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Abstract Recently Andersen et al. [1], Borozan and Cornuéjols [6] and
Cornuéjols and Margot [10] have characterized the extreme valid inequali-
ties of a mixed integer set consisting of two equations with two free integer
variables and non-negative continuous variables. These inequalities are either
split cuts or intersection cuts derived using maximal lattice-free convex sets.
In order to use these inequalities to obtain cuts from two rows of a general
simplex tableau, one approach is to extend the system to include all possible
non-negative integer variables (giving the two row mixed-integer infinite-
group problem), and to develop lifting functions giving the coefficients of the
integer variables in the corresponding inequalities. In this paper, we study
the characteristics of these lifting functions.

We show that there exists a unique lifting function that yields extreme
inequalities when starting from a maximal lattice-free triangle with mul-
tiple integer points in the relative interior of one of its sides, or a maximal
lattice-free triangle with integral vertices and one integer point in the relative
interior of each side. In the other cases (maximal lattice-free triangles with
one integer point in the relative interior of each side and non-integral ver-
tices, and maximal lattice-free quadrilaterals), non-unique lifting functions
may yield distinct extreme inequalities. For the latter family of triangles, we
present sufficient conditions to yield an extreme inequality for the two row
mixed-integer infinite-group problem.
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1 Introduction

Research in the area of general-purpose cutting planes for mixed-integer pro-
grams (MIP) has received much attention recently. Despite some theoretical
breakthroughs, two of the most effective classes of cutting planes remain the
Gomory mixed-integer cuts (GMIC) (Gomory [18]) and the mixed-integer
rounding (MIR) inequalities (Nemhauser and Wolsey [29]). While these cuts
along with the split cuts (Cook, Kannan and Schrijver [7]) have been proven
to be equivalent (see Cornuéjols and Li [8]), their original derivations dif-
fer significantly. The GMI cuts are facet-defining inequalities of the group
relaxation of MIPs, the split cuts are based on the theory of disjunctive
programming (Balas [4]) and the MIR inequalities are based on a simple
mixed-integer set (Nemhauser and Wolsey [29]). In this paper we pursue the
group relaxation approach. The GMIC and valid inequalities based on sin-
gle row mixed-integer group relaxations have been studied both theoretically
and computationally, whereas understanding of valid inequalities from two
and multiple rows is at an early stage. Our goal is to generate valid inequal-
ities from any two rows of an optimal simplex tableau, that are strong in a
well-defined sense and that have similar properties to the GMIC.

Below we briefly discuss earlier work and the motivation for the group-
relaxation approach that is taken in this paper. Group cutting planes based
on relaxations of a single row of a mixed-integer program, of which GMIC is a
special case, were presented by Gomory [19] and Gomory and Johnson [20,21]
in the 70’s, and more recently in Gomory, Johnson, and Evans [23], Gomory
and Johnson [22], Aráoz et al. [2], Miller, Li and Richard [27], Richard, Li, and
Miller [30] and Dash and Günlük [12]. This has led to computational work
to test whether other inequalities based on single row group relaxation are
effective computationally; see Cornúejols, Li and Vandenbussche [9], Fischetti
and Saturni [17] and Dash and Günlük [11]. In general the results have been
disappointing and the GMIC seems to be the most effective single row mixed-
integer group inequality. One possible explanation for this is the fact that
the GMIC has the strongest coefficients for the continuous variables among
all single row group inequalities.

In Johnson [24] multiple row group inequalities were studied and in Go-
mory and Johnson [22] the potential advantages of valid inequalities based on
multiple constraints were discussed. In particular, one weakness of the single
row inequalities is that the continuous variables are modeled by aggregating
them into two continuous variables, based on the signs of the coefficients.
Group cuts based on multiple rows overcome this limitation and can more
accurately represent the structure of the columns corresponding to contin-
uous variables. Some extreme inequalities for two row mixed-integer group
problems are presented in Dey and Richard [14,13].
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A slightly different viewpoint has been taken recently by Andersen et
al. [1], Borozan and Cornuéjols [6] and Cornuéjols and Margot [10]. See also
Johnson [25] for related results. They have analyzed a system of two rows
with two free integer variables and non-negative continuous variables. They
show that extreme inequalities of the system

f +
∑

w∈Q2 wy(w) ∈ Z2, (1)

y(w) ≥ 0 ∀w ∈ Q2, y has finite support, f ∈ Q2 \ Z2

are either split cuts or intersection cuts (Balas [3]) that can be derived using
maximal lattice-free convex sets.

