k between n

2 and n. See Figure 1(b) for the plot of
d(P,Pk) against k (in blue) and of k · d(P,Pk) against k (in green).



Example 3: We present an experimental example in dimension n = 10. The
polytope P is now set as the convex hull of 150 binary points randomly selected
from the hyperplane {x ∈ R10 :

∑10
i=1 xi = 5}. We experimentally computed

lower bounds on d(P,Pk) which are plotted in Figure 1(c) as the blue line
(details appear in the full version of the paper). Notice that there are now three
phases, which are more discernible in the plot between the lower bound on
k · d(P,Pk) and k (in green).

The above examples serve to illustrate the fact that different polytopes, be-
have very differently when we try and approximate them using sparse inequali-
ties. We note here that in all our additional experiments, albeit in small dimen-
sions, we have usually found at most three phases as in the previous examples.

2 Main Results

2.1 Upper Bounds

Surprisingly, it appears that the complicated behavior of d(P,Pk) as k changes
can be described to some extent in closed form. Our first result is nontrivial
upper bounds on d(P,Pk) for general polytopes. This is proven in Section 3.

Theorem 3 (Upper Bound on d(P,Pk)). Let n ≥ 2. Let P ⊆ [0, 1]n be the
convex hull of points {p1, . . . , pt}. Then

1. d(P,Pk) ≤ 4 max
{
n1/4
√
k

√
8 maxi∈[t] ‖pi‖

√
log 4tn, 8

√
n

3k log 4tn
}

2. d(P,Pk) ≤ 2
√
n
(
n
k − 1

)
.

Since maxi∈{1,...,t} ||pi|| ≤
√
n and the first upper bound yields nontrivial values

only when k ≥ 8 log 4tn, a simpler (although weaker) expression for the first

upper bound is 4
√
n√
k

√
log 4tn. We make two observations based on Theorem 3.

Consider polytopes with ‘few’ vertices, say nq vertices for some constant
q. Suppose we decide to use cutting-planes with half sparsity (i.e. k = n

2 ), a
reasonable assumption in practice. Then plugging in these values, it is easily
verified that d(P,Pk) ≤ 4

√
2
√

(q + 1) log n ≈ c
√

log n for a constant c, which
is a significantly small quantity in comparison to

√
n. In other words, if the

number of vertices is small, independent of the location of the vertices, using
half sparsity cutting-planes allows us to approximate the integer hull very well.
We believe that as the number of vertices increase, the structure of the polytope
becomes more important in determining d(P,Pk) and Theorem 3 only captures
the worst-case scenario. Overall, Theorem 3 presents a theoretical justification
for the use of sparse cutting-planes in many cases.

Theorem 3 supports the existence of three phases in the behavior of d(P,Pk)
as k varies: (Small k) When k ≤ 16 log 4tn the (simplified) upper bounds are
larger than

√
n, indicating that ‘no progress’ is made in approximating the shape

of P (this is seen Examples 2 and 3). (Medium k) When 16 log 4tn ≤ k .
n−
√
n log 4tn the first upper bound in Theorem 3 dominates. (Large k) When

k & n −
√
n log 4tn the upper bound 2

√
n
(
n
k − 1

)
dominates. In particular, in

this phase, k ·d(P,Pk) ≤ 2n3/2−2
√
nk, i.e., the upper bound times k is a linear

function of k. All the examples in Section 1 illustrate this behaviour.



2.2 Lower Bounds

How good is the quality of the upper bound presented in Theorem 3? Let us
first consider the second upper bound in Theorem 3. Then observe that for the
second example in Section 1, this upper bound is tight up to a constant factor
for k between the values of n

2 and n.
We study lower bounds on d(P,Pk) for random polytopes in Section 4 that

show that the first upper bound in Theorem 3 is also quite tight.

Theorem 4. Let X1, X2, . . . , Xt be independent uniformly random points in
{0, 1}n, and let P = conv(X1, X2, . . . , Xt). Then for t and k satisfying (2k2 log n+
2)2 ≤ t ≤ en we have with probability at least 1/4

d(P,Pk) ≥ min

{√
n√
k

√
log(t/2)

78
√

log n
,

√
n

8

}(
1

2
− 1

k3/2

)
− 3
√

log t.

