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Abstract

Motivated by the need to better understand the properties of sparse cutting-planes used in mixed
integer programming solvers, the paper [2] studied the idealized problem of how well a polytope is
approximated by the use of sparse valid inequalities. As an extension to this work, we study the following
“less idealized” questions in this paper: (1) Are there integer programs, such that sparse inequalities do
not approximate the integer hull well even when added to a linear programming relaxation? (2) Are there
polytopes, where the quality of approximation by sparse inequalities cannot be significantly improved
by adding a budgeted number of arbitrary (possibly dense) valid inequalities? (3) Are there polytopes
that are difficult to approximate under every rotation? (4) Are there polytopes that are difficult to
approximate in all directions using sparse inequalities? We answer each of the above questions in the
positive.

1 Introduction

The paper [2] studied how well one can expect to approximate polytopes using valid inequalities that are
sparse. The motivation for this study came from the usage of cutting-planes in integer programming (IP)
solvers. In principle, facet-defining inequalities of the integer hull of a polytope can be dense, i.e. they
can have non-zero coefficients for a high number of variables. In practice, however, most state-of-the-art
IP solvers bias their cutting-plane selection towards the use of sparse inequalities. This is done, in part, to
take advantage of the fact that linear programming solvers can harness sparsity well to obtain significant
speedups.

The paper [2] shows that for polytopes with a polynomial number of vertices, sparse inequalities pro-
duce very good approximations of polytopes. However, when the number of vertices increase, the sparse
inequalities do not provide a good approximation in general; in fact with high probability the quality of ap-
proximation is poor for random 0-1 polytopes with super polynomial number of vertices (see details in [2]).

However the study in [2] is very “idealized” in the context of cutting-planes for IPs, since almost always
some dense cutting-planes are used or one is interested in approximating the integer only only along cer-
tain directions. In this paper, we consider some natural extensions to understand the properties of sparse
inequalities under more “realistic conditions”:

1. All the results in the paper [2] deal with the case when we are attempting to approximate the integer
hull using only sparse inequalities. However, in practice the LP relaxation may have dense inequalities.
Therefore we examine the following question: Are there integer programs, such that sparse inequalities
do not approximate the integer hull well when added to a linear programming relaxation?

2. More generally, we may consider attempting to improve the approximation of a polytope by adding a
few dense inequalities together with sparse inequalities. Therefore we examine the following question:
Are there polytopes, where the quality of approximation by sparse inequalities cannot be significantly
improved by adding polynomial (or even exponential) number of arbitrary valid inequalities?



3. It is clear that the approximations of polytopes using sparse inequalities is not invariant under affine
transformations (in particular rotations). This leaves open the possibility that a clever reformulation
of the polytope of interest may vastly improve the approximation obtained by sparse cuts. Therefore
a basic question in this direction: Are there polytopes that are difficult to approximate under every
rotation?

4. In optimization one is usually concerned with the feasible region in the direction of the objective
function. Therefore we examine the following question: Are there polytopes that are difficult to
approximate in almost all directions using sparse inequalities?

We are able to present examples that answer each of the above questions in the positive. This is perhaps
not surprising: an indication that sparse inequalities do not always approximate integer hulls well even in
the more realistic settings considered in this paper. Understanding when sparse inequalities are effective in
all the above settings is an important research direction.

The rest of the paper is organized as follows. Section 2 collects all required preliminary definitions. In
Section 3 we formally present all the results. In Sections 4-7 we present proofs of the various results.

2 Preliminaries

2.1 Definitions

For a natural number n, let [n] denote the set {1,...,n} and, for non-negative integer k£ < n let ([Z]) denote
the set of all subsets of [n] with k elements. For any z € R, let ||z||; denote the {; norm of x and ||z|| or
||z]|2 denote the Iy norm of x.

An inequality ax < [ is called k-sparse if o has at most k non-zero components. Given a polytope
P C R", P* is defined as the intersection of all k-sparse cuts valid for P (as in [2]), that is, the best
outer-approximation obtained from k-sparse inequalities.

Given two polytopes P,Q C R™ such that P C @ we consider the Hausdorff distance d(P, Q) between
them:

d(P, Q) := maxyeq (mingepl|lz —y||) .