Our approach builds on this work. Given that the GMIC is one of the
most effective single row group inequalities and has the strongest coefficients
on the continuous variables, we attempt to keep similar properties when
generating inequalities from two rows. Thus we view the construction of the
GMIC in the following way:

1. Starting from a simplex tableau of a MIP, create a single-row mixed-
integer group relaxation.

2. Fix the non-negative integer variables of the mixed-integer group relax-
ation to zero and generate an extreme (facet-defining) inequality with
respect to the continuous variables.

3. Lift the non-negative integer variables to obtain an inequality that is ex-
treme for the one-row mixed-integer infinite-group problem (see Nemhauser
and Wolsey [28] for an overview on lifting).

We apply the same approach to the two row case. The recent results in
[1,6,10] cited above tell us how to approach step 2. Our contribution is to
accomplish the two row counterpart of step 3, i.e., to lift integer variables into
the extreme inequalities for (1) in order to obtain new extreme inequalities
for the two row mixed-integer infinite-group problem. The new inequalities
derived in this way may thus be considered as the two row counterparts to
the GMIC; they are both extreme inequalities for the mixed-integer infinite-
group problem and have strong coefficients for the continuous variables. An
extended abstract of some of the results in this paper is presented in Dey
and Wolsey [15].

The rest of the paper is organized as follows. In Section 2, we present some
preliminaries about the mixed-integer infinite-group problem, the continuous
infinite-group problem, and a classification of maximal lattice-free convex sets
in R2. We present the principal results of this paper in Section 3, ending with
a description of a scheme to generate cutting planes based on two rows of a
simplex tableau. Sections 4 - 7 present the proofs of the results presented in
Section 3. Some directions of future research are discussed in Section 8.

2 Mixed-integer Group Relaxations, Valid Inequalities, and
Lattice-free Convex Sets

Here we motivate and derive the mixed-integer group relaxations. We discuss
valid inequalities for such sets and different measures of the strength of valid
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inequalities for such sets along with recent results linking valid inequalities
and lattice-free convex sets. We present a classification of such sets in two
dimensions - the case that is relevant for the rest of the paper. We terminate
the section with a more formal description of the problem considered in this
paper.

2.1 Mixed-integer Infinite Group Relaxations

Given a mixed-integer program and an associated basis representation in
which the basic variables are constrained to be integer, one may wish to
study the set XMIP of feasible solutions of the form,

xBu
+

∑n
j=1 aj

uxj +
∑p

j=1 gj
uyj = a0

u u ∈ {1, ...,m}
xB ∈ Zm

+ , x ∈ Zn
+, y ∈ Rp

+.

A first so-called group relaxation is obtained by dropping the non-negativity
constraints on xBu (and possibly aggregating variables that have the same
columns). The resulting set XMIP

1 can be written as
∑n

j=1 P(aj)xj + P(
∑p

j=1 gjyj) ≡ P(a0)

x ∈ Zn
+, y ∈ Rp

+,

where P(u) denotes u(mod 1̄), i.e., (P(u))i = ui(mod 1) for i ∈ {1, ..., m} and
≡ denotes equivalence (mod 1̄).

A second relaxation is obtained by the addition of more variables corre-
sponding to all other possible columns. The resulting relaxation is known as
the mixed-integer infinite group problem.

Specifically, let Im = {(u1, u2, ..., um) | 0 ≤ ui < 1, ∀i ∈ {1, ...,m}} (ad-
dition for elements in Im is defined as modulo 1 componentwise), U be a
subgroup of Im containing P(aj) ∀j ∈ {1, ..., n}, and W be a subset of Rm

containing gj ∀j ∈ {1, ..., p}. Since it is typically clear from context, we use
the symbols + and − to denote addition and subtraction respectively in both
Rm and Im. We will also use the symbol = in place of the symbol ≡ (mod 1̄)
for equations involving elements of Im.

