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Abstract

In this paper, we study how well one can approximate arbitrary polytopes using sparse
inequalities. Our motivation comes from the use of sparse cutting-planes in mixed-integer pro-
graming (MIP) solvers, since they help in solving the linear programs encountered during branch-
&-bound more efficiently. However, how well can we approximate the integer hull by just using
sparse cutting-planes? In order to understand this question better, given a polyope P (e.g. the
integer hull of a MIP), let P k be its best approximation using cuts with at most k non-zero
coefficients. We consider d(P, P k) = maxx∈Pk (miny∈P ‖x− y‖) as a measure of the quality of
sparse cuts.

In our first result, we present general upper bounds on d(P, P k) which depend on the number
of vertices in the polytope. Our bounds imply that if P has polynomially many vertices, using
half sparsity already approximates it very well. Second, we present a lower bound on d(P, P k)
for random polytopes that show that the upper bounds are quite tight. Third, we show that for
a class of hard packing IPs, sparse cutting-planes do not approximate the integer hull well, that
is d(P, P k) is large for such instances unless k is very close to n. Finally, we show that using
sparse cutting-planes in polytope extensions is at least as good as using them in the original
polyhedron, and give an example where the former is actually much better.

1 Introduction

In this paper, we consider the problem of understanding how well one can approximate arbitrary
polytopes using sparse inequalities. We begin by discussing our motivation for this study in the
next section.

1.1 Motivation

Most successful mixed integer linear programming (MILP) solvers are based on branch-&-bound
and cutting-plane (cut) algorithms. Since MILPs belong to the class of NP-hard problems, one
does not expect the size of branch-&-bound tree to be small (polynomial is size) for every instance.
In the case where the branch-&-bound tree is not small, a large number of linear programs must
be solved. It is well-known that dense inequalities are difficult for linear programming solvers to
handle [7, 2, 4, 9, 13, 21]. Therefore, most commercial MILPs solvers consider sparsity of cuts as
an important criterion for cutting-plane selection and use [15, 1, 20].
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Surprisingly, very few studies have been conducted on the topic of sparse cutting-planes (see
Section 5 of [4]). Apart from cutting-plane techniques that are based on generation of cuts from
single rows (which implicitly lead to sparse cuts if the underlying row is sparse), to the best of our
knowledge only the paper [3] explicitly discusses methods to generate sparse cutting-planes.

The use of sparse cutting-planes may be viewed as a compromise between two competing ob-
jectives. As discussed above, on the one hand, the use of sparse cutting-planes aids in solving the
linear programs encountered in the branch-&-bound tree faster. On the other hand, it is possible
that ‘important’ facet-defining or valid inequalities for the convex hull of the feasible solutions are
dense and thus without adding these cuts, one may not be able to attain significant integrality gap
closure. This may lead to a larger branch-&-bound tree and thus result in the solution time to
increase.

It is challenging to simultaneously study both the competing objectives in relation to cutting-
plane sparsity. Therefore, a first approach to understanding usage of sparse cutting-planes is the
following: How much do we lose in the closure of integrality gap if we only use sparse cuts (as
against completely dense cuts)?

Considered more abstractly, the problem then reduces to the topic of this paper, that is of
understanding how well one can approximate a given polytope P using sparse inequalities. Here
this polytope P represents the convex hull of feasible solutions of a MILP.

1.2 Preliminaries

In this paper we will study polytopes contained in the [0, 1]n hypercube. This is without loss
of generality since one can always translate and scale a polytope to be contained in the [0, 1]n

hypercube.
A cut ax ≤ b is called k-sparse if the vector a has at most k nonzero components. Given a set

P ⊆ Rn, define P k as the best outer-approximation obtained from k-sparse cuts, that is, it is the
intersection of all k-sparse cuts valid for P .

For integers k and n, let [n] := {1, . . . , n} and let
([n]
k

)
be the set of all subsets of [n] of cardinality

k. Given a k-subset of indices I ⊆ [n], define RĪ = {x ∈ Rn : xi = 0 for all i ∈ I}. An equivalent

and handy definition of P k is the following: P k =
⋂
I∈([n]k )

(
P + RĪ

)
. Thus, if P is a polytope, then

P k is also a polytope.
A quick remark on notation: we will use bold symbols to denote random quantities (e.g. a

random scalar, vector or polytope).

1.3 Measure of Approximation

There are several natural measures to compare the quality of approximation provided by P k in
relation to P . For example, one may consider objective value ratio: maximum over all costs c of
expression zc,k

zc , where zc,k is the value of maximizing c over P k, and zc is the same for P . We
discard this ratio, since this ratio can become infinity and not provide any useful information. For
example take P = conv{(0, 0), (0, 1), (1, 1)} and compare with P 1 wrt c = (1,−1). Similarly, we
may compare the volumes of P and P k. However, this ratio is not useful if P is not full-dimensional
and P k is.

In order to have a useful measure that is well-defined for all polytopes contained in [0, 1]n, we
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consider the following distance measure:

d(P, P k) := max
x∈Pk

(
min
y∈P
‖x− y‖

)
,

where ‖ · ‖ is the `2 norm. It is easily verified that there is a vertex of P k attaining the maxi-
mum above. Thus, alternatively the distance measure can be interpreted as the Euclidean distance
between P and the farthest vertex of P k from P .

Some Observations:

1. Suppose αx ≤ β is a valid inequality for P where ‖α‖ = 1. Let the depth of this cut be
the smallest γ ≥ 0 such that αx ≤ β + γ is valid for P k. It is straightforward to verify that
γ ≤ d(P, P k). Therefore, the distance measure gives an upper bound on additive error when
optimizing a (normalized) linear function over P and P k.

2. Notice that the largest distance between any two points in the [0, 1]n hypercube is at most√
n. Therefore in the rest of the paper we will compare the value of d(P, P k) to

√
n.

1.4 Some Examples

In order to build some intuition we begin with some examples in this section. Let P := {x ∈
[0, 1]n : ax ≤ b} where a is a non-negative vector. It is straightforward to verify that in this case,

P k := {x ∈ [0, 1]n : aIx ≤ b ∀I ∈
([n]
k

)
}, where aIj := aj if j ∈ I and aIj = 0 otherwise.

Example 1: Consider the simplex P = {x ∈ [0, 1]n :
∑n

i=1 xi ≤ 1}. Using the above observation,
we have that the point 1

ke belongs to P k, where we use e to denote the all ones vector. It is not

difficult to verify that the distance measure between P and P k is
√
n( 1

k −
1
n) ≈

√
n
k , attained by the

points 1
ne ∈ P and 1

ke ∈ P
k. This is quite nice because with k ≈

√
n (which is pretty reasonably

sparse) we get a constant distance. See Figure 1(a) for d(P, P k) plotted against k and k · d(P, P k)
plotted against k.
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Figure 1: (a) Example 1 with n = 10. (b) Example 2 with n = 10. (c) Example 3.
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Example 2: Consider the set P = {x ∈ [0, 1]n :
∑n

i=1 xi ≤
n
2 }. We have that P k := {x ∈ [0, 1]n :∑

i∈I xi ≤
n
2 , ∀I ∈

([n]
k

)
}. Therefore, for all k ∈ {1, . . . , bn/2c} we have P k = [0, 1]n and hence

d(P, P k) =
√
n/2. Thus, we stay with distance Ω(

√
n) (the worst possible for polytopes in [0, 1]n)

even with Θ(n) sparsity. Also observe that for k > n
2 , we have d(P, P k) = n

√
n

2k −
√
n

2 . See Figure
1(b) for the plot of d(P, P k) against k and of k · d(P, P k) against k.

Example 3: We present an experimental example in dimension n = 10. The polytope P is now set
as the convex hull of 150 binary points randomly selected from the hyperplane {x ∈ R10 :

∑10
i=1 xi =

5}. We experimentally computed lower bounds on d(P, P k) which are plotted in Figure 1(c) (for
details on this computation see Section B of the appendix). We note here that the choice of n = 10
and 150 binary points is not special. We were unable to experiment with larger dimensions and
larger number of points.

