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Abstract

Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic
function over points in a polyhedral set where some of the components are restricted to
be integral. In this paper, we prove that the decision version of mixed-integer quadratic
programming is in NP, thereby showing that it is NP-complete. This is established by
showing that if the decision version of mixed-integer quadratic programming is feasible,
then there exists a solution of polynomial size. This result generalizes and unifies classical
results that quadratic programming is in NP [11] and integer linear programming is in
NP [1, 12, 4, 9].

1 Introduction

Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic function
over points in a polyhedral set that have some components integer, and others continuous. More
formally, a MIQP problem is an optimization problem of the form:

min x>Hx+ c>x
s.t. Ax ≤ b

x ∈ Zp × Rn−p,
(1)

where H ∈ Qn×n and is symmetric, c ∈ Qn, A ∈ Qm×n and b ∈ Qm. The decision version of
this problem is: Does there exist a feasible solution to F(H, c, d,A, b) where F(H, c, d,A, b) is
the set of x satisfying

x>Hx+ c>x+ d ≤ 0
x ∈ C := {x : Ax ≤ b}

x ∈ Zp × Rn−p.
(2)

The special case of MIQP when all variables are required to be integer (p = n) is called integer
quadratic programming (IQP). It is well known that IQP is NP-hard. We show that the decision
versions of IQP and MIQP lie in NP. Therefore, decision version of IQP and MIQP are NP-
complete. This result generalizes and unifies classical results that quadratic programming is in
NP [11] and integer linear programming is in NP [1, 12, 4, 9].

Recently, Del Pia and Weismantel [2] showed that IQP can be solved in polynomial time
when n = 2. It is a major open question whether IQP can be solved in polynomial-time for
fixed dimension.
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1.1 Statement of result and discussion

Given a rational vector/matrix, its complexity is the bit-size of its smallest binary encoding.
The complexity of a rational polyhedron P ⊆ Rn is the smallest complexity of a matrix [A b]
such that P = {x : Ax ≤ b}. The complexity of a finite set of objects is the sum over the
complexity of the constituents objects. We will prove the following result.

Theorem 1. Let n, p ∈ Z++. Let H ∈ Qn×n, c ∈ Qn, d ∈ Q, A ∈ Qm×n, b ∈ Qm, and
let φ be the complexity of {H, c, d,A, b}. If F(H, c, d,A, b) is non-empty, then there exists
x0 ∈ F(H, c, d,A, b) such that the complexity of x0 is bounded from above by f(φ) where f is a
polynomial function.

Theorem 1 directly implies the following.

Corollary 2. The decision versions of IQP and MIQP are NP-complete.

Proof. Given a graph G = (V,E) and an integer k, determining whether there is a cut of
cardinality at least k in G is NP-complete [3, 5]. It is well known that such problem can be
written as the decision IQP problem∑

vivj∈E(xi + xj − 2xixj) ≥ k
xi ∈ {0, 1}n ∀vi ∈ V.

Hence any problem in NP can be polynomially transformed to a decision IQP. Theorem 1 proves
that there is a polynomial-length certificate for yes-instances of decision MIQP, showing that
decision IQP and MIQP are in NP. �

We end this section by contrasting the result of Theorem 1 with several well-known negative
results when one considers a more general version of decision IQP by varing the number of
quadratic inequalities.

1. ‘Many’ general quadratic inequalities: By using a simple reduction from the problem of
determining the feasibility of a quartic equation in 58 non-negative integer variables, we
obtain that determing the feasibility of a system with 2

((
58
2

)
+ 58 + 1

)
quadratic inequal-

ities and 58 linear inequalities in
((

58
2

)
+ 58

)
continuous variables and 58 integer variables

is undecidable (see Theorem 3.2 and Theorem 3.3(i) in [7]). Therefore already with 3424
quadratic inequalities, 58 linear inequalities, 58 integer variables, 1711 continuous vari-
ables, it is not possible to bound the size of smallest feasible solution.

2. Two general quadratic inequalities: In the presence of two quadratic inequalities (in fact
one quadratic equation) in two variables, there exist examples (the so called Pellian and
anti-Pellian equations) where the minimal binary encoding length of any feasible integral
solution is exponential in the complexity of the instance [8].