Definition 1 ([21],[24]) Let U be a subgroup of Im and W be any subset
of Rm. Then the mixed-integer infinite-group problem, denoted MI(U,W, r),
is defined as the set of pairs of functions x : U → Z+ and y : W → R+ that
satisfy

1.
∑

u∈U ux(u) + P(
∑

w∈W wy(w)) = r, r ∈ Im \ {0̄},
2. x and y have finite support. ¤
The key observation connecting MI(Im,Rm, r) to (1) is the following: If
all the x(u)’s are fixed to zero in MI(Im,Rm, r), then the resulting set
MI({0̄},Rm, r):

P(
∑

w∈Rm

wy(w)) = r, r ∈ Im \ {0̄}

y(w) ∈ R+, y has a finite support
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(known as the continuous infinite group relaxation1) is essentially the set
presented in (1) with r = −P(f)2 and m = 2.

Our principal goal is to find strong valid inequalities for the mixed-integer
infinite group relaxation.

Definition 2 ([21],[24]) A valid inequality for MI(U,W, r) is defined as a
pair of functions, φ : U → R+ and µφ : W → R+, such that

∑
u∈U φ(u)x(u)+∑

w∈W µφ(w)y(w) ≥ 1, ∀(x, y) ∈ MI(U,W, r), where φ(0̄) = 0. ¤

Since valid inequalities for the group problem are functions defined over sub-
sets of Im and Rm, we will use the terms valid inequality and valid function
interchangeably.

The interest of MI(U,W, r) is that any valid inequality (φ, µφ) provides
a valid inequality for the finite group relaxation XMIP

1 . Thus the inequality

n∑

j=1

φ(P(aj))xj +
p∑

j=1

µφ(gj)yj ≥ 1, (2)

is valid for XMIP
1 and every valid inequality for XMIP

1 can be obtained in
this way.

To obtain strong valid inequalities/functions, two important properties
are now defined.

Definition 3 ([21],[24]) A valid function (φ, π) is minimal for MI(U,W, r)
if there do not exist valid functions (φ∗, π∗) for MI(U,W, r) different from
(φ, π) such that φ∗(u) ≤ φ(u) ∀u ∈ U and π∗(w) ≤ π(w) ∀w ∈ W . ¤

Definition 4 ([21],[24]) A valid function (φ, π) is extreme for MI(U,W, r)
if there do not exist valid functions (φ1, π1) and (φ2, π2) for MI(U,W, r) such
that (φ1, π1) 6= (φ2, π2) and (φ, π) = 1

2 (φ1, π1) + 1
2 (φ2, π2). ¤

Minimality of inequalities for finite and infinite variable sets are simi-
lar. Extreme inequalities correspond to facet-defining inequalities for finite
(full-dimensional) sets. A third important property of valid functions is sub-
additivity that will be defined later. Our goal will be to find extreme valid
inequalities for MI(I2,R2, r) and we will regularly use the important prop-
erty (Gomory and Johnson [20]) that all extreme inequalities are minimal
and all minimal inequalities are subadditive.

1 Some authors have used the term continuous group problem to imply the
infinite-group problem, as the underlying group is a ‘continuous’ set. However, we
use the term to imply the problem whose variables are all non-negative continuous
(except for the free integer variables of the group problem).

2 Note here that columns corresponding to the continuous variables are assumed
to be rational in (1). However, we will assume that W = R2 which allows the use
of results from Johnson [24]. This is only a minor technical assumption as we will
show that results obtained using only rational columns for (1) apply to the case
when columns are irrationals.



6 Santanu S. Dey, Laurence A. Wolsey

2.2 Continuous Infinite Group Problems and Lattice-Free Convex Sets

From now on we consider only the cases in which m = 1 and m = 2. Minimal
(and extreme) valid functions for MI({0̄},R2, r) have been studied by several
researchers. We begin with the definition of a maximal lattice-free convex
set, that is the key component in the description of minimal inequalities for
MI({0̄},R2, r).

Definition 5 ([26]) A set S is called a maximal lattice-free convex set in
R2 if it is convex,

1. interior(S) ∩ Z2 = ∅, and
2. There exists no convex set S′ satisfying (1.) with S ( S′. ¤
We state the following theorem, modified from Borozan and Cornuéjols [6];
see also Theorem 1 in Andersen et al. [1].

Theorem 1 ([6]) An inequality of the form
∑

w∈Q2 π̃(w)y(w) ≥ 1 is mini-
mal for (1) if the closure of

P (π̃) = {w ∈ Q2|π̃(w − f) ≤ 1} (3)

in R2 is a maximal lattice-free convex set. Moreover, given a maximal lattice-
free convex set P such that f ∈ interior(P ), the function π̃ : Q2 → R+ defined
as

π̃(w) =
{

0 if w ∈ recession cone of P
λ if f + 1

λw ∈ boundary(P ) (4)

is a minimal valid inequality for (1). ¤
It is possible to analyze the case when f ∈ boundary(P (π)). However, in this
paper we focus on the case when f ∈ interior(P (π)).