Example 4: Let P ⊆ Rn be the all-even polytope [16], namely the convex hull of all binary n-
dimensional points that have an even number of components equal to 1. We claim that P k = [0 1]n

for k < n: If P k ⊂ [0 1]n, then there must be a 0 − 1 point q that is separated by some k-sparse
inequality αTx ≤ β. As q /∈ P , we have that q has an odd number of coordinates with 1’s. There are
two cases: (a) All the coordinates of q that are not in the support of α are 1’s: In this case, consider
the point q̃ generated by replacing one of these 1’s to 0 in q. (b) At least one of the coordinates
of q not in the support of α is a 0: In this case, consider the point q̃ generated by replacing one
of these 0’s to 1 in q. In both cases q̃ has an even number of 1’s (and hence belongs to P ) and
αT q̃ = αT q > β; thus, αTx ≤ β separates a point from P , contradicting its validity.

For k < n, the value of d(P, P k) is achieved by extreme points of [0, 1]n. Observe that for
every extreme point of [0, 1]n that does not belong to P , all of its neighboring 0 − 1 points (that
is 0− 1 points within a distance of 1) belong to P . These points define a facet of P (see [16]) and
thus d(P, P k) = 1√

n
for all k. See Figure 2 for a plot of d(P, P k) against k and of k · d(P, P k)

against k. More generally, let Q ⊆ {0, 1}n such that for every point in x ∈ Q, there exists a point
in y ∈ {0, 1}n \ Q such that ||x − y||1 ≤ c for some constant c. Let P = conv({0, 1}n \ Q). Then
observe that d(P, P k) ≤ d(P, [0, 1]n) ≤ c, where the last inequality follows from the assumption on
Q.

The above examples serve to illustrate the fact that different polytopes behave very differently
when we try and approximate them using sparse inequalities.

2 Main Results

2.1 Upper Bounds

In Theorem 1, we collect two different upper bounds on d(P, P k). This result is proven in Section
3.

Theorem 1 (Upper Bound on d(P, P k)). Let n ≥ 2. Let P ⊆ [0, 1]n be the convex hull of points
{p1, . . . , pt}. Then

1. d(P, P k) ≤ 4 max
{
n1/4
√
k

√
8 maxi∈[t] ‖pi‖

√
log 4tn, 4

√
n
k log 4tn

}

4



2. d(P, P k) ≤ 2
√
n
(
n
k − 1

)
.

Notice that the first upper bound yields nontrivial values only when k ≥ 16 log 4tn, which in
particular implies the bound on the number of vertices t ≤ 2

n
16
−log 4n. Using this lower bound on

k and the fact maxi∈{1,...,t} ||pi|| ≤
√
n, a simpler (although weaker) expression for the first upper

bound is 8
√

2
√
n√
k

√
log 4tn 1. We make two observations based on Theorem 1.

The different upper bounds on d(P, P k) presented in Theorem 1 dominate in different ranges as
one varies k: (Small k) When k ≤ 128 log 4tn the (simplified) upper bounds are larger than

√
n,

indicating that ‘no progress’ is made in approximating the shape of P (this is seen in Examples 2
and 3). (Medium k) When 128 log 4tn ≤ k . n −

√
n log 4tn the first upper bound in Theorem

1 dominates. (Large k) When k & n −
√
n log 4tn the upper bound 2

√
n
(
n
k − 1

)
dominates. In

particular, in this range, k · d(P, P k) ≤ 2n3/2 − 2
√
nk, i.e., the upper bound times k is a linear

function of k. The first three examples in Section 1 illustrate this behavior.
Consider polytopes with ‘few’ vertices, say nq vertices for some constant q. Suppose we decide

to use cutting-planes with half sparsity (i.e. k = n
2 ), a reasonable assumption in practice. Then

plugging in these values, it is easily verified that d(P, P k) ≤ 16
√

(q + 1) log n ≈ c
√

log n for a
constant c, which is a significantly small quantity in comparison to

√
n. In other words, if the

number of vertices is small, independent of the location of the vertices, using half sparsity cutting-
planes allows us to approximate the integer hull very well. We believe that as the number of
vertices increase, the structure of the polytope becomes more important in determining d(P, P k)
and Theorem 1 only captures the worst-case scenario. We will see example of this in the next
section. Overall, Theorem 1 presents a theoretical justification for the use of sparse cutting-planes
in many cases.

2.2 Lower Bounds

How good is the quality of the upper bound presented in Theorem 1? Let us first consider the
second upper bound in Theorem 1. Then observe that for the second example in Section 1, this
upper bound is tight up to a constant factor for k between the values of n

2 and n.
Note that when a polytope P has roughly 2n extreme points the first upper bound on d(P, P k)

presented in Theorem 1 is trivial. Example 2 shows that this trivial bound is essentially tight. On
the other hand, this bound is not tight for Example 4.

We present lower bounds on d(P, P k) for random 0/1 polytopes in Section 4 that show that the
first upper bound in Theorem 1 is quite tight.

Theorem 2. Let k, t, n ∈ Z+ satisfying 64 ≤ k ≤ n
8802 logn

and (0.5k2 log n+ 2k+ 1)2 ≤ t ≤ 2n/2304.

Let X1, X2, . . . , Xt be independent uniformly random points in {0, 1}n and let P = conv(X1, X2, . . . , Xt).
Then with probability at least 1/4 we have that

d(P ,P k) ≥ min

{√
n√
k

√
log t

110
√

log n
,

√
n

8

}(
1

2
− 1

k3/2

)
− 3
√

log t.

Let us compare this lower bound with the simpler expression 8
√

2
√
n√
k

√
log tn for the first part

of the upper bound of Theorem 1. We focus on the case where the minimum in the lower bound is

1If k ≥ 16 log 4tn then
n

1
4
√

8
√
n
√
log 4tn

√
k

≥ 8
√
n log 4tn
2k
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achieved by the first term. Then comparing the leading term
√

n
k

√
log t

2·110
√

logn
in the lower bound with

the upper bound, we see that these quantities match up to a factor of O
(√log(tn)

√
logn√

log t

)
, showing

that for many 0/1 polytopes the first upper bound of Theorem 1 is quite tight. We also remark
that in order to simplify the exposition we did not try to optimize constants and lower order terms
in our bounds.

The main technical tool for proving this lower bound is a new anticoncentration result for linear
combinations aX, where the Xi’s are independent Bernoulli random variables (Lemma 3). The
main difference from standard anticoncentration results is that the latter focus on variation around
the standard deviation; in this case, standard tools such as the Berry-Esseen Theorem or the Paley-
Zygmund Inequality[10] can be used to obtain constant-probability anticoncentration. However, we
need to control the behavior of aX much further away from its standard deviation, where we cannot
hope to get constant-probability anticoncentration.

2.3 Hard Packing Integer Programs

We also study well-known, randomly generated, hard packing integer program instances (see for
instance [17]). Given parameters n,m,M ∈ N, the convex hull of the packing IP is given by

P = conv({x ∈ {0, 1}n : Ajx ≤
∑n
i=1 A

j
i

2 , ∀j ∈ [m]}), where the Aj
i ’s are chosen independently and

uniformly in the set {0, 1, . . . ,M}. Let (n,m,M)-PIP denote the distribution over the generated
P ’s.

The following result shows the limitation of sparse cuts for these instances.

Theorem 3. Consider n,m,M ∈ N such that n ≥ 50 and 8 log 8n ≤ m ≤ n. Let P be sampled from

the distribution (n,m,M)-PIP. Then with probability at least 1/2, d(P ,P k) ≥
√
n

2

(
2

max{α,1}(1− ε)
2 − (1 + ε′)

)
,

where c = k/n and

1

α
=

M

2(M + 1)

[
n− 2

√
n log 8m

c((2− c)n+ 1) + 2
√

10cnm

]
, ε =

24
√

log 4n2m√
n

,

ε′ =
4
√

log 8n√
m− 2

√
log 8n

.