Let us compare this lower bound with the simpler expression 4
√
n√
k

√
log tn for

the first part of the upper bound of Theorem 3. We focus on the case where
the minimum in the lower bound is acheived by the first term. Then comparing

the leading term
√

n
k

√
log t

2·78
√

logn
in the lower bound with the upper bound, we see

that these quantities match up to a factor of 624

√
log(tn)

√
logn√

log t
, showing that for

many 0/1 polytopes the first upper bound of Theorem 3 is quite tight. We also
remark that the in order to simplify the exposition we did not try to optimize
constants and lower order terms in our bounds.

The main technical tool for proving this lower bound is a new anticoncentra-
tion result for linear combinations aX, where the Xi’s are independent Bernoulli
random variables. The main difference from standard anticoncentration results
is that the latter focus on variation around the standard deviation; in this case,
standard tools such as the Berry-Esseen Theorem or the Paley-Zygmund In-
equality can be used to obtain constant-probability anticoncentration. However,
we need to control the behavior of aX much further from its standard deviation,
where we cannot hope to get constant-probability anticoncentration.

Lemma 1. Let X1, X2, . . . , Xn be independent random variables with Xi taking
value 0 with probability 1/2 and value 1 with probability 1/2. Then for every

a ∈ [−1, 1]n and α ∈ [0,
√
n

8 ],

Pr

(
aX ≥ E[aX] +

α

2
√
n

(
1− 1

n2

)
‖a‖1 −

1

2n2

)
≥
(
e−50α2

− e−100α2
)60 logn

.

2.3 Hard Packing Integer Programs

We also study well-known, randomly generated, hard packing integer program
instances (see for instance [5]). Given parameters n,m,M ∈ N, the convex hull

of the packing IP is given by P = conv({x ∈ {0, 1}n : Ajx ≤
∑

i A
j
i

2 , ∀j ∈ [m]}),



where the Aji ’s are chosen independently and uniformly in the set {0, 1, . . . ,M}.
Let (n,m,M)-PIP denote the distribution over the generated P’s.

The following result shows the limitation of sparse cuts for these instances.

Theorem 5. Consider n,m,M ∈ N such that n ≥ 50 and 8 log 8n ≤ m ≤ n.
Let P be sampled from the distribution (n,m,M)-PIP. Then with probability at

least 1/2, d(P,Pk) ≥
√
n

2

(
2

max{α,1} (1− ε)
2 − (1 + ε′)

)
, where c = k/n and

1

α
=

M

2(M + 1)

[
n− 2

√
n log 8m

c((2− c)n+ 1) + 2
√

10cnm

]
, ε =

24
√

log 4n2m√
n

, ε′ =
3
√

log 8n√
m− 2

√
log 8n

.

Notice that when m is sufficiently large, and n reasonably larger than m, we
have ε and ε′ approximately 0, and the above bound reduces to approximately√
n

2

((
M
M+1

)(
n

k(2−n/k)

)
− 1
)
≈
√
n

2

(
n

k(2−n/k) − 1
)

, which is within a constant

factor of the upper bound from Theorem 3. The poor behavior of sparse cuts
gives an indication for the hardness of these instances and suggests that denser
cuts should be explored in this case.

One interesting feature of this result is that it works directly with the IP
formulation, not relying on an explicit linear description of the convex hull.

2.4 Sparse Cutting-Planes and Extended Formulations

Let projx : Rn × Rm → Rn denote the projection operator onto the first n
coordinates. We say that a set Q ⊆ Rn × Rm is an extended formulation of
P ⊆ Rn if P = projx(Q).

As our final result we remark that using sparse cutting-planes in extended
formulations is at least as good as using them in the original polyhedron, and
sometime much better; proofs are provided in the full version of the paper.