When P,Q C [-1,1]", we have that d(P, Q) is upper bounded by 2/n, the largest distance between two
points in [—1,1]". In this case, if d(P,Q) o /n the error of approximation of P by @ is basically as
large as it can be and smaller d(P, @) (for example constant or of the order of v/logn) will indicate better
approximations.

Given a polytope P C R™ and a vector ¢ € R", we define

k
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namely the “gap” between P* and P in direction c. We first note that d(P, P*) equals the worst directional
gap between P¥ and P (the proof is presented in Appendix A).

Lemma 1. For every polytope P C R™, d(P, P*) = max..||¢=1 gap(c).

For a set D = {12 < B,...,aq1 < Bq} of (possibly dense) valid inequalities for P, let P¥P denote the
outer-approximation obtained by adding all k-sparse cuts and the inequalities from D:

d
PrP = (ﬂ{xeR":aix<bi}> (P (1)
i=1

Since P*P C Pk we have that d(P, P*P) < d(P, P¥) for any set D of valid inequalities for P.



2.2 Important Polytopes
C [0,1]™ defined as

Prn = {x efo,1]": ixi < t} : (2)

Notice that for ¢ = 1 we obtain a simplex and for ¢ = n/2 we obtain half of the hypercube. Moreover different
values to t yield very different properties regarding approximability using sparse inequalities, as discussed
in [2].

Throughout the paper, we will focus our attention on the polytopes P; ,,

Proposition 2. The following hold:

L d(Pry, PE,) = 4 = &=

/2 itk <n/2
2, v2n) = '
d(Pn/Q,n’Pn/Q,n) { 7"2\{65 — g if k> TL/2

We will also consider symmetrized versions of the polytopes P;,. To define this symmetrization, for
x € R" and I C [n] let 2! denote the vector obtained by switching the sign of the components of z not in I:

I _
xr; =

—T; le§éI

More generally, for a set P C R™ we define P! = {xl eR":zx € P} .
Definition 3. For a polytope P C R}, we define its symmetrized version P = conv (U 1Cn] pT ) .

Note that P, is the cross polytope in dimension n; more generally, we have the following external
description of the symmetrized versions of P, ,, and Pt}fn (proof presented in Appendix B).

Lemma 4.
Pin=1x€[-1,1]": VI C [n], sz — Z z; <t (3)
iel iem\I
a5k n [’I’L] + — L.
Pin =<xe[-1,1]": VI€ , VI, I~ partition of I,

k
in—zxiﬁt}~ (4)
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3 Main results

In our first result (Section 4), we point out that in the worst case LP relaxations plus sparse inequalities
provide a very weak approximation of the integer hull.

Theorem 5. For every even integer n there is a polytope @, C [0,1]™ such that:
1. Ppjan = conv(Q, NZ")

2. d(Ppnj2,ns (Pnj2,n)® N Qn) = Q(y/n) for all k < n/2.



In Section 5 we consider the second question: How well does the approximation improve if we allowed a
budgeted number of dense valid inequalities. Notice that for the polytope Pz ,, while Proposition 2 gives
that d(Pg,n,Pgn) > Q(y/n), adding exactly one dense cut (ex <n/2) to the k-sparse closure (even for
k = 1) would yield the original polytope Pz .

We consider instead the symmetrized polytope E Notice that while this polytope needs 2™ dense
inequality to be described ezactly, it could be that a small number of dense inequalities, together with sparse
cuts, is already enough to provide a good approximation; we observe that in higher dimensions valid cuts
for Pz ,, can actually cut off significant portions of [—1,1]™ in multiple orthants. We show, however, that in
this even exponentially many dense inequalities do not improve the approximation significantly.

Theorem 6. Consider an even integer n and the polytope P = Pz ,,. For any k < n/100 and any set D of
valid inequalities for P with |D| < exp (ﬁ), we have

d(P,P*P) > %\/ﬁ.

In the proof of this theorem we use a probabilistic approach to count in how many orthants an inequality
can significantly cut off the box [—1, 1]™.