3. ‘Many’ convex quadratic inequalities: Consider the following system of inequalities [6]:

x1 ≥ 2 (3)

xi ≥ x2
i−1 ∀i ∈ {2, . . . , n} (4)

x ∈ Zn. (5)

It is clear that for this system, the minimal binary encoding length of any feasible integral
solution is exponential in the complexity of the instance.
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The above examples serve to highlight the fact that the result of Theorem 1 (a feasible
system of inequalities with exactly one quadratic inequality always has at least one integer
feasible solution of small size) is tight with respect to the number of quadratic inequalities.

The rest of the paper is organized as follows. Section 2 collects all notation and results that
are needed to prove Theorem 1. Section 3 presents a proof of Theorem 1.

2 Preliminaries

2.1 Notation

Throughout this paper, we use ei to represent the i-th vector of the standard basis of Rn,
sign(u) to represent the sign of a real number u, dim(S) to represent the affine dimension of S,
conv(S) to represent the convex hull of a set S, cone(S) to represent the conic hull of a set S,
and int.cone(S) to represent the set

∑
rj∈S λjr

j , λj ∈ Z+ ∀j.
Given an object O and another object f(O) that is a function of it, we say that f(O) has O-

small complexity if the complexity of f(O) is at most a polynomial function of the complexity of
O (or more precisely, there is a polynomial p such that for every input object O, the complexity
of f(O) is at most p(complexity(O))).

2.2 Quadratic programming is in NP

Quadratic programming (QP) is the special case of MIQP when all variables are continuous
(p = 0). Vavasis [11] proved that the decision version of QP is in NP.

Theorem 3. The feasibility problem over the continuous relaxation of (2) is in NP. Moreover,
suppose that the continuous relaxation of (1) has a global optimal solution. Then there exists a
system of rational linear equations of {H, c, d,A, b}-small complexity whose solution is one of
the global optimal solutions.

2.3 Mixed-integer linear programming is in NP

We will need the following generalization of a classical result that can be used to prove that the
decision version of mixed integer linear programming (MIP) is in NP. We say that a pointed
polyhedral cone C ⊆ Rn is a simple cone if the number of extreme rays is equal to the the
dimension of the cone.

Proposition 4. Let P = {x : Ax ≤ b} ⊆ Rp+q be a rational pointed polyhedron. Then there is
a finite family {Pi}i of polytopes, and a finite family {RK}K∈K of subsets of extreme rays of P
with the following properties:

1. P ∩ (Zp × Rq) =
⋃

i,K∈K(Pi + int. cone(RK));

2. Each polytope Pi and each vector in RK has [A b]-small complexity;

3. For each K ∈ K, all vectors in RK are integral;

4. Each cone cone(RK) is simple.
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Proof. Assume P is non-empty, otherwise there is nothing to prove. By standard polyhedral
theory, there is a set of vectors {v1, . . . , v`} (the vertices of P ) and a set of integral vec-
tors {r1, . . . , rm} (a scaling of the the extreme rays of P ) such that P = conv{v1, . . . , v`} +
cone{r1, . . . , rm} and the vi’s and rj ’s have [A b]-small complexity (see for example Chapters 7
and 10 in [10]).

For a subset K ⊆ {1, . . . ,m}, let RK = {rj : j ∈ K} be the set of extreme rays indexed by
K. Let K be the set of K’s such that the cone cone(RK) is simple. Finally consider the set
B =

⋃
k∈KB

K where

BK =

{
x ∈ Zp × Rq : x = v +

∑
j∈K

µjr
j , v ∈ conv{v1, . . . , v`}, µj ∈ [0, 1] ∀j

}
. (6)

Notice that B is a union of the polytopes given by the fibers {ȳ} × {z ∈ Rq : (ȳ, z) ∈ BK}
ranging over all K ∈ K and ȳ ∈ BK |p, where BK |p is the projection of BK to the first p
coordinates. Using the fact that vi’s and rj ’s have [A b]-small complexity and |K| ≤ p + q,
we get that all points in BK |p have [A b]-small complexity. Hence each of these fibers also
has [A b]-small complexity since it is the intersection of two [A b]-small complexity polyhedron{
x ∈ Rp × Rq : x = v +

∑
j∈K µjr

j , v ∈ conv{v1, . . . , v`}, µj ∈ [0, 1] ∀j
}

and {x ∈ Rp × Rq :
x|p = ȳ}. Let {Pi}i be this collection of fibers.