Lemma 2. Consider a polyhedron P ⊆ Rn and an extended formulation Q ⊆
Rn × Rm for it. Then projx(Qk) ⊆ (projx(Q))k = Pk.

Lemma 3. Consider n ∈ N and assume it is a power of 2. Then there is a
polytope P ⊆ Rn such that: 1) d(P,Pk) =

√
n/2 for all k ≤ n/2; 2) there is an

extended formulation Q ⊆ Rn × R2n−1 of P such that projx(Q3) = P.

3 Upper Bound

In this section we prove Theorem 3. In fact we prove the same bound for poly-
topes in [−1, 1]n, which is a slightly stronger result. The following well-known
property is crucial for the constructions used in both parts of the theorem.

Observation 6 (Section 2.5.1 of [3]) Consider a compact convex set S ⊆
Rn. Let x̄ be a point outside S and let ȳ be the closest point to x̄ in S. Then
setting a = x̄− ȳ, the inequality ax ≤ aȳ is valid for S and cuts x̄ off.



3.1 Proof of First Part of Theorem 3

Consider a polytope P = conv{p1, p2, . . . , pt} in [−1, 1]n. Define

λ∗ = max

{
n1/4

√
k

√
8 max

i
‖pi‖

√
log 4tn,

8
√
n

3k
log 4tn

}
.

In order to show that d(P,Pk) is at most 4λ∗ we show that every point at
distance more than 4λ∗ from P is cut off by a valid inequality for Pk. Assume
until the end of this section that 4λ∗ is at most

√
n, otherwise the result is trivial;

in particular, this implies that the second term in the definition of λ∗ is at most√
n/4 and hence k ≥ 8 log 4tn.

So let u ∈ Rn be a point at distance more than 4λ∗ from P. Let v ∈ P be
the closest point in P to Pk. We can write u = v + λd for some vector d with
‖d‖2 = 1 and λ > 4λ∗. From Observation 6, inequality dx ≤ dv is valid for P, so
in particular dpi ≤ dv for all i ∈ [t]; in addition, it that this inequality cuts off
u: du = dv + λ > dv. The idea is to use this extra slack factor λ in the previous
equation to show we can ‘sparsify’ the inequality dx ≤ dv while maintaining
separation of P and u. It then suffices to prove the following lemma.

Lemma 4. There is a k-sparse vector d̃ ∈ Rn such that d̃pi ≤ d̃v + λ
2 for all

i ∈ [t], and d̃u > d̃v + λ
2 .

To prove the lemma we construct a random vector D̃ ∈ Rn which, with
non-zero probability, is k-sparse and satisfies the two other requirements of the
lemma. Let α = k

2
√
n

. Define D̃ as the random vector with independent coordi-

nates, where D̃i is defined as follows: if α|di| ≥ 1, then D̃i = di with probability
1; if α|di| < 1, then D̃i takes value sign(di)/α with probability α|di| and takes
value 0 with probability 1− α|di|. (For convenience we define sign(0) = 1.)

The next observation follows directly from the definition of D̃.

Observation 7 For every vector a ∈ Rn the following hold:
1. E[D̃a] = da
2. Var(D̃a) ≤ 1

α

∑
i∈[n] a

2
i |di|

3. |D̃iai − E[D̃iai]| ≤ |ai|α .

Claim. With probability at least 1− 1/4n, D̃ is k-sparse.

Proof. Construct the vector a ∈ Rn as follows: if α|di| ≥ 1 then ai = 1/di, and
if α|di| < 1 then ai = α/sign(di). Notice that D̃a equals the number of non-zero
coordinates of D̃ and E[D̃a] ≤ α‖d‖1 ≤ k/2. Also, from Observation 7 we have

Var(D̃a) ≤ 1

α

∑
i∈[n]

a2
i |di| ≤ α‖d‖1 ≤

k

2
.

Then using Bernstein’s inequality ([6], Appendix A.2) we obtain

Pr(D̃a ≥ k) ≤ exp

(
−min

{
k2

8k
,

3k

8

})
≤ 1

4n
,

where the last inequality uses our assumption that k ≥ 8 log 4tn. ut



We now show that property 1 required by Lemma 4 holds for D̃ with high
probability.