Notice that when m is sufficiently large, and n reasonably larger than m, we have ε and ε′

approximately 0, and the above bound reduces to approximately
√
n

2

((
M
M+1

)(
n

k(2−k/n)

)
− 1
)
≈

√
n

2

(
n

k(2−k/n) − 1
)

, which is within a constant factor of the upper bound from Theorem 1. The poor

behavior of sparse cuts gives an indication for the hardness of these instances and suggests that
denser cuts should be explored in this case.

One interesting feature of this result is that it works directly with the IP formulation, not relying
on an explicit linear description of the convex hull.

2.4 Sparse Cutting-Planes and Polytope Extensions

Let projx : Rn×Rm → Rn denote the projection operator onto the first n coordinates. We say that
a set Q ⊆ Rn × Rm is an extension of P ⊆ Rn if P = projx(Q).
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As our final result we remark that using sparse cutting-planes in extensions is at least as good
as using them in the original polyhedron, and sometime much better. These results are proved in
Section 6.

Proposition 1. Consider a polyhedron P ⊆ Rn and an extension Q ⊆ Rn × Rm for it. Then
projx(Qk) ⊆ (projx(Q))k = P k.

Proposition 2. Consider n ∈ N and assume it is a power of 2. Then there is a polytope P ⊆ Rn
such that:

1. d(P, P k) =
√
n/2 for all k ≤ n/2.

2. There is an extension Q ⊆ Rn × R2n−1 of P such that projx(Q3) = P .

3 Upper Bound

In this section we prove Theorem 1. In fact we prove the same bound for polytopes in [−1, 1]n,
which is a slightly stronger result. The following well-known property is crucial for the constructions
used in both parts of the theorem.

Observation 1 (Section 2.5.1 of [8]). Consider a compact convex set S ⊆ Rn. Let x̄ be a point
outside S and let ȳ be the closest point to x̄ in S. Then setting a = x̄− ȳ, the inequality ax ≤ aȳ is
valid for S and cuts x̄ off.

3.1 Proof of First Part of Theorem 1

Consider a polytope P = conv{p1, p2, . . . , pt} in [−1, 1]n. Define

λ∗ = max

{
n1/4

√
k

√
8 max

i
‖pi‖

√
log 4tn,

4
√
n

k
log 4tn

}
.

In order to show that d(P, P k) is at most 4λ∗ we show that every point at distance more than 4λ∗

from P is cut off by a valid inequality for P k. Assume until the end of this section that 4λ∗ is at
most 2

√
n, otherwise the result is trivial; in particular, this implies that the second term in the

definition of λ∗ is at most
√
n/2 and hence k ≥ 8 log 4tn.

So let u ∈ Rn be a point at distance more than 4λ∗ from P . Let v ∈ P be the closest point in P
to P k. We can write u = v+λd for some vector d with ‖d‖2 = 1 and λ > 4λ∗. From Observation 1,
inequality dx ≤ dv is valid for P , so in particular dpi ≤ dv for all i ∈ [t]; in addition, this inequality
cuts off u: du = dv + λ > dv. The idea is to use this extra slack factor λ in the previous equation
to show we can ‘sparsify’ the inequality dx ≤ dv while maintaining separation of P and u. It then
suffices to prove the following lemma.

Lemma 1. There is a k-sparse vector d̃ ∈ Rn such that

1. d̃pi ≤ d̃v + λ
2 , for all i ∈ [t]

2. d̃u > d̃v + λ
2 .
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To prove the lemma we construct a random vector D̃ ∈ Rn which, with non-zero probability,
is k-sparse and satisfies the two other requirements of the lemma. Let α = k

2
√
n

. Define D̃ as the

random vector with independent coordinates, where D̃i is defined as follows: if α|di| ≥ 1, then
D̃i = di with probability 1; if α|di| < 1, then D̃i takes value sign(di)/α with probability α|di| and
takes value 0 with probability 1− α|di|. (For convenience we define sign(0) = 1.)

The next proposition follows directly from the definition of D̃.

Proposition 3. For every vector a ∈ Rn the following hold:

1. E[D̃a] = da

2. Var(D̃a) ≤ 1
α

∑
i∈[n] a

2
i |di|

3. |D̃iai − E[D̃iai]| ≤ |ai|α .

Claim 1. With probability at least 1− 1/4n, D̃ is k-sparse.

Proof. Construct the vector a ∈ Rn as follows: if α|di| ≥ 1 then ai = 1/di, and if α|di| < 1 then
ai = α/sign(di). Notice that D̃a equals the number of non-zero coordinates of D̃ and E[D̃a] ≤
α‖d‖1 ≤ k/2. Here the first inequality follows from the fact that E(D̃iai) ≤ α|di| for all i and the
second inequality follows from the definition of α and the fact that ||d||2 = 1. Also, from Proposition
3 we have

Var(D̃a) ≤ 1

α

∑
i∈[n]

a2
i |di| ≤ α‖d‖1 ≤

k

2
.

Then using Bernstein’s inequality (Section A of the appendix) we obtain

Pr(D̃a > k) ≤ exp

(
−min

{
k2

8k
,
3k

8

})
≤ 1

4n
,

where the last inequality uses our assumption that k ≥ 8 log 4tn.

We now show that property 1 required by Lemma 1 holds for D̃ with high probability. Since
d(pi − v) ≤ 0 for all i ∈ [t], the folloing claim shows that property 1 holds with probability at least
1− 1

4 .

Claim 2. Pr(maxi∈[t][D̃(pi − v)− d(pi − v)] > 2λ∗) ≤ 1/4n.

Proof. Define the centered random variable Z = D̃ − d. To make the analysis cleaner, notice that
maxi∈[t] Z(pi − v) ≤ 2 maxi∈[t] |Zpi|; this is because maxi∈[t] Z(pi − v) ≤ maxi∈[t] |Zpi|+ |Zv|, and
because for all a ∈ Rn we have |av| ≤ maxp∈P |ap| = maxi∈[t] |api| (since v ∈ P ).

Therefore our goal is to upper bound the probability that the process maxi∈[t] |Zpi| is larger
then λ∗. Fix i ∈ [t]. By Bernstein’s inequality,

Pr(|Zpi| > λ∗) ≤ exp

(
−min

{
(λ∗)2

4Var(|Zpi|)
,

3λ∗

4M

})
, (1)

where M is an upper bound on maxj |Zjp
i
j |.
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To bound the terms in the right-hand side, from Proposition 3 we have

Var(Zpi) = Var(D̃pi) ≤ 1

α

∑
j

(pij)
2|dj | ≤

1

α

∑
j

pij |dj | ≤
1

α
‖pi‖‖d‖ =

1

α
‖pi‖,

where the second inequality follows from the fact pi ∈ [−1, 1]n, and the third inequality follows from
the Cauchy-Schwarz inequality. Moreover, it is not difficulty to see that for every random variable
W , Var(|W |) ≤ Var(W ). Using the first term in the definition of λ∗, we then have

(λ∗)2

Var(|Zpi|)
≥ 4 log 4tn.

In addition, for every coordinate j we have |Zjp
i
j | = |D̃jp

i
j − E[D̃jp

i
j ]| ≤ 1/α, where the inequality

follows from Proposition 3. Then we can set M = 1/α and using the second term in the definition of
λ∗ we get λ∗

M ≥ log 4tn. Therefore, replacing these bounds in inequality (1) gives Pr(|Zpi| ≥ λ∗) ≤
1

4tn .
Taking a union bound over all i ∈ [t] gives that Pr(maxi∈[t] |Zpi| ≥ λ∗) ≤ 1/4n. This concludes

the proof of the claim.

Claim 3. Pr(D̃(u− v) ≤ λ/2) ≤ 1− 1/(2n− 1).