By construction, properties 2, 3 and 4 of the proposition are satisfied, so it suffices to
show property 1. By using distributivity of union and Minkowski sums, notice

⋃
i,K∈K(Pi +

int. cone(RK)) = B +
⋃

K∈K int. cone(RK).
To show P ∩ (Zp × Rq) ⊆ B +

⋃
K∈K int. cone(RK), take a point x ∈ P ∩ (Zp × Rq). We

can write it as x = v + r for v ∈ conv(vi)i and r ∈ cone(rj)j . Using Carathéodory’s Theorem,
we see that there exists K ∈ K such that the simple cone cone(RK) contains r. Then consider
multipliers µj ∈ R+ for j ∈ K such that r =

∑
j∈K µjr

j . Breaking up the multipliers into their
fractional and integer parts, we get that

x = v +
∑
j∈K

(µj − bµjc)rj +
∑
j∈K
bµjcrj .

Clearly the last term belongs to int. cone(RK). Moreover, this term is integer (since the rj ’s are
integer) and x ∈ Zp × Rq, thus the remaining part v +

∑
j∈K(µj − bµjc)rj = x−

∑
j∈Kbµjcrj

belongs to Zp × Rq and hence to B. Thus x ∈ B + int. cone(RK), concluding this part of the
proof.

We now show the reverse direction P ∩(Zp×Rq) ⊇ B+
⋃

K∈K int. cone(RK). It is easy to see
that P ⊇ B+

⋃
K∈K int. cone(RK), since P = conv(vi)i+cone(rj)j and B ⊆ conv(vi)i+cone(rj)j

and int. cone(RK) ⊆ cone(rj)j . Also, B ⊆ Zp × Rq and int. cone(RK) ⊆ Zp+q (again since the
rj ’s are integral), and hence B +

⋃
K∈K int. cone(RK) ⊆ Zp × Rq. This concludes the proof.

�

One way of interpreting this decomposition is the following: Notice that each set int. cone(RK),

for K ∈ K, is linearly isomorphic to Z|K|+ ; this proposition then asserts that we can decompose

any mixed-integer linear set into (overlapping) sets that are affinely isomorphic to some Zn′
+ .

Resorting to the product structure of Zn′
+ will be instrumental in our main proof.

Also, notice that this proposition proves that the decision version of MIP is in NP:

Proposition 5. The decision version of MIP is in NP.
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Indeed, if the decision version of a MIP is true, then one can present a vertex of one of the
polytopes Pi as a certificate.

3 Proof of Theorem 1

We begin this section with some technical lemmas.

Lemma 6 (Normalizing hyperplane). Let C = cone{r1, . . . , rs} ⊆ Rn be a pointed cone. Then
there exists a hyperplane H = {x : f>x = 1} such that:

1. The complexity of f is polynomially bounded by the maximum complexity of ri, for i =
1, . . . , s;

2. If x ∈ C and ||x|| = 1, then f>x ≥ 1
R where R = maxi∈{1,...,s}{||ri||}.

3. C ∩H is bounded.

Proof. Let {rs+1, . . . , rt} be a minimal subset of {e1, . . . , en} with the property that the cone
C ′ = cone{r1, . . . , rs, rs+1, . . . , rt} is full-dimensional. Clearly |{rs+1, . . . , rt}| = n− d, where d
is the dimension of C, and C ′ is pointed. Let f be an extreme point of the following polyhedron:
{w : w>ri ≥ 1 ∀i ∈ {1, . . . , t}} (an extreme point exists since the rank of the matrix defining
the polyhedron is n). Then f satisfies the first and third criteria. Suppose x̂ ∈ C and ‖x̂‖ = 1.
There exists 0 < µ ≤ 1 such that µx̂ belongs to the polytope defined as the convex hull of
{ ri

‖ri‖ : i = 1, . . . , s} (since the maximum norm of any vector in this polytope is 1). Thus there

exist λi, i = 1, . . . , s, with
∑s

i=1 λi = 1 such that f>x̂ ≥ f>(µx̂) =
∑s

i=1 λi
1
||ri||f

>ri ≥ 1
R .