In Section 6 we consider the question of sparse approximation of a polytope when rotations are allowed.
We show that again P, /5, cannot be approximated using sparse inequalities after any rotation is applied
to it.

Theorem 7. Consider an even integer n and the polytope P = Pz ;. For every rotation R : R" — R" and

k< ﬁ, we have

d(R(P), (R(P))*) = Q(Vn).

The proof of this theorem relies on the intuition given by Theorem 6: since E required exponentially
many dense inequalities in order to be well approximated, no rotation is able to align all of them with the
axis so that they can be captured by sparse inequalities.

Finally, in Section 7 we show that P~ ,, and its k-sparse approximation have a large gap in almost every
direction.

Theorem 8. Let n > 1000 be an integer divisible by 10 and consider the polytope P = P, /19,. If C € R"
is a random direction uniformly distributed on the unit sphere, then for k¥ < {5 we have

Pr (gap’;(C) > ‘/ﬁ) >1-— 14

20 n

To prove this theorem we rely on the concentration of the value of Lipschitz functions on the sphere
(actually we work on the simpler Gaussian space).

4 Strengthening of LP relaxation by sparse inequalities

We now present a short proof of Theorem 5. Consider the polytope

Qn:{xem,u“:Zx%Z e (Z[TJ}

iel
It is straightforward to verify that P, /3, = conv(Q, NZ").

From Part (2) of Proposition 2, P}, = [0,1]" thus Q, NP}y, = Qn. Now z = e belongs to Q,

and its projection onto P,, /5, corresponds to y = %e. Therefore,

Vi = Q).

n—2

A _n—=s
d (7)77,/2,77.7 Prjan N Q”) T on+4

This concludes the proof of the theorem.



5 Strengthening by general dense cuts

Now we turn to the proof of Theorem 6. For that we will need Bernstein’s concentration inequality (stated
in a slightly weaker but more convenient form).

Theorem 9 ([3], Appendix A.2). Let X3, Xo, ..., X, be independent random variables such that E [X;] = 0
and |X;| < M Vi. Let X =1 | X; and 0 = Var(X) < U. Then:

23
Pr(|X| > w) < exp (—min{Z)U,Mu/j[}) .

Notice that to prove the theorem it suffices to consider the case k = 155, which is what we do. Recall that
P =Py, /2., consider any set D of valid inequalities for P with ||D| < exp(gg4z); for convenience let d = |D].
From Lemma 4 we know P* contains all the points in {—1,1}". Also note that for any 7 € {—1,1}" achieves
the maximal distance in P* from P, namely d(P, P*) = d(P,z) = 3+/n. We then consider a random such
“bad” point X, namely X is uniformly distributed in {—1,1}" (equivalently, the X;’s are independent and
uniformly distributed over {—1,1}). We will show that there exist an instantiation of the scaled random %
which belongs to P*P, which will then lower bound the distance d(P, P*P) by d(P, %) = &+/n (for some
Z € {—1,1}") and thus prove the result.

To achieve this, consider a single inequality ax < b from D (we assume without loss of generality that
lall; = 1). We claim that with probability more than 1 — %, the point 2% satisfies this inequality. By
symmetry of X, we can assume without loss of generality that a > 0. To prove this, let a be the vector
obtained by keeping the k largest components of a and zeroing out the other components (ties are broken

arbitrarily), and let @ = a — a@. Since @z < b is a k-sparse valid inequality for P and X € P*, we have that
aX =aX +aX <b+aX. (5)
Claim 10. Var(aX) < W.
Proof. Since Var(X;) =1 for all ¢ € [n], we obtain that
Var(aX) =371, af Var(X;) = |lal]*. (6)

Note that the kth largest component of a is at most 1/k (otherwise [|all; > 1), hence ¢;X; < 1 for all i, so
we have

lalP =Y @ X0 < £ Y a.xe (7

Loyl (8)
=t i=1
Now by using (6)-(8), we obtain the bound Var(aX) < b(T;c;k), thus concluding the proof. o

Now using the fact that |a,X;| < +, E(aX) = 0 and the above bound on Var(aX), we obtain by an

ko
application of Bernstein’s inequality (Theorem 9) with w = 300 Vi;%d:

Viogd . [30%-k-logd 30
P X > . < — T e T .3h- 4kl .
r (a > 300 T < exp min =k 1 3b klogd (9)




To upper bound the right-hand side of this expression, first we employ our assumption d < exp(gg5z) and

k = {55 to obtain

3-99 -k
Viegd < — =—|— | Vk.
8 _600f_30 V"= 3 ( k )f

With this at hand, we have that the minimum in the right-hand side of (9) is achieved in the first term.
Moreover, notice that b > 1/2: the point p = (3,...,3) belongs to P and hence b > ap = ilall; = 1/2.
Putting these observations together gives

Pr <aX > 30b - 1ogd> < exp (
vk

Then using (5) and the above inequality, we obtain that with probability more than 1 — % we have

- d
i)

Vlogd 3
b{1+ =-600 <b=
( +2 Jn )=

where the first equality uses k = 155 and the second inequality uses the assumption that Viogd < ﬁ\/ﬁ.
Now note that (10) implies that the point % satisfies ax < b with probability more than 1 — é.
Since |D| = d, we can then take a union bound over the above argument to get that with strictly positive
probability % satisfies all the inequalities in D. Hence with strictly positive probability % belongs to P*P
and in particular there is a point T € {—1,1}" such that 2% € p+D,
This gives the lower bound d(P, P*P) > d (P —"L); now we lower bound the right-hand side. It is easy
to see that the closest point in P to 2z/3 is T/2, the projection onto P. Since |[2z/3 — Z/2|| = }||Z||, we

obtain that d(P,Z) > #/n which concludes the proof.

302
1.99 > < exp(—logd) = -

aX < b<1+30

(10)

6 Sparse approximation of rotations of a polytope

In this section we prove Theorem 7; for that we need to recall some standard definitions from convex
geometry.

Definition 11. Given a set P C R":
o We say that P is centrally symmetric if Vo € P: —x € P.
e For any o € R we define the set aP := {ax : x € P}.
e The polar of P is the set P° = {z € R": za < 1 Vz € P}.

We also need the following classical result about approximating convex set by polytopes with few vertices
(see for instance Lemma 4.10 of [1] and [6])

Theorem 12. For every centrally symmetric convex set S C R¥, there is a polytope S” with at most (2)*
vertices such that S C S’ C (1+¢€)S

By applying this result to the polar we obtain approximations with bounded number of facets instead of
vertices.

Lemma 13. For every centrally symmetric conver set C C R¥, there is a polytope C’ with at most (%)’C

facets such that C C C" C (1+¢€)C.



Proof. Consider the (centrally symmetric) convex set 1; C°; applying the above result, we get S with (3/¢)"

vertices and %JFECO C S C C°. Taking polars (and noticing that (AA)° = (1/A)A°), we get C C S° C (1+¢€)C
and S° has at most (3/¢€)* facets. This concludes the proof. O

The key ideas used in our proof of Theorem 6 is twofold (recall that P =P, /3 ,):

1. Roughly speaking, (RP)" is the intersection of (rotations of) k-dimensional polytopes. This allow us
to use Lemma 13 above (with n set to k) to get a good approximation H of (RP)* using fewer than
exp(gggz) inequalities.

2. Then argue that d(RP, (RP)*) ~ d(RP, H) = Q(y/n) since d(P, R"'(H)) = Q(y/n) due to the number
of facets of H and Theorem 6.

Proof of Theorem 7. Note that it is sufficient to prove the result for k¥ = 555, which is what we do. To
make the above ideas precise, observe that (RP)* = ﬂKe([n]) Qx, where Qx = RP + 0K x RE (we use
k

K := [n]\ K). To approximate each Q, using Lemma 13, let hr C R* be a polytope such that proj,Qr C
hx C (1+€)projxQr and hx has at most (3/€)* facets. Let Hy, = hx+05 xR then Qr € Hy C (1+€)Qx
and Hy has at most (3/¢)* facets.