Proof. Recall u − v = λd, hence it is equivalent to bound Pr(D̃d ≤ 1/2). First, E[D̃d] = dd = 1.
Also, from Proposition 3 we have D̃d ≤ |D̃d − dd| + |dd| ≤ 1

α

∑n
i=1 |di| + 1 ≤ 2n

k + 1 ≤ n, where
the last inequality uses the assumption k ≥ 8 log 4tn. Then employing Markov’s inequality to the
non-negative random variable n− D̃d, we get Pr(D̃d ≤ 1/2) ≤ 1− 1

2n−1 . This concludes the proof.

Proof of Lemma 1. Employ the previous three claims and union bound to find a realization of D̃
that is k-sparse and satisfies requirements 1 and 2 of the lemma.

This concludes the proof of the first part of Theorem 1.

Observation 2. Notice that in the above proof λ∗ is set by Claim 2, and needs to be essentially
E[maxi∈[t](D̃ − d)pi]. There is a vast literature on bounds on the supremum of stochastic processes
(see for instance [18]), and improved bounds for structured P ’s are possible (for instance, via the
generic chaining method).

3.2 Proof of Second Part of Theorem 1

The main tool for proving this upper bound is the following lemma, which shows that when P is
‘simple’, and we have a stronger control over the distance of a point x̄ to P , then there is a k-sparse
inequality that cuts x̄ off.

Lemma 2. Consider a halfspace H = {x ∈ Rn : ax ≤ b} and let P = H ∩ [−1, 1]n. Let x̄ ∈ [−1, 1]n

be such that d(x̄, H) > 2
√
n(nk − 1). Then x̄ /∈ P k.

Proof. Assume without loss of generality that ‖a‖2 = 1. Let ȳ be the point in H closest to x̄, and
notice that x̄ = ȳ + λa where λ > 2

√
n(nk − 1).

9



For any set I ∈
([n]
k

)
, the inequality

∑
i∈I aixi ≤ b +

∑
i/∈I:ai≥0 ai −

∑
i/∈I:ai<0 ai is valid for P ;

since it is k-sparse, it is also valid for P k. Averaging these inequalities over all I ∈
([n]
k

)
, we get that

the following is valid for P k:

k

n
ax ≤ b+

(
1− k

n

) ∑
i:ai≥0

ai −
∑
i:ai<0

ai

 ≡ ax ≤ b+
(n
k
− 1
)

(b+ ‖a‖1) .

We claim that x̄ violates this inequality. First notice that ax̄ = aȳ+λ = b+λ > b+2
√
n
(
n
k − 1

)
,

hence it suffices to show b + ‖a‖1 ≤ 2
√
n. Our assumption on x̄ implies that P 6= [−1, 1]n, and

hence b < maxx∈[−1,1] ax = ‖a‖1; this gives b + ‖a‖1 ≤ 2‖a‖1 ≤ 2
√
n‖a‖2 = 2

√
n, thus concluding

the proof.

To prove the second part of Theorem 1 consider a point x̄ of distance greater than 2
√
n(nk − 1)

from P ; we show x̄ /∈ P k. Let ȳ be the closest point to x̄ in P . Let a = x̄ − ȳ. From Observation
1 we have that ax ≤ aȳ is valid for P . Define H ′ = {x ∈ Rn : ax ≤ aȳ} and P ′ = H ′ ∩ [−1, 1]n.
Notice that d(x̄, H ′) = d(x̄, ȳ) > 2

√
n(nk − 1). Then Lemma 2 guarantees that x̄ does not belong

to P ′k. But P ⊆ P ′, so by monotonicity of the k-sparse closure we have P k ⊆ P ′k; this shows that
x̄ /∈ P k, thus concluding the proof.

4 Lower Bound

In this section we prove Theorem 2. The proof is based on the ‘bad’ polytope of Example 2. For a
random polytope Q in Rn, it is useful to think of each of its (random) faces from the perspective of
supporting hyperplanes: for a fixed direction d ∈ Rn, we have the valid inequality dx ≤ d0, where
d0 = maxq∈Q dq.

The idea of the proof is then to proceed in two steps. First, for a uniformly random 0/1
polytope P , we show that with good probability the faces dx ≤ d0 for P k have d0 being large,

namely d0 &
(

1
2 +

√
log t√
k

)∑n
i=1 di, forced by some point p ∈ P with large dp; therefore, with good

probability the point p̄ ≈ (1
2 +

√
log t√
k

)e belongs to P k. In the second step, we show that with

good probability the distance from p̄ to P is at least ≈
√

n
k

√
log t, by showing that the inequality∑n

i=1 xi .
n
2 +
√
n is valid for P .

We now proceed with the proof. Assume the conditions on k, n, t as stated in Theorem 2 hold.
Consider the random set X defined as {X1,X2, . . . ,Xt} where the Xi’s are independent uniform
random points in {0, 1}n, and define the random 0/1 polytope P = conv(X ). To formalize the
preceding discussion, we need the following definition.

Definition 1. We say that a (deterministic) 0/1 polytope in Rn is α-tough if for every facet dx ≤ d0

of its k-sparse closure we have d0 ≥
∑n
i=1 di
2 + α

2
√
k
(1− 1

k2
)‖d‖1−‖d‖∞/2k2, for every k ∈ {2, . . . , n}.

The main element of the lower bound is the following anticoncentration result; in our setting,
the idea is that for every (k-sparse) direction d ∈ Rn, with good probability we will have a point p
in P k (in fact in P ) with large dp.

10



Lemma 3. Let Z1,Z2, . . . ,Zn be independent random variables with Zi taking value 0 with prob-
ability 1/2 and value 1 with probability 1/2 for every i ∈ [n]. Then for every a ∈ [−1, 1]n and

α ∈ [0,
√
n

8 ],

Pr

(
aZ ≥ E[aZ] +

α

2
√
n

(
1− 1

n2

)
‖a‖1 −

1

2n2

)
≥
(
e−50α2 − e−100α2

)60 logn
.

The proof of this lemma is reasonably simple and proceeds by grouping the random variables
with similar ai’s and then applies known anticoncentration to each of these groups; this proof is
presented in Section C of the appendix.

In order to effectively apply this anticoncentration to all valid inequalities/directions of P k, we
need some additional control. Define D ⊆ Zn as the set of all integral vectors ` ∈ Rn that are
k-sparse and satisfy ‖`‖∞ ≤ (k)k/2.

Lemma 4. Let Q ⊆ Rn be a 0/1 polytope. Then for every k ∈ [n], there is a subset D′ ⊆ D such
that Qk = {x : dx ≤ maxy∈Qk dy, d ∈ D′}.

This lemma follows directly from applying the following well-known fact to each term Q + RĪ
in the definition of Qk from Section 1.2 (also note the every 0/1 polytope can be defined as the
intersection of full dimensional 0/1 polytopes).

Lemma 5 (Corollary 26 in [22]). Consider a full dimensional 0/1 polytope W ⊆ {0, 1}`. Let dx ≤ d0

be a facet of W , scaled such that all coefficients are integral and have gcd(d0, d1, . . . , d`) = 1. Then

for all i ∈ {0, 1, . . . , `} |di| ≤ ``/2

2`−1 .

Employing Lemma 4 to each scenario, we get that all the directions of facets of P k come from
the set D. This allows us to analyze the probability that P is α-tough.

Lemma 6. Assume the conditions on k, n, t as stated in Theorem 2 hold. If 1 ≤ α2 ≤ min
{

log t
12000 logn ,

k
64

}
,

then P is α-tough with probability at least 1/2.

Proof. Let E be the event that for all d ∈ D we have maxi∈[t] dX
i ≥ 1

2

∑n
j=1 dj + α

2
√
k
(1− 1

k2
)‖d‖1−

‖d‖∞/2k2. Because of Lemma 4, whenever E holds we have that P is α-tough and thus it suffices
to show Pr(E) ≥ 1/2.