Claim. Pr(maxi∈[t][D̃(pi − v)− d(pi − v)] > 2λ∗) ≤ 1/4n.

Proof. Define the centered random variable Z = D̃ − d. To make the anal-
ysis cleaner, notice that maxi∈[t] Z(pi − v) ≤ 2 maxi∈[t] |Zpi|; this is because
maxi∈[t] Z(pi − v) ≤ maxi∈[t] |Zpi| + |Zv|, and because for all a ∈ Rn we have
|av| ≤ maxp∈P |ap| = maxi∈[t] |api| (since v ∈ P).

Therefore our goal is to upper bound the probability that the process maxi∈[t] |Zpi|
is larger then λ∗. Fix i ∈ [t]. By Bernstein’s inequality,

Pr(|Zpi| ≥ λ∗) ≤ exp

(
−min

{
(λ∗)2

4Var(|Zpi|)
,

3λ∗

4M

})
, (1)

where M is an upper bound on maxj |Zjpij |.
To bound the terms in the right-hand side, from Obersvation 7 we have

Var(Zpi) = Var(D̃pi) ≤ 1

α

∑
j

(pij)
2|dj | ≤

1

α

∑
j

pij |dj | ≤
1

α
‖pi‖‖d‖ =

1

α
‖pi‖,

where the second inequality follows from the fact pi ∈ [0, 1]n, and the third
inequality follows from the Cauchy-Schwarz inequality. Moreover, it is not diffi-
culty to see that for every random variable W , Var(|W |) ≤ Var(W ). Using the
first term in the definition of λ∗, we then have

(λ∗)2

Var(|Zpi|)
≥ 4 log 4tn.

In addition, for every coordinate j we have |Zjpij | = |D̃jp
i
j − E[D̃jp

i
j ]| ≤ 1/α,

where the inequality follows from Observation 7. Then we can set M = 1/α and
using the second term in the definition of λ∗ we get λ∗

M ≥
4
3 log 4tn. Therefore,

replacing these bounds in inequality (1) gives Pr(|Zpi| ≥ λ∗) ≤ 1
4tn .

Taking a union bound over all i ∈ [t] gives that Pr(maxi∈[t] |Zpi| ≥ λ∗) ≤
1/4n. This concludes the proof of the claim. ut

Claim. Pr(D̃(u− v) ≤ λ/2) ≤ 1− 1/(2n− 1).

Proof. Recall u − v = λd, hence it is equivalent to bound Pr(D̃d ≤ 1/2). First,
E[D̃d] = dd = 1. Also, from Observation 7 we have D̃d ≤ |D̃d − dd| + |dd| ≤
1
α

∑
i |di| + 1 ≤ 2n

k + 1 ≤ n, where the last inequality uses the assumption
k ≥ 8 log 4tn. Then employing Markov’s inequality to the non-negative random
variable n − D̃d, we get Pr(D̃d ≤ 1/2) ≤ 1 − 1

2n−1 . This concludes the proof.
ut

Proof of Lemma 4. Employ the previous three claims and union bound to find a
realization of D̃ that is k-sparse and satisfies requirements 1 and 2 of the lemma.

This concludes the proof of the first part of Theorem 3.



Observation 8 Notice that in the above proof λ∗ is set by Claim 3.1, and need
to be essentially E[maxi∈[t](D̃−d)pi]. There is a vast literature on bounds on the
supremum of stochastic processes [6], and improved bounds for structured P’s
are possible (for instance, via the generic chaining method).

3.2 Proof of Second Part of Theorem 3

The main tool for proving this upper bound is the following lemma, which shows
that when P is ‘simple’, and we have a stronger control over the distance of a
point x̄ to P, then there is a k-sparse inequality that cuts x̄ off.