�

Sometimes we will apply Lemma 6 to a pointed cone C, without giving explicitly the set
of rays {r1, . . . , rs}. It is well known (see for example Theorem 10.2 in [10]) that facet and
vertex complexity of a rational polyhedron are polynomially related. Hence there exist vectors
r1, . . . , rs, each of C-small complexity, such that C = cone{r1, . . . , rs}. Hence, in this case,
Lemma 6 implies that there exists a normalizing hyperplane H = {x : f>x = 1} such that:

1. f has C-small complexity;

2. For every nonzero x ∈ C, there exists µ > 0 such that µx ∈ H.

The following lemma outlines a crucial decomposition strategy for searching integer feasible
points.

Lemma 7. Let C be a simple pointed cone such that x>Hx ≥ 0 for every x ∈ C. Let H = {x :
f>x = 1} be the normalizing hyperplane from Lemma 6. Then there exists a finite family of
simple cones Ci, i ∈ I such that

(a)
⋃

i∈I C
i = C,

(b) for every i ∈ I, if a face F of Ci satisfies min{x>Hx : x ∈ F ∩H} = 0, then there exists
an extreme ray v of F with v>Hv = 0,

(c) for every i ∈ I, Ci has {H,C}-small complexity and dimension of Ci is equal to the
dimension of C.

5



Proof. The proof is by induction on the dimension n of the cone. If the cone has dimension
one, then the claim is trivially true.

Since C ∩ H is a compact convex set, by Theorem 3 there exists an optimal solution x̄ of
the problem min{x>Hx : x ∈ C ∩H} that has {H,C,H}-small complexity. As H has C-small
complexity, x̄ has {H,C}-small complexity. If the minimum value is strictly positive, then the
result is trivially true. So we now assume that the minimum value is zero.

Let Fi, i ∈ I be the facets of C that do not contain x̄. By induction, for every i ∈ I, there
exist finitely many simple cones (of dimension n− 1, and with n− 1 extreme rays) Cj

i , j ∈ J(i)
that satisfy (a) and (b) with respect to the n−1 dimensional cone Fi. We show that the family
of cones

{cone{Cj
i ∪ {x̄}} : i ∈ I, j ∈ J(i)} (7)

satisfies (a) and (b). Since for every i ∈ I, the vector x̄ is affinely independent from all the
vectors in Fi, each element of (7) is a simple cone. It is straightforward to verify that (a) holds.
Condition (b) holds by induction for all the faces of Cj

i , i ∈ I, j ∈ J(i), and it holds also for
all the remaining faces of the cones in (7) because they all contain x̄ as an extreme ray.

The above proof of (a) and (b) can be seen as a constructive algorithm that recursively
constructs the simple cones Ci, i ∈ I. In order to show that (c) holds, we just need to prove
that all the n extreme rays of the cones constructed in such way have {H,C}-small complexity.
Note that such extreme rays are either extreme rays of C, in which case have C-small complexity,
or optimal solutions of a problem min{x>Hx : x ∈ F ∩ H}, for a face F of C, in which case
have {H,C}-small complexity. �

Now we are ready to present a proof of Theorem 1.

Proof of Theorem 1. Consider a feasible F = F(H, c, d,A, b) and let Q(x) := xTHxT + cTx+d
denote the quadratic form. Without loss of generality, we assume that the polyhedron C :=
{x : Ax ≤ b} is pointed: If not, consider the partition of the feasible region problem into 2n

pieces as

x ∈ F(H, c, d,A, b)

xi ≥ 0 i ∈ S ⊆ {1, . . . , n}
xi ≤ 0 i ∈ {1, . . . , n} \ S,

for every S ⊆ {1, . . . , n}; note that the complexity of the additional constraints is O(n) and
therefore each part in this partition has F-small complexity, so we can restrict to a non-empty
part.

Notice that an external description of rec(C) can be obtained by an external description of
C by replacing all the right-hand sides with a zero, hence rec(C) has F-small complexity. Using
our assumption that rec(C) is pointed, let H := {x : f>x = 1} be the normalizing hyperplane
from Lemma 6 for rec(C). Examine the optimization problem:

min r>Hr

s.t. r ∈ rec(C) ∩H
(8)

Since rec(C) ∩ H is compact, there exists a global optimal value. We break up into two cases
depending on the sign of the optimal value.
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Case 1: The optimum for (8) is strictly negative. We construct a feasible solution of
F(H, c, d,A, b) as follows. Since rec(C) and H have F-small complexity, Theorem 3 asserts that
there is an optimal solution r∗ for (8) which has F-small complexity. Then let r̃ be an integer
vector with F-small complexity obtained by scaling r∗. Also, by Proposition 5, let x̃ be a point
in the mixed-integer linear set C ∩(Zp × Rq) with F-small complexity.