Fix d ∈ D. Since d is k-sparse, and α ≤
√
k

8 , we can apply Lemma 3 to d/‖d‖∞ restricted to the
coordinates in its support to obtain that

Pr

(
dXi ≥

∑n
i=1 di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1 −

‖d‖∞
2k2

)
≥
(
e−50α2 − e−100α2

)60 logn

≥ e−100α2·60 logn ≥ 1

t1/2
,

where the second inequality follows from the lower bound on α2 (in fact α2 ≥ log 2
50 is sufficient) and

the last inequality follows from our upper bound on α2. By independence of the Xi’s,

Pr

(
max
i∈[t]

dXi <

∑n
i=1 di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1 −

‖d‖∞
2k2

)
≤
(

1− 1

t1/2

)t
≤ e−t1/2 ,
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where the second inequality follows from the fact that (1− x) ≤ e−x for all x.
Finally notice that

|D| =
(
n

k

)(
2kk/2 + 1

)k
≤
(ne
k

)k (
ekk/2

)k
= e2k+k lnn+k( k2−1) ln k

≤ e0.5k2 logn+2k,

where the first inequality uses the fact that k ≥ 64, and the last one that k ≤ n. By our assumption
on the size of t and k, we therefore have e−t

1/2 |D| ≤ (1/2). Therefore, taking a union bound over all
d ∈ D of the previous displayed inequality gives Pr(E) ≥ 1/2, concluding the proof of the lemma.

The next lemma takes care of the second step of the argument.

Lemma 7. With probability at least 3/4, the inequality
∑n

j=1 xj ≤
n
2 + 3

√
n log t is valid for P .

Proof. Fix an i ∈ [t]. Since Var(Xi) = n/4, we have from Bernstein’s inequality

Pr

 n∑
j=1

Xi
j >

n

2
+ 3
√
n log t

 ≤ exp

(
−min

{
9 log t,

9
√
n log t

4

})
≤ e−

9 log t
4 ≤ 1

4t
,

where the second inequality follows from the fact that log t ≤ n, and the last inequality uses the
fact that t ≥ 4. Taking a union bound over all i ∈ [t] gives

Pr

∨
i∈[t]

 n∑
j=1

Xi
j >

n

2
+ 3
√
n log t

 ≤ 1

4
,

Finally, notice that an inequality dx ≤ d0 is valid for P iff it is valid for all Xi. This concludes the
proof.

Lemma 8. Suppose that the polytope Q is α-tough for α ≥ 1 and that the inequality
∑n

i=1 xi ≤
n
2 + 3

√
n log t is valid for Q. Then we have d(Q,Qk) ≥

√
n
(

α
2
√
k
− α

k2
− 3
√

log t√
n

)
.

Proof. We first show that the point q̄ = (1
2 + α

2
√
k
− α

k2
)e belongs to Qk. Let dx ≤ d0 be a facet for

Qk. Then we have

dq̄ =

∑
i di
2

+ α

(
1

2
√
k
− 1

k2

)∑
i

di ≤
∑

i di
2

+ α

(
1

2
√
k
− 1

k2

)
‖d‖1

≤
∑

i di
2

+ α

(
1

2
√
k
− 1

2k2

)
‖d‖1 −

‖d‖∞
2k2

≤
∑

i di
2

+
α

2
√
k

(
1− 1

k2

)
‖d‖1 −

‖d‖∞
2k2

,
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where the first inequality uses the fact that 1
2
√
k
− 1

k2
≥ 0 for k ≥ 2 and the second inequality uses

α ≥ 1 and ‖d‖1 ≥ ‖d‖∞. Since Q is α-tough it follows that q̄ satisfies dx ≤ d0; since this holds for
all facets of Qk, we have q̄ ∈ Qk.

Now define the halfspace H = {x :
∑n

i=1 xi ≤
n
2 + 3

√
n log t}. By assumption Q ⊆ H, and

hence d(Q,Qk) ≥ d(H,Qk). But it is easy to see that the point in H closest to q̄ is the point

q̃ = (1
2 + 3

√
log t√
n

)e. This gives that d(Q,Qk) ≥ d(H,Qk) ≥ d(q̄, q̃) ≥
√
n
(

α
2
√
k
− α

k2
− 3
√

log t√
n

)
. This

concludes the proof.

We now conclude the proof of Theorem 2.

Proof. of Theorem 2 Set ᾱ2 = min
{

log t
12000 logn ,

k
64

}
. Employing the union bound over Lemmas 6 and

7, with probability at least 1/4, P is ᾱ-tough and the inequality
∑n

i=1 xi ≤
n
2 +3
√
n log t is valid for it.

Then from Lemma 8 we get that with probability at least 1/4, d(P ,P k) ≥
√
n
(

ᾱ
2
√
k
− ᾱ

k2
− 3
√

log t√
n

)
,

and the result follows by plugging in the value of ᾱ.

5 Hard Packing Integer Programs

In this section we prove Theorem 3. With overload in notation, we use
([n]
k

)
to denote the set of

vectors in {0, 1}n with exactly k 1’s.
Let P be a random polytope sampled from the distribution (n,m,M)-PIP and consider the

corresponding random vectors Aj ’s. The idea of the proof is to show that with constant probability
P behaves like Example 2, by showing that the cut

∑n
i=1 xi .

n
2 is valid for it and that P ap-

proximately contains 0/1 points with many 1’s. Then we show that this ‘approximate containment’
implies that a point with a lot of mass (say, ≈ (1, 1, . . . , 1) for k ≤ n/2) belongs to the k-sparse
closure P k; since such point is far from hyperplane

∑n
i=1 xi .

n
2 , it is also far from P and hence we

get a lower bound on d(P ,P k).
The first part of the argument is a straightforward application of Bernstein’s inequality and

union bound; its proof is presented in Section D of the appendix.

Lemma 9. With probability at least 1 − 1
4 the cut (1 − 2

√
log 8n√
m

)
∑n

i=1 xi ≤
n
2 +

√
n log 8√
m

is valid for

P .

The other steps in the argument are more involved.

5.1 Approximate Containment of Points with Many 1’s

First we control the right-hand side of the constraints Ajx ≤
∑n
i=1 A

j
i

2 that define P , by showing
that they are roughly nM

4 ; this is again a straightforward application of Bernstein’s inequality and
is also deferred to Section D of the appendix.

Lemma 10. With probability at least 1− 1
8 we have |

∑n
i=1 A

j
i −

nM
2 | ≤M

√
n log 8m for all j ∈ [m].

Recall that we defined c = k
n . Now we show that with constant probability, all points x̄ ∈ {0, 1}n

with cn 1’s satisfy Aj x̄ . nM
2 for all j ∈ [m], and hence they approximately belong to P . The

argument would be cleaner if the random variables Aj
i were uniformly distributed in the continuous

13



interval [0,M ], instead of on the discrete set {0, . . . ,M}; this is because in the former we can
leverage the knowledge of the order statistics of continuous uniform variables. Our next lemma
then essentially handles this continuous case.

Lemma 11. Let U ∈ Rn be a random variable where each coordinate U i is independently drawn
uniformly from [0, 1]. Then with probability at least 1− 1/8m we have U x̄ ≤ c(2n−cn+1)

2 +
√

10cnm

for all vectors x̄ ∈
(

[n]
cn

)
.

Proof. Let U (i) be the ith order statistics of U1,U2, . . . ,Un (i.e. in each scenario U(i) equals the
ith smallest value among U1,U2, . . . ,Un in that scenario). Notice that max

x̄∈([n]cn) U x̄ = U (n) +

. . .+ U (n−cn+1), and hence is it equivalent to show that

Pr

(
U (n) + . . .+ U (n−cn+1) >

c(2n− cn+ 1)

2
+
√

10cnm

)
≤ 1

8m
.

We use Z , U (n) + . . .+ U (n−cn+1) to simplify the notation.