Lemma 5. Consider a hyperplane H = {x ∈ Rn : ax ≤ b} and let P = H ∩
[−1, 1]n. Let x̄ ∈ [−1, 1]n be such that d(x̄, H) > 2

√
n(nk − 1). Then x̄ /∈ Pk.

Proof. Assume without loss of generality that ‖a‖2 = 1. Let ȳ be the point in
H closes to x̄, and notice that x̄ = ȳ + λa where λ >

√
n(nk − 1).

For any set I ∈
(

[n]
k

)
, the inequality

∑
i∈I aixi ≤ b+

∑
i/∈I:ai≥0 ai−

∑
i/∈I:ai<0 ai

is valid for P; since it is k-sparse, it is also valid for Pk. Averaging out this in-
equality over all I ∈

(
[n]
k

)
, we get that the following is valid for Pk:

k

n
ax ≤ b+

(
1− k

n

) ∑
i:ai≥0

ai −
∑
i:ai<0

ai

 ≡ ax ≤ b+
(n
k
− 1
)

(b+ ‖a‖1) .

We claim that x̄ violates this inequality. First notice that ax̄ = aȳ + λ =
b+λ > b+2

√
n
(
n
k − 1

)
, hence it suffices to show b+‖a‖1 ≤ 2

√
n. Our assumption

on x̄ implies that P 6= [−1, 1]n, and hence b < maxx∈[−1,1] ax = ‖a‖1; this gives
b+ ‖a‖1 ≤ 2‖a‖1 ≤ 2

√
n‖a‖2 = 2

√
n, thus concluding the proof. ut

To prove the second part of Theorem 3 consider a point x̄ of distance greater
than 2

√
n(nk − 1) from P; we show x̄ /∈ Pk. Let ȳ be the closest point to x̄

in P. Let a = x̄ − ȳ. From Observation 6 we have that ax ≤ aȳ is valid for
P. Define H ′ = {x ∈ Rn : ax ≤ aȳ} and P′ = H ′ ∩ [−1, 1]n. Notice that
d(x̄, H ′) = d(x̄, ȳ) > 2

√
n(nk − 1). Then Lemma 5 guarantees that x̄ does not

belong to P′
k
. But P ⊆ P′, so by monotonicity of the k-sparse closure we have

Pk ⊆ P′k; this shows that x̄ /∈ Pk, thus concluding the proof.

4 Lower Bound

In this section we prove Theorem 4. The proof is based on the ‘bad’ polytope
of Example 2 and proceeds in two steps. First, for a random 0/1 polytope P
we show that with good probability the facets dx ≤ d0 for Pk have d0 being

large, namely d0 &
(

1
2 +

√
log t√
k

)∑
i di; therefore, with good probability the point

p̄ ≈ ( 1
2 +

√
log t√
k

)e belongs to Pk. In the second step, we show that with good



probability the distance from p̄ to P is at least ≈
√

n
k

√
log t, by showing that

the inequality
∑
i xi .

n
2 +
√
n is valid for P.

We now proceed with the proof. Consider the random set X = {X1, X2, . . . , Xt}
where the Xi’s are independent uniform random points in {0, 1}n, and define
the random 0/1 polytope P = conv(X).

We say that a 0/1 polytope P is α-tough if for every facet dx ≤ d0 of Pk we

have d0 ≥
∑

i di
2 + α

2
√
k

(1− 1
k2 )‖d‖1−‖d‖∞/2k2. To get a handle on α-toughness

of random 0/1 polytopes, define D as the set of all integral vectors ` ∈ Rn
that are k-sparse and satisfy ‖`‖∞ ≤ (k + 1)(k+1)/2. The following claim, shows
that all the facets of Pk come from the set D; it follows directly from applying
Corollary 26 in [8] to each term P+RĪ in the definition of Pk from Section 1.1.

Lemma 6. Let Q ⊆ Rn be a 0/1 polytope. Then there is a subset D′ ⊆ D such
that Qk = {x : dx ≤ maxy∈Pk dy, d ∈ D′}.

Now we can analyze the probability that P is α-tough.