Now notice that for convex sets A, B, we have ((1+€)A)N((1+¢€)B) C (14 €)(AN B). This gives that
if we look at the intersection mKe([,T;]) Hy, we obtain

(RP*= () QxS () HcC(O+e [ @k
re() o xe(y) Ke ()

= (1+€)(RP)". (11)

Notice ﬂKe([';;]) Hy has at most (Z) (%)k < (%)k (g)k _ (%)k facets. Thus, setting ¢ = % we get

3en k
ke*

(30 - e - 200%) 707

= (exp(log(30-e- 2003)))ﬁ

— (exp <log(30 e -200%) - Wﬁ)g))

< exp (6(;112) . (12)

Then define H := ﬂKe([n]) Hy, so that (RP)* C H C (1 + ¢)(RP)*.
k

In order to control the relationship between this multiplicative approximation and the distance d(.,.), we
introduce the set C = R([—1,1]™). Notice that by construction RP C HNC.

Claim 14. d(RP,HNC) > $/n

Proof. Assume by contradiction that d(RP,H N C) < %\/ﬁ Then since distances between points and
number of facets of a polytope are invariant under rotation, we obtain that d(P, R"*(HNC)) < é\/ﬁ where
R™Y(H N Q) is defined using at most exp(n/(600)?) inequalities (because C has 2n facets, using (12) H has
at most exp(n/(601)?) and for sufficiently large n, exp(n/(601)?) + 2n < exp(n/(600)?)). However notice
that this contradicts the result of Theorem 6, since k = % < 105 and R™Y(HNC) is defined using at most
gn/(600)* inequalities. o

But from (11) we have (1 + ¢)(RP)* N C contains H N C, and hence

d(RP,(1+ &) (RP)* N C) > %\/ﬁ. (13)



Claim 15. d(RP,(RP)* N C) > d(RP,(1+ ¢)(RP)* N C) — ey/n

Proof. Take T € (1+¢€)(RP)*NC and § € RP that achieve d(z,7) = d((1 +¢€)(RP)* N C’ RP) Look at the
point -—7 and notice it belongs to (RP)* N C; let § be the point in RP closest to 73-7. Then since ¥ is
the pomt in RP closest to ,

d(RP,(1+4 €)(RP)*NC) = d(z,7) < d(Z,7).

By triangle inequality, d(z,9) < d(H_Fx 7) + d(1+e$ z) < d(RP,(RP)* N C) + (1i€£ Z). To bound
d(1+ z,7), 7 |1Z[|; since Z belongs to C, we can upper bound [|Z|| < \/n (this is why

we introduced the set C' in the argument). Putting these bounds together we obtain the result. o

Using (13) and Claim 2 we obtain that d(RP, (RP)*) > d(RP,(RP)*NC) > d(RP, (1 +¢)(RP)*NC) —
ey/n > (§ — 15)v/n. This concludes the proof of the theorem. O

7 Lower bounds on approximation along most directions

We now prove Theorem 8. The main tool we use in this section is concentration of Lipschitz functions on
Gaussian spaces.

Theorem 16 (Inequality (1.6) of [4]). Let G1,Gs,...,G, be independent standard Gaussian random vari-
ables, and let f : R™ — R be an L-Lipschitz function, namely for all 2,2’ € R™, |f(x) — f(z')] < L- |z —2'|.
Then letting Z = f(G1,Ga,...,Gy), for t > 0 we have

2
Pr(1Z —E(Z)| > 1) < 2exp (—;L)

To prove Theorem 8, recall that P = P, /10,. Let G = (G1,Go,.. .,G ) be a random vector whose
components are independent standard Gaussians. It is well-known that HGH is uniformly distributed in

the sphere (see for instance [4], page 55). Notice that gap’(-) is positive homogeneous, so gap’ (I%H) =
et - 9P (G).

Our first step is to lower bound gap%(G) with high probability, starting by lower bounding the maxi-
mization of G over P*.