It is known that E[U (i)] = i
n+1 and Cov(U (i),U (j)) = i(n+1−j)

(n+1)2(n+2)
≤ 1

n [11]. Also, since U (i) lies

in [0, 1], we have Var(U (i)) ≤ 1/4. Using this information, we get E[Z] = (2n−cn+1)cn
2(n+1) ≤ c(2n−cn+1)

2
and

Var(Z) ≤ cn

4
+

(cn)2

n
≤ 5cn

4
,

where the last inequality follows from the fact c ≤ 1. Then applying Chebychev’s inequality [18],
we get

Pr

(
Z ≥ c(2n− cn+ 1)

2
+
√

10cnm

)
≤ Var(Z)

10cnm
≤ 1

8m
.

This concludes the proof.

Now we translate this proof from the continuous to the discrete setting.

Lemma 12. With probability at least 1− 1
8 we have

Aj x̄ ≤ (M + 1)c(2n− cn+ 1)

2
+ (M + 1)

√
10cnm, ∀j ∈ [m], ∀x̄ ∈

(
[n]

cn

)
.

Proof. For each j ∈ [m], let U j
1,U

j
2, . . . ,U

j
n be independent and uniformly distributed in [0, 1].

Define Y j
i , b(M + 1)U j

i c. Notice that the random variables (Y j
i )i,j have the same distribution as

(Aj
i )i,j . So it suffices to prove the lemma for the variables Y j

i ’s.
Fix j ∈ [m]. For any x̄ ∈ {0, 1}n we have Y j x̄ ≤ (M + 1)U x̄. Therefore, from Lemma 11 we get

Pr

 ∨
x̄∈( ncn)

(
Y j x̄ >

(M + 1)c(2n− cn+ 1)

2
+ (M + 1)

√
10cnm

) ≤ 1

8m
.

Taking a union bound of this last expression over all j ∈ [m] concludes the proof of the lemma.
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5.2 From Approximate to Actual Containment

From the previous section we get with constant probability, points x̄ ∈ {0, 1}n with cn 1’s approxi-
mately belong to P ; thus, scaling them by a small factor, shows that these points belong to the LP
relaxation of P . Our goal is to strengthen this result by showing that a slightly smaller scaling of
these point actually brings them to the integer hull P itself .

The next lemma shows that this is in fact possible.

Lemma 13. Consider a 0/1 polytope Q = conv({x ∈ {0, 1}n : ajx ≤ bj , j = 1, 2, . . . ,m}) where

n ≥ 50, m ≤ n, aji ∈ [0,M ] for all i, j, and bj ≥ nM
12 for all i. Consider 1 < α ≤ 2

√
n and let

x̄ ∈ {0, 1}n be such that for all j, aj x̄ ≤ αbj. Then the point 1
α(1 − ε)2x̄ belongs to Q as long as

12
√

log 4n2m√
n

≤ ε ≤ 1
2 .

For the remainder of the section we prove this lemma. The idea is that we can select a subset
of ≈ 1− 1/α coordinates and change x̄ to 0 in these coordinates to obtain a feasible solution in Q;
repeating this for many sets of coordinates and taking an average of the feasible points obtained
will give the result.

To make this precise, let p = 1
α(1 − ε). For w ∈ [n2] define the independent random variables

Xw
1 ,X

w
2 , . . . ,X

w
n taking values in {0, 1} such that E[Xw

i ] = px̄i (i.e. if x̄i = 1, then keep it at 1
with probability p, otherwise flip it to 0; if x̄i = 0, then keep it at 0).

Claim 4. With probability at least 3/4 all points Xw belong to Q.

Proof. Notice E[ajXw] ≤ (1− ε)bj . Also, from our upper bound on aj , we have Var(ajXw) ≤ M2n
4 .

Employing Bernstein’s inequality,

Pr(ajXw > bj) ≤ exp

(
−min

{
ε2b2j
M2n

,
3εbj
4M

})
≤ 1

4n2m
,

where the second inequality uses the assumed lower bounds on bj and ε, and the fact that 4·12 log 4n2m
3n ≤

12
√

log 4n2m√
n

due to our bounds on n and m. The claim follows by taking a union bound over all j

and w.

Let Z = 1
n2

∑
wXw be the random point that is the average of the Xw’s.

Claim 5. With probability at least 3/4, Zi ≥ 1
α(1− ε)2x̄i for all i.

Proof. Since x̄ ∈ {0, 1}n, it suffices to consider indices i such that x̄i = 1. Fix such an i. We have

E[n2Zi] = pn2 and Var(n2Zi) ≤ n2

4 . Then from Bernstein’s inequality

Pr

(
Zi <

1

α
(1− ε)2x̄i

)
= Pr(n2Zi < E[n2Zi](1− ε))

≤ exp

(
−min

{
n2(εp)2,

3n2εp

4

})
≤ 1

4n
,

where the last inequality uses the lower bound on ε, the fact that n ≥ 50, and the fact that
p ≥ 1/2α ≥ 1/4

√
n. The claim follows from taking a union bound over all i such that x̄i = 1.
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Taking a union bound over the above two claims we get that there is a realization x̃1, x̃2, . . . , x̃n
2

of the random vectors X1,X2, . . . ,Xn2
such that (let z̃ = 1

n2

∑
w x̃

w): (i) All x̃w belong to Q, and
hence so does their convex combination z̃; (ii) z̃ ≥ 1

α(1− ε)2x̄. Since Q is of packing-type, it follows
that the point 1

α(1− ε)2x̄ belongs to Q, concluding the proof of Lemma 13.

5.3 Proof of Theorem 3

Now we put together the results from the previous sections to conclude the proof of Theorem 3. Let
E be the event that Lemmas 10, 9 and 12 hold; notice that Pr(E) ≥ 1/2. For the rest of the proof
we fix a P (and the associated Aj ’s) where E holds and prove a lower bound on d(P ,P k).

Consider a set I ∈
(

[n]
cn

)
and let x̄ be the incidence vector of I (i.e. x̄i = 1 if i ∈ I and x̄i = 0

if i /∈ I). Since the bounds from Lemmas 10 and 12 hold for our P , straightforward calculations
show that Aj x̄ ≤ α1

2

∑n
i=1 A

j
i for all j ∈ [m]. Therefore, from Lemma 13 we have that the point

1
max{α,1}(1− ε)

2x̄ belongs to P . This means that the point x̃ = 1
max{α,1}(1− ε)

2e belongs to P +RĪ

(see Section 1.2). Since this holds for every I ∈
(

[n]
cn

)
, we have x̃ ∈ P k.

Let ỹ be the point in P closest to x̃. Let a = (1 − 2
√

log 8n√
m

) and b = n
2 +
√
n log 8m, so that

the cut in Lemma 9 is given by aex ≤ b. From Cauchy-Schwarz we have that d(x̃, ỹ) = ‖x̃− ỹ‖ ≥
aex̃−aeỹ
‖ae‖ = ex̃√

n
− aeỹ

a
√
n

.

By definition of x̃ we have ex̃ = 1
max{α,1}(1−ε)

2n. From the fact the cut aex ≤ b is valid for P and

ỹ ∈ P , we have aeỹ ≤ b. Simple calculations (using the fact that m ≤ n) show that b
a
√
n
≤
√
n

2 (1+ε′).

Plugging these values in we get that d(P ,P k) = d(x̃, ỹ) ≥
√
n

2

(
2(1−ε)2

max{α,1} − (1 + ε′)
)

. Theorem 3

follows from the definition of α, ε and ε′.

6 Sparse Cutting-Planes and Polytope Extensions

In this section we analyze the relationship between sparse cuts and polytope extensions, proving
Proposition 1 and Proposition 2.

6.1 Proof of Proposition 1

For any set S ⊆ Rn′ and I ⊆ [n′], define τI(S) = S+RĪ (recall that RĪ = {x ∈ Rn′ : xi = 0 for i ∈ I}.
Consider P ⊆ Rn and Q ⊆ Rn×Rm such that P = projx(Q). Given a subset I ⊆ [n+m] we use

Ix to denote the indices of I in [n] (i.e. Ix = I ∩ [n]). We start with the following technical lemma.

Lemma 14. For every I ⊆ [n+m] we have τIx(projx(Q)) = projx(τI(Q)).