For every λ ∈ Z+, the point x̃+λr̃ belongs to C ∩(Zp×Rq). Expanding the quadratic form
(and giving names to the different terms):

Q(x̃+ λr̃) = λ2r̃>Hr̃ + λ
(

2x̃>Hr̃ + c>r̃
)

+ c>x̃+ d := λ2v1 + λv2 + v3. (9)

Since v1 < 0, this is a strictly concave polynomial in λ, and so setting λ larger than its larger
root gives Q(x̃+ λr̃) < 0. Explicitly, let

λ̃ = max

{⌈
−v2 −

√
v2

2 − 4v1v3

2v1

⌉
, 0

}
.

Then x̃+ λ̃r̃ is feasible for (2), and moreover it is easy to verify that it has F-small complexity.
This concludes the proof of Case 1.

Case 2: The optimum for (8) is non-negative. Then let {Pi}i and {RK}K∈K be the
decomposition of C ∩(Zp × Rq) from Proposition 4. By the guarantees of this decomposition,
there is ī and K̄ such that (Pī+int. cone(RK̄))∩{x : Q(x) ≤ 0} is non-empty. Since RK̄ is simple
and pointed (since we assume C pointed), we can use Lemma 7 to refine RK̄ into the family
of cones {RK̄,j}j ; again due to its guarantees, let j̄ be such that (Pī + int. cone(RK̄,j̄)) ∩ {x :
Q(x) ≤ 0} is non-empty. We show that this set has a point of F-small complexity. To simplify
the notation, let P := Pī, and enumerate RK̄,j̄ = {rj}j .

Now let F := cone(rj)j . In addition, for an index i, we exclude ray ri to define the face
Fi := cone(rj)j 6=i, and similarly for a set of indices J , let FJ := cone(rj)j /∈J . Finally, we define
the int. cone version of these cones, namely F I := int. cone(rj)j , F

I
i := int. cone(rj)j 6=i and

F I
J := int. cone(rj)j /∈J . So we are interested in the solutions to

Q(x) ≤ 0

x ∈ P + F I .
(10)

We first analyze the behavior of Q over a single direction rj . Any point in P + F I can be
written as xi + µri for xi ∈ P + F I

i and µ ∈ Z+. Define J := {j ∈ {1, . . . , n} : (rj)>Hrj = 0}.
Then Q has linear behavior along the directions ri with i ∈ J : for all xi ∈ P + F I

i and µ ∈ Z+

Q(xi + µri) = µ ·
(

2(xi)>Hri + c>ri
)

+ (xi)>Hxi + c>xi + d ∀i ∈ J. (11)

Hence, if there is i ∈ J and a point xi ∈ P + F I
i such that the first term 2(xi)>Hri + c>ri is

negative, then we can find a large scaling µ such that the point xi + µri satisfies (10); in fact,
we can construct such a point in a way that it is has F-small complexity.

Claim 1. 1 Consider i ∈ J and the linear optimization problem min{2(xi)>Hri + c>ri : xi ∈
P + F I

i }. If the optimum of this problem is negative, then there is a point x̃i ∈ P + F I
i which

has F-small complexity and negative objective value.

7



Proof of claim. To simplify the notation, let obj(x) = 2x>Hri + c>ri denote the objective
function. Let p̃ ∈ argmin{obj(p) : p ∈ P}. Since P has F-small complexity, it follows that p̃
has F-small complexity. Clearly if obj(p̃) < 0, then set x̃i to p̃ as the desired point in P + F I

i ,
concluding the proof. Otherwise, by linearlity of obj and the definition of F I

i there exists some
j 6= i such that 2(rj)THri < 0. Then let η̃j be the smallest non-negative integer satisfying

obj

(
p̃+ rj η̃j

)
≤ −1

η̃j ∈ Z+

Clearly η̃j has F-small complexity and therefore x̃i = p̃ + η̃jr
j is the desired point in P + F I

i ,
concluding the proof. �

Then suppose there is i ∈ J such that min{2(xi)>Hri + c>ri : xi ∈ P + F I
i } is negative.