Claim 17. With probability at least 1 — =, max,cpr Gz > 0.7n.
Proof. Since k = {5, we have that P* = [ 1,1]" (Proposition 4). It then follows that
Gz = G| 14
max Gz Z Gil (14)

The random variables |G;| have folded normal distribution [5], for which is known that E[|G;|] = /2/7 >
0.79. Since the function (z1,...,2,) — > ., |@;| is y/n-Lipschitz, we can use Theorem 16 to obtain the

bound
= 0.09%n 1
P <07 <2 - <z,
r<;|G< n) exp( 5 >n
where the last inequality holds if n > 1000. Equation (14) then concludes the proof. o

Next we upper bound the maximization of G over P.

Claim 18. With probability at least 1 — %, max;cp Gr < 0.6n.



Proof. Letting ext(P) denote the set of extreme points of P, notice that max,cp G = max,ceq(p) Gv, S0
it suffices to upper bound the latter. Also notice that the extreme points of P are exactly the points in
{=1,0,1}" with at most {5 non-zero entries (Proposition 4).

Consider v € ext(P); we verify that Gv < 0.6n with probability at least 1 — 2e=°5". One way of seeing
this, is by noticing that since v has at most {5 non-zero entries, Gv = Zi:m:l G; + Zi:vi:—l —G; is a
function of G that has at most {; terms and is \/%-Lipschitz, so Theorem 16 gives

Pr(Gv > 0.6n) = Pr(Gv — E[Gv] > 0.6n) < 2¢7%-6", (15)

and the result follows. (Another way to see this is to use that fact that Gv is a centered Gaussian with

variance at most 75 and use a tail bound for the latter.)

Now notice that P has ZZ%O (M2t < 1"—0(”/"10) 2"/10 extreme points. Since (7) < (%) for all 0 < ¢ < n,
the number of extreme points of P can be upper bounded by

n n 2
In (15) + 15 (n10e +1n2) ) < Ze0"
exp(n 10 +1O(n Oe 4 In2) < e
where the last inequality uses n > 30.

Then taking a union bound of (15) over all extreme points of P gives that with probability at least 1 — %
for all v € ext(P) we have Gv < 0.6n. This concludes the proof. o

Finally, standard results give that ||G||2 < 2y/n with probability at least 1 — 2e~%-5" (for instance, notice
by Jensen’s inequality E[||G]|]? < E[||G||?] = n and apply Theorem 16 to ||G||). Using the fact n > 30, we then
get Pr(||G|| < 2y/n) > 1— L. Then taking a union bound over this event and the events max, ¢ px Gz > 0.7n

and max,cp Gr < 0.6n gives that with probability at least 1 — % we have gapk, (ﬁ) = HTl:H -gaph (G) > ‘2/—67.

This concludes the proof of Theorem 8.
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Appendix A

Proof of Lemma 1. Tt is not difficult to see that for P*¥ = P, the lemma holds, since d(P, P*) = gapk(c) =
0 Ve : |le|]| = 1. When, P¥ # P, we have that d(P, P*) = d(z°,4°) > 0 is attained at 2° € ext(P*) and
y? € P, the orthogonal projection of z° onto P (see [2]). Thus, y° € F = {zx € R":az = b} N P, a face
of P such that a = (2% —4°), b = (2% — y°)y® and P C {z € R" : a2 < b}. Let ¢ = (2 — %) /||2° — 4°||,
we have: max,ecpcr = cy®. On the other hand, max,cpr cz = ca®, since otherwise, if 37 € P* with
ct > cx¥, let 3 denote the orthogonal projection of Z onto {z € R" : az = b}. Then, for all z € P we
have d(z,z) > d(z,y) > d(2°,4°) (the last inequality follows from the fact that ¢z > cx®, c¢j = cy® and

Z —g/||z — g|| = ¢), a contradiction. So, we obtain

d(P,P*) = [|2° — °|| = c(2” — ¢°)

&
= max ¢z — max cx = gap(c).
we Pk zeP p(c)

Now, assume by contradiction that 3¢’ s.t. gap’h(c’) > gapk(c) and ||c/|| = 1. Let 2’ € P*,y’ € P denote
the points at which gap’(c) is attained. Using the definition of d(P, P¥) and the relation between ¢ and ¢/

G
d(P,P*) > ||z' — /|| = (@' -9
[E
= jnax c(z' —y) = —y)
c:||c||=1
= gapp(c b(c) =d(p,P*
gapP(c ) > gapP(C) ( ) )’
a contradiction. Thus, we must have d(P, P¥) = maxe,||e||=1 gap,(c). O

Appendix B

A polytope P C R”} is called down-monotone if whenever z € P and 0 < y < x, we have y € P. We begin
with some preliminary results about the symmetrization we employ.