Proof. (⊆) Take ux ∈ τIx(projx(Q); this means that there is v ∈ Q such that ux = projx(v) + dx
for some vector dx ∈ Rn with support in Ix. Define d = (dx, 0) ∈ Rn × Rm, with support in Ix ⊆ I.
Then v + d belongs to τI(Q) and

ux = projx(v) + dx = projx(v + d) ∈ projx(τI(Q)),

concluding this part of the proof.
(⊇) Take ux ∈ projx(τI(Q)). Let u ∈ τI(Q) be such that projx(u) = ux. By definition, there is

d ∈ Rn × Rm with support in I such that u + d belongs to Q. Then projx(u + d) = ux + projx(d)

16



belongs to projx(Q); since projx(d) is supported in Ix, we have that ux belongs to τIx(projx(Q)),
thus concluding the proof of the lemma.

The proof of Proposition 1 then follows directly from the above lemma:

(projx(Q))k =
⋂

J⊆[n]:|J |≤k

τJ(projx(Q)) =
⋂

I⊆[n+m]:|I|=k

τIx(projx(Q))

Lemma 14
=

⋂
I⊆[n+m]:|I|=k

projx(τI(Q)) ⊇ projx

 ⋂
I⊆[n+m]:|I|=k

τI(Q)


= projx(Qk).

6.2 Proof of Proposition 2

We construct the polytope Q ⊆ Rn × R2n−1 as follows. Let T be the complete ordered binary tree
of height ` + 1. We let r denote the root node of T . We use int(T ) to denote the set of internal
nodes of T , and for an internal node v ∈ int(T ) we use left(v) to denote its left child and right(v)
to denote its right child. Let i(.) be a bijection between the leaf nodes of T and the elements of [n].
We then define the set Q as the solutions (x, y) to the following:

yr ≤ 1

yv = yleft(v) + yright(v), ∀v ∈ int(T )

yv =
2

n
xi(v), ∀v ∈ T \ int(T ) (2)

yv ≥ 0, ∀v ∈ T
xi ∈ [0, 1], ∀i ∈ [n].

Define P = {x ∈ [0, 1]n :
∑

i∈[n] xi ≤ n/2}.
Claim 6. Q is an extension of P , namely projx(Q) = P .

Proof. (⊆) Take (x̄, ȳ) ∈ Q. Let Tj denote the set of nodes of T at level j. It is easy to see
(for instance, by reverse induction on j) that

∑
v∈Tj ȳv = 2

n

∑
i∈[n] x̄i for all j. In particular,

ȳr = 2
n

∑
i∈[n] x̄i. Since ȳr ≤ 1, we have that x̄ ∈ P .

(⊇) Take x̄ ∈ P . Define ȳ inductively by setting ȳi(v) = 2
n x̄i(v) for all leaves v and ȳv =

ȳleft(v) + ȳright(v) for all internal nodes v. As in the previous paragraph, it is easy to see that
ȳr =

∑
i∈[n] x̄i ≤ n/2. Therefore, (x̄, ȳ) belongs to Q.

Claim 7. d(P, P k) =
√
n/2 for all k ≤ n/2.

Proof. For every subset I ⊆ [n] of size n/2, the incidence vector of I belongs P this implies that,
when k ≤ n/2, the all ones vector e belongs to P k. It is easy to see that the closest vector in P to
e is the vector 1

2e; since the distance between e and 1
2e is

√
n/2, the claim follows.

Claim 8. Q3 = Q.

Proof. Follows directly from the fact that all the equations and inequalities defining Q in (2) have
support of size at most 3.

The proof of Proposition 2 follows directly from the three claims above.
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7 Future Directions

Follow up work. In [12] the authors study the limitation of sparse cuts in more refined settings,
considering the effect of sparse inequalities added to linear-programming relaxation, effect on ap-
proximation by addition of a budgeted number of dense valid inequalities, sparse-approximation of
polytopes under every rotation and approximation by sparse inequalities in specific directions.

Open questions. Here we use the Hausdorff distance d(., .) to measure the quality of the approx-
imation provided by sparse cuts, but it would also be interesting to consider ratio measures that
are more closely related to the ones typically used in integer programming. For instance, if P is

downward closed, a natural measure is to look at the worst ratio max{cx:x∈Pk}
max{cx:x∈P} over all non-negative

objectives c (see [14, 5, 6]).
It would also be interesting to complement the results presented here with computational ex-

periments, which could give further information on how good sparse cuts are in different situations.
Finally, notice that the packing instances in Section 5, for which sparse cuts are weak, have

fairly dense (natural) LP formulations. It would be interesting to understand what happens with
packing IPs with sparse LP formulation; in this case, the sparsity structure of the LP might also
play an important role.

A Concentration Inequalities

We state Bernstein’s inequality in a slightly weaker but more convenient form.

Theorem 4 (Bernstein’s Inequality [[18], Appendix A.2]). Let X1,X2, . . . ,Xn be independent
random variables such that |Xi − E[Xi]| ≤ M for all i ∈ [n]. Let X =

∑n
i=1 Xi and define

σ2 = Var(X). Then for all t > 0 we have

Pr(|X − E[X]| > t) ≤ exp

(
−min

{
t2

4σ2
,

3t

4M

})
.

B Empirically Generating Lower Bound on d(P, P k)

We estimate a lower bound on d(P, P k) using the following procedure. The input to the procedure

is the set of points {p1, . . . , pt} ∈ [0, 1]n which are vertices of P . For every I ∈
([n]
k

)
, we use PORTA

to obtain an inequality description of P + RĪ . Putting all these inequalities together we obtain an
inequality description of P k. Unfortunately due to the large number of inequalities, we are unable
to find the vertices of P k using PORTA. Therefore, we obtain a lower bound on d(P, P k) via a
shooting experiment.

First observe that given u ∈ Rn \ {0} we obtain a lower bound on d(P, P k) as:

1

‖u‖

(
max{uTx : x ∈ P k} −max{uTx : x ∈ P}

)
.

Moreover it can be verified that there exists a direction which achieves the correct value of d(P, P k).
We generated 20,000 random directions u by picking them uniformly in the set [−1, 1]n. Also we
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found that for instances where pj ∈ {x ∈ {0, 1}n :
∑n

i=1 xi = n
2 }, the directions ( 1√

n
, . . . , 1√

n
) and

−( 1√
n
, . . . , 1√

n
) yield good lower bounds. The Figure in Section 1.3(c) plots the best lower bound

among the 20,002 lower bounds found as above.

C Anticoncentration of Linear Combination of Bernoulli’s

It is convenient to restate Lemma 3 in terms of Rademacher random variables (i.e. that takes values
-1/1 with equal probability).

Lemma 15 (Lemma 3, restated). Let X1,X2, . . . ,Xn be independent Rademacher random vari-
ables. Then for every a ∈ [−1, 1]n,

Pr

(
aX ≥ α√

n

(
1− 1

n2

)
‖a‖1 −

1

n2

)
≥
(
e−50α2 − e−100α2

)60 logn
, α ∈

[
0,

√
n

8

]
.

We start with the case where the vector a has all of its coordinates being similar.

Lemma 16. Let X1,X2, . . . ,Xn be independent Rademacher random variables. For every ε ≥ 1/20
and a ∈ [1− ε, 1]n,

Pr

(
aX ≥ α√

n
‖a‖1

)
≥ e−50α2 − e−

α2

4ε2 , α ∈
[
0,

√
n

8

]
.