Lemma 7. If 1 ≤ α2 ≤ min
{

log(t/2)
6000 logn ,

k
64

}
and k ≤ n − 1, then P is α-tough

with probability at least 1/2.

Proof. Let E be the event that for all d ∈ D we have maxi∈[t] dX
i ≥ 1

2

∑
j dj +

α
2
√
k

(1− 1
k2 )‖d‖1 − ‖d‖∞/2k2. Because of Lemma 6, whenever E holds we have

that P is α-tough and thus it suffices to show Pr(E) ≥ 1/2.
Fix d ∈ D. Since d is k-sparse, we can apply Lemma 1 to d/‖d‖∞ restricted

to the coordinates in its support to obtain that

Pr

(
dXi ≥

∑
i di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1 −

‖d‖∞
2k2

)
≥
(
e−50α2

− e−100α2
)60 logn

≥ e−100α2·60 logn ≥ 1

t1/2
,

where the second inequality follows from our lower bound on α and the last
inequality follows from our upper bound on α. By independence of the Xi’s,

Pr

(
max
i∈[t]

dXi <

∑
i di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1 −

‖d‖∞
2k2

)
≤
(

1− 1

t1/2

)t
≤ e−t

1/2

,

where the second inequality follows from the fact that (1− x) ≤ e−x for all x.

Finally notice that |D| =
(
n
k

)
(k + 1)(k+1)2/2 and that, by our assumption on

the size of t and k ≤ n− 1, e−t
1/2 ≤ (1/2)|D|. Therefore, taking a union bound

over all d ∈ D of the previous displayed inequality gives Pr(E) ≥ 1/2, concluding
the proof of the lemma. ut

The next lemma takes care of the second step of the argument; its simple
proof is based on Bernstein’s and is deferred to the full version of the paper.

Lemma 8. With probability at least 3/4, the inequality
∑
j xj ≤

n
2 + 3

√
n log t

is valid for P.



Lemma 9. Suppose that the polytope Q is α-tough for α ≥ 1 and that the
inequality

∑
i xi ≤

n
2 + 3

√
n log t is valid for Q. Then we have d(Q,Qk) ≥

√
n
(

α
2
√
k
− α

k2 −
3
√

log t√
n

)
.

Proof. We first show that the point q̄ = ( 1
2 + α

2
√
k
− α

k2 )e belongs to P. Let

dx ≤ d0 be facet for P. Then we have

dq̄ =

∑
i di
2

+ α

(
1

2
√
k
− 1

k2

)∑
i

di ≤
∑
i di
2

+ α

(
1

2
√
k
− 1

k2

)
‖d‖1

≤
∑
i di
2

+ α

(
1

2
√
k
− 1

2k2

)
‖d‖1 −

‖d‖∞
2k2

,

where the first inequality uses the fact that 1
2
√
k
− 1
k2 ≥ 0 and the second inequal-

ity uses α ≥ 1 and ‖d‖1 ≥ ‖d‖∞. Since Q is α-tough it follows that q̄ satisfies
dx ≤ d0; since this holds for all facets of Q, we have q̄ ∈ Q.

Now define the halfspace H = {x :
∑
i xi ≤

n
2 + 3

√
n log t}. By assumption

Q ⊆ H, and hence d(Q,Qk) ≥ d(H,Qk). But it is easy to see that the point

in H closest to q̄ is the point q̃ = ( 1
2 + 3

√
log t√
n

)e. This gives that d(Q,Qk) ≥

d(H,Qk) ≥ d(q̄, q̃) ≥
√
n
(

α
2
√
k
− α

k2 −
3
√

log t√
n

)
. This concludes the proof. ut

We now conclude the proof of Theorem 4. Set ᾱ2 = min
{

log(t/2)
6000 logn ,

k
64

}
.

Taking union bound over Lemmas 7 and 8, with probability at least 1/4 P is
ᾱ-tough and the inequality inequality

∑
i xi ≤

n
2 + 3

√
n log t is valid for it.