Lemma 19. For a down-monotone polytope P C R’} we have P= UIg[n] Pl

Proof. 1t is sufficient to prove that the set Ulg[n] P! is convex. For that, consider y',y? € UIg[n] P by
definition, let x',22 € P be such that there are sets Iy, I giving (z!)"* = y! and (2?)/2 = y2. For any
A € [0, 1], consider y = A\y* + (1 — \)y?; we show y € Urcm P

By construction we have:

Al +(1—=Na2? iel'nI?
- Arp — (1= N)a? e I'\I?
Yi —Azl 4 (1= Na? ieI2\I!
Az} — (1= XN)a? i€ n]\I['UI?

Now, let I = {i € [n] : y; > 0}. Then define x := y’, which is nonnegative by construction. By non-negativity
of the z%’s, we have [A\z} — (1 — N)2?| < Az} + (1 — N)2? and | — Az} + (1 — N)z?| < Az} + (1 — M)z, thus
x < 2!+ (1 —\)a? € P. Since P is down-monotone, we have that = belongs to P. Since y = !, this gives
that y belongs to Ulgn] P concluding the proof. O

Lemma 20. For a down-monotone polytope P C R’} we have (P)¥ = Pk,

Proof. We break the proof into a couple of claims.

Claim 21. (P)*NR} = P* = PFNR".
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Proof. For the first equality, notice that since P D PF* it suffices to prove (P)* N R} C P*. For any
z€ (PPNRY and I C ([Z]), there exists y € P such that y|; = x|;. Moreover, using the fact that = > 0
and the symmetry in the definition of P, there is one such y which is non-negative, and hence y € P. But
again using z|; = y|;, we get that x € Pk,

For the second equality, since P is down-monotone we have that P* is down monotone. Therefore, from
Lemma 19 Pk = ch[n](Pk)I7 which implies P* N R = P*. o

Claim 22. Consider z € (P)* and let y = z! for some I C [n]. Then y € (P)*.

Proof. First note that it is straight forward to verify that if ax < b is a valid inequality for P, then for every
I C [n] the inequality a’x < b is also a valid inequality for P. Then the point y must belong to (P)*, since
otherwise y would be separated by some k-sparse cut ax < b and so z would be separated by the k-sparse
cut alz < b. o

Now we conclude the proof of the lemma. For the direction (P)* C P*, let z € (P)* and let I =
{i€n]:z >0} and z = 2’. Then using Claim 22 we get z € (P)* NR%. Thus by Claim 21 we have
x € P* and hence z € ﬁ, concluding this part of the proof. For the direction Pk C (P)k, let z € PE. Let
I={ien]:z >0}and z = z'. The point = € P*N R%. Thus, by Claim 21 we have that z € (P)* N R".
However, by Claim 22 we have that z € (P)¥. This concludes the proof. O

The next result together with Lemma 20 implies Lemma 4.

Proposition 23. Consider non-negative vectors a',...,a™ € R” and define the polyhedron P = {z €
R” |a‘z < b; Vi € [m]}. Then P = {z|(a')!z < b; VI C [n], Vi€ [m]}.

Proof. (P C {z|(a*)!x < b; VI C [n], Vi € [m]}) Consider 2 € P and define I = {i € [n] : 2; > 0}. Then
2zl € PNR?Y and thus 2! € P (from Lemma 19). Now observe that (a’)’z = a;z' < b; where the last
inequality follows from that fact that z/ € P. This concludes this part of the proof.

({z|(@))fx < b; VI C [n], Vi € [m]} € P) Consider z € {z|(a’)fx < b; VI C [n], Vi € [m]}. Let
I ={i€[n]:z >0}. Then observe that a;2" = (a’)’z < b; for all i € [m] and 2’ € R?. Thus, 2/ € P or

equivalently, z € P. This concludes the proof. O
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