Proof. Since aX =
∑n

i=1 Xi −
∑n

i=1(1 − ai)Xi, having
∑n

i=1 Xi ≥ 2t and
∑n

i=1(1 − ai)Xi ≤ t
implies that aX ≥ t. Therefore,

Pr(aX ≥ t) ≥ Pr

((
n∑
i=1

Xi ≥ 2t

)
∨

(
n∑
i=1

(1− ai)Xi ≤ t

))

≥ Pr

(
n∑
i=1

Xi ≥ 2t

)
− Pr

(
n∑
i=1

(1− ai)Xi ≤ t

)
, (3)

where the second inequality comes from union bound. For t ∈ [0, n/8], the first term in the right-

hand side can be lower bounded by e−
50t2

n (see for instance Section 7.3 of [19]). The second term in
the right-hand side can be bounded using Bernstein’s inequality: given that Var(

∑n
i=1(1−ai)Xi) =∑n

i=1(1− ai)2 ≤ nε2, we get that for all t ∈ [0, n/8]

Pr

(
n∑
i=1

(1− ai)Xi ≤ t

)
≤ exp

(
−min

{
t2

4nε2
,

3t

4ε

})
= e−

t2

4nε2 .

The lemma then follows by plugging these bounds on (3) and using t = α
√
n ≥ α√

n
‖a‖1.

Proof of Lemma 15. Without loss of generality assume a > 0, since flipping the sign of negative
coordinates of a does not change the distribution of aZ neither the term α√

n

(
1− 2

n2

)
‖a‖1. Also

assume without loss of generality that ‖a‖∞ = 1. The idea of the proof is to bucket the coordinates
such that in each bucket the values of a is within a factor of (1 ± ε) of each other, and then apply
Lemma 16 in each bucket.
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The first step is to trim the coefficients of a that are very small. Define the trimmed version b
of a by setting bi = ai for all i where ai ≥ 1/n3 and bi = 0 for all other i. We first show that

Pr

(
bZ ≥ α√

n
‖b‖1

)
≥
(
e−50α2 − e−100α2

)60 logn
, (4)

and then we argue that the error introduced by considering b instead of a is small.
For j ∈ {0, 1, . . . , 3 logn

ε }, define the jth bucket as Ij = {i : bi ∈ ((1 − ε)j+1, (1 − ε)j ]}. Since

(1− ε)
3 logn
ε ≤ e−3 logn = 1/n3, we have that every index i with bi > 0 lies within some bucket.

Now fix some bucket j. Let ε = 1/20 and γ = α√
n

. Let Ej be the event that
∑

i∈Ij biZi ≥
γ
∑

i∈Ij bi. Employing Lemma 16 over the vector (1− ε)jb|Ij , gives

Pr

∑
i∈Ij

biZi ≥ γ
∑
i∈Ij

bi

 ≥ e−50γ2|Ij | − e−
γ2|Ij |
4ε2 ≥ e−50γ2n − e−

γ2n

4ε2 , γ ∈
[
0,

1

8

]
.

But now notice that if in a scenario we have Ej holding for all j, then in this scenario we have bZ ≥
γ‖b‖1. Using the fact that the Ej ’s are independent (due to the independence of the coordinates of
Z), we have

Pr(bZ ≥ γ‖b‖1) ≥ Pr

∨
j

Ej

 ≥ (e−50γ2n − e−
γ2n

4ε2

) 3 logn
ε

, γ ∈
[
0,

1

8

]
.

Now we claim that whenever bX ≥ γ‖b‖1, then we have aZ ≥ α√
n

(
1− 2

n2

)
‖a‖1. First notice

that ‖b‖1 ≥ ‖a‖1 − 1/n2 ≥ ‖a‖1(1 − 1/n2), since ‖a‖1 ≥ ‖a‖∞ = 1. Moreover, with probability 1
we have aZ ≥ bZ − 1/n2. Therefore, whenever bZ ≥ γ‖b‖1:

aZ ≥ bZ − 1

n2
≥ γ‖b‖1 −

1

n2
≥ γ

(
1− 1

n2

)
‖a‖1 −

1

n2
=

α√
n

(
1− 1

n2

)
‖a‖1 −

1

n2
.

This concludes the proof of the lemma.

D Hard Packing Integer Programs

D.1 Proof of Lemma 9

Fix i ∈ [n]. We have E[
∑m

j=1 A
j
i ] = mM

2 and Var(
∑m

j=1 A
j
i ) ≤

mM2

4 . Employing Bernstein’s
inequality we get

Pr

 m∑
j=1

Aj
i <

mM

2
−
√
m log 8nM

 ≤ exp

(
−min

{
log 8n,

3
√
m log 8n

4

})
≤ 1

8n
,

where the last inequality uses the assumption that m ≥ 8 log 8n. Similarly, we get that

Pr

∑
i,j

Aj
i >

nmM

2
+
√
nm log 8nM

 ≤ exp

(
−min

{
log 8n,

3
√
nm log 8n

4

})
≤ 1

8n
.
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Taking a union bound over the first displayed inequality over all i ∈ [n] and also over the last
inequality, with probability at least 1−1/4 the valid cut

∑
i(

2
mM

∑
j A

j
i )xi ≤

1
mM

∑
i,j A

j
i (obtained

by aggregating all inequalities in the formulation) has all coefficients on the left-hand side being at

least (1− 2
√

log 8n√
m

) and the right-hand side at most n
2 +

√
n log 8√
m

. This concludes the proof.

D.2 Proof of Lemma 10

Fix j ∈ [m]. We have E[
∑n

i=1 A
j
i ] = nM

2 and Var(
∑n

i=1 A
j
i ) ≤ nM2/4 and hence by Bernstein’s

inequality we get

Pr

(
n∑
i=1

Aj
i >

nM

2
+M

√
n log 8m

)
≤ exp

(
−min

{
log 8m,

3
√
n log 8m

4

})
≤ 1

8m
,

where the last inequality uses the assumption that m ≤ n. The lemma then follows by taking a
union bound over all j ∈ [m].
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[6] Basu, A., Cornuéjols, G., Molinaro, M.: A probabilistic analysis of the strength of the split and
triangle closures. In: IPCO, pp. 27–38 (2011)

[7] Bixby, R.E.: Solving real-world linear programs: A decade and more of progress. Oper. Res.
50(1), 3–15 (2002). DOI 10.1287/opre.50.1.3.17780. URL http://dx.doi.org/10.1287/opre.

50.1.3.17780

[8] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

[9] Coleman, T.F.: Chapter 3 large sparse linear programming. In: Large Sparse Numerical Opti-
mization, Lecture Notes in Computer Science, vol. 165, pp. 35–46. Springer Berlin Heidelberg
(1984)

[10] DasGupta, A.: Probability for Statistics and Machine Learning. Springer-Verlag (2011)

[11] David, H., Nagaraja, H.: Order Statistics. Wiley (2003)

21



[12] Dey, S.S., Iroume, A., Molinaro, M.: Some lower bounds on sparse outer approximations of
polytopes. Oper. Res. Lett. To appear

[13] Eldersveld, S., Saunders, M.: A block-lu update for large-scale linear programming. SIAM
Journal on Matrix Analysis and Applications 13(1), 191–201 (1992). DOI 10.1137/0613016.
URL http://dx.doi.org/10.1137/0613016

[14] Goemans, M.X.: Worst-case comparison of valid inequalities for the tsp. Math. Program. 69(2),
335–349 (1995)

[15] Gu, Z.: Personal communication

[16] Jeroslow, R.: On defining sets of vertices of the hypercube by linear inequalities. Discrete
Mathematics 11, 119–124 (1975)

[17] Kaparis, K., Letchford, A.N.: Separation algorithms for 0-1 knapsack polytopes. Mathematical
Programming 124(1-2), 69–91 (2010)

[18] Koltchinskii, V.: Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems. Springer-Verlag (2011)

[19] Matousek, J., Vondrak, J.: The Probabilistic Method (2008). Manuscript

[20] Narisetty, A.: Personal communication

[21] Reid, J.: A sparsity-exploiting variant of the Bartels-Golub decomposition for linear program-
ming bases. Mathematical Programming 24(1), 55–69 (1982). DOI 10.1007/BF01585094. URL
http://dx.doi.org/10.1007/BF01585094

[22] Ziegler, G.M.: Lectures on 0/1-polytopes. In: Polytopes combinatorics and computation, pp.
1–41. Springer (2000)

22