Then from Lemma 9 we get that with probability at least 1/4, d(P,Pk) ≥
√
n
(

ᾱ
2
√
k
− ᾱ

k2 −
3
√

log t√
n

)
, and the result follows by plugging in the value of ᾱ.

5 Hard Packing Integer Programs

In this section we prove Theorem 5; missing proof are presented in the full version
of the paper. With overload in notation, we use

(
[n]
k

)
to denote the set of vectors

in {0, 1}n with exactly k 1’s.
Let P be a random polytope sampled from the distribution (n,m,M)-PIP

and consider the corresponding random vectors Aj ’s. The idea of the proof is to
show that with constant probability P behaves like Example 2, by showing that
the cut

∑
i xi .

n
2 is valid for it and that it approximately contains 0/1 points

with many 1’s.
We start with a couple of lemmas that are proved via Bernstein’s inequality.

Lemma 10. With probability at least 1− 1
8 we have |

∑n
i=1A

j
i−nM2 | ≤M

√
n log 8m

for all j ∈ [m].

Lemma 11. With probability at least 1 − 1
4 the cut (1 − 2

√
log 8n√
m

)
∑
i xi ≤

n
2 +

√
n log 8√
m

is valid for P.



The next lemma shows that with constant probability P almost contains all
0/1 points with many 1’s.

Lemma 12. With probability at least 1− 1
8 we have

Aj x̄ ≤ (M + 1)c(2n− cn+ 1)

2
+ (M + 1)

√
10cnm, ∀j ∈ [m],∀x̄ ∈

(
[n]

cn

)
.

Lemma 13. Consider a 0/1 polytope Q = conv({x ∈ {0, 1}n : ajx ≤ bj , j =

1, 2, . . . ,m}) where n ≥ 20, m ≤ n, aji ∈ [0,M ] for all i, j, and bj ≥ nM
12 for all

i. Consider 1 < α ≤ 2
√
n and let x̄ ∈ {0, 1}n be such that for all j, aj x̄ ≤ αbj.

Then the point 1
α (1− ε)2x̄ belongs to Q as long as

12
√

log 4n2m√
n

≤ ε ≤ 1
2 .

Proof of Theorem 5. Recall the definitions of α, ε, ε′, and c = k/n from the
statement of the theorem. Let E be the event that Lemmas 10, 11 and 12 hold;
notice that Pr(E) ≥ 1/2. For the rest of the proof we fix a P (and the associated
Aj ’s) where E holds and prove a lower bound on d(P,Pk).

Consider a set I ∈
(

[n]
cn

)
and let x̄ be the incidence vector of I (i.e. x̄i = 1 if

i ∈ I and x̄i = 0 if i /∈ I). Since the bounds from Lemmas 10 and 12 hold for
our P, straightforward calculations show that Aj x̄ ≤ α 1

2

∑
iA

j
i for all j ∈ [m].

Therefore, from Lemma 13 we have that the point 1
max{α,1} (1 − ε)2x̄ belongs

to P. This means that the point x̃ = 1
max{α,1} (1 − ε)

2e belongs to P + RĪ (see

Section 1.1). Since this holds for every I ∈
(

[n]
cn

)
, we have x̃ ∈ Pk.

Let ỹ be the point in P closest to x̃. Let a = (1 − 2
√

log 8n√
m

) and b = n
2 +

√
n log 8m, so that the cut in Lemma 11 is given by aex ≤ b. From Cauchy-

Schwarz we have that d(x̃, ỹ) ≥ aex̃−aeỹ
‖ae‖ = ex̃√

n
− aeỹ

a
√
n

.

By definition of x̃ we have ex̃ = 1
max{α,1} (1 − ε)

2n. From the fact the cut

aex ≤ b is valid for P and ỹ ∈ P, we have aeỹ ≤ b. Simple calculations show
that b

a
√
n
≤ n

2 (1 + ε′). Plugging these values in we get that d(P,Pk) = d(x̃, ỹ) ≥
√
n

2

(
2(1−ε)2

max{α,1} − (1 + ε′)
)

. Theorem 5 follows from the definition of α, ε and ε′.
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