From Claim 1, let x̃i ∈ P + F I
i have F-small complexity such that ṽ := 2(x̃i)>Hri + c>ri < 0;

notice that ṽ has F-small complexity. Given (11), we set µ = d (x̃i)>Hx̃i+c>x̃i+d
|ṽ| e to get that

x̃i + µri is feasible for the problem (10) and has F-small complexity; this concludes the proof
in this case.

Finally, consider the case where for all i ∈ J we have min{2(xi)>Hri + c>ri : xi ∈ P + F I
i }

non-negative. In this case, problem (10) is feasible if and only if

Q(x) ≤ 0

x ∈ P + F I
J

(12)

is feasible.
First we bound the norm of solutions to the above problem.

Claim 2. 2 There is a rational number v∗ of F-small complexity such that for all x satisfying
(12) we have ‖x‖ ≤ v∗.

Proof of claim. Let H = {x : f>x = 1} be the normalizing hyperplane given by Lemma 6 for
the cone F . Now consider any point of the form p̄+ r̄ ∈ P + F I

J (with p̄ ∈ P and r̄ ∈ F I
J ) such

that Q(p̄+ r̄) ≤ 0; also consider the vector in direction r̄ that belongs to H, namely let r̄ = λr̃
for r̃ ∈ FJ ∩H and λ > 0. We upper bound the norm of p̄+ r̄, starting by bounding λ.

Since F satisfies the conclusion of Lemma 7, and given the definition of J , we have that
r>Hr > 0 for all r ∈ FJ . Let v∗1 = min{r>Hr : r ∈ FJ ∩ H} (notice that FJ ∩ H is compact).
Since FJ ,H and H have F-small complexity, it follows from Theorem 3 that v∗1 also has F-small
complexity. Evaluating Q over p̄+ r̄ we have

Q(p̄+ r̄) = λ2r̃>Hr̃ + λ
(

2r̃>Hp̄+ c>r̃
)

+
(

(p̄)>Hp̄+ c>p̄+ d
)
. (13)

Let v∗2 := min{2r>Hp + c>r : p ∈ P, r ∈ FJ ∩ H} and v∗3 := min{p>Hp + c>p + d : p ∈ P},
so that Q(p̄ + r̄) ≥ λ2v∗1 + λv∗2 + v∗3. Since v∗1 > 0, the polynomial λ2v∗1 + λv∗2 + v∗3 is strictly
convex (as a function of λ), and since Q(p̄+ r̄) ≤ 0, we have that λ cannot be larger than the

largest of its roots; explicitly, λ ≤
⌈
−v∗2±

√
(v∗2)2−4v∗1v

∗
3

2v∗1

⌉
. Moreover, this bound is independent of

our choice of point p̄+ r̄ and is a F-small complexity value.
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We can finally bound the norm of p̄ + r̄. By triangle inequality, ‖p̄ + r̄‖ ≤ ‖p̄‖ + λ‖r̃‖.
Let v∗4 be the ceiling of ||P ||∞. v∗4 has F-small complexity, because it can be obtained as
the ceiling of maxi{|max{(ei)>p : p ∈ P}|, |min{(ei)>p : p ∈ P}|}. Therefore we can bound
‖p̄‖ ≤

√
n · v∗4. Also, since r̃ ∈ H, and by the definition of H (see Lemma 6), we have f>r̃ = 1

and f> r̃
‖r̃‖ ≥

1
maxj ‖rj‖ , which imply ‖r̃‖ ≤ maxj ‖rj‖. Together, these bounds give an upper

bound for ‖p̄+ r̄‖ by a F-small complexity value which is independent of p̄+ r̄; this concludes
the proof. �

Now we show that if (12) has a feasible solution, then it has one of F-small complexity. Let x̄
be a solution for (12) and recall that x̄ ∈ Zp×Rq. By the bound of Claim 2, and using integrality,
we have that the first p components of x̄ have F-small complexity. Then we fix these value and
consider the optimization over the other components min{Q(x) : x ∈ P + F I

J , xi = x̄i ∀i ≤ p}.
Claim 2 implies that this optimization problem has a global optimal solution and therefore
from Theorem 3, we know that this optimization problem has an optimal solution x̃ that has
F-small complexity, and by definition x̃ ∈ P + F I

J and Q(x̃) ≤ Q(x̄) ≤ 0, and hence x̃ is the
desired feasible solution for (12). This concludes the proof. �
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