It can be verified that if a function π̃ : Q2 → R+ corresponding to a max-
imal lattice-free set P is minimal (extreme resp.) for (1) and f ∈ interior(P ),
then π : R2 → R+ defined as

π(w) =
{

0 if w ∈ recession cone of P
λ if f + 1

λw ∈ boundary(P ) (5)

is minimal (extreme resp.) for MI({0̄},R2, r). This is a technical verification
and we relegate the proof to Appendix 1. (Note that since f is rational in (1),
we assume that r (i.e., P(−f)) is rational in the rest of the paper.) For any
minimal valid function π, we denote the corresponding lattice-free maximal
set by P (π).

Next we present a classification of maximal lattice-free convex sets. The
classification is from Lovász [26], Andersen et al. [1], Dey and Wolsey [16],
and Cornuéjols and Margot [10].

Proposition 1 (Classification) Let P be a maximal lattice-free convex set
with a non-empty interior in R2. Then P is any one of the following:

1. (Split Set) The set {(x1, x2) ∈ R2 | b ≤ a1x1 + a2x2 ≤ b + 1} where
a1, a2, b ∈ Z and a1, a2 are coprime.
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2. A maximal lattice-free triangle in R2. In this case exactly one of the fol-
lowing is true:
(a) (Type 1 triangle) All the vertices are integral and each side contains

exactly one integer point in its relative interior.
(b) (Type 2 triangle) One side of P contains more than one integer point

in its relative interior.
(c) (Type 3 triangle) The vertices are non-integral and each side contains

exactly one integer point in its relative interior.
3. A lattice-free quadrilateral and each of its sides contains exactly one in-

teger point in its relative interior. ¤

2.3 Problem Description: Extreme Inequalities for MI({0̄},R2, r) and
MI(I2,R2, r)

As noted in the introduction, the approach we take is motivated by the
one row case. To make this more precise, we consider an example from the
one row case. Figure 1 shows two extreme inequalities for MI(I1,R1, 0.5).
The pair of functions (φ1, π1), plotted in bold, was shown to be extreme for
MI(I1,R1, 0.5) in Gomory and Johnson [22]. The functions (φGMIC , πGMIC)
plotted in dashed lines correspond to the GMIC which is also extreme for
MI(I1,R1, 0.5). Therefore, from the perspective of the mixed-integer prob-
lem, both inequalities are strong. However, if we just compare the functions π1

and πGMIC , we observe that πGMIC dominates π1. Therefore, while πGMIC

is extreme for MI({0̄},R1, 0.5), π1 is not even minimal for MI({0̄},R1, 0.5).
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Fig. 1 Extreme functions for MI(I1,R1, 0.5)
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As GMIC is known to be an effective single row general cut, this suggests
trying to mimic the above property in the construction of inequalities for two
row group problems.

Thus the approach below for the two row case is to take extreme inequali-
ties for MI({0̄},R2, r) and lift them into strong and potentially minimal and
extreme inequalities for MI(I2,R2, r).

3 The Principal Results

From now on we will assume that π : R2 → R+ is a minimal valid inequality
for MI({0̄},R2, r) corresponding to a maximal lattice-free convex set. Given
π, there is a natural candidate for an approximate lifting function.

Proposition 2 (Trivial Fill-in Function) Let π : R2 → R+ be a minimal
function for MI({0̄},R2, r) corresponding to a maximal lattice-free convex
set P (π) and let φ0̄ : I2 → R+, the trivial fill-in function, be defined as

φ0̄(u) = inf{π(w) |P(w) = u,w ∈ R2}. (6)

Then (φ0̄, π) is a valid function for MI(I2,R2, r). ¤
Using a characterization of minimal inequalities for mixed-integer group

problems from Gomory and Johnson [20] and Johnson [24], it can be veri-
fied that the valid function (φ0̄, π) is minimal if and only if φ0̄ satisfies the
following property: φ0̄(u) + φ0̄(r − u) = 1 ∀u ∈ I2. Therefore, ‘in theory’ to
verify that the trivial fill-in function is minimal we need to evaluate whether

infn1,n2∈Z2{π(u + n1) + π(r − u + n2)} = 1, (7)

for every u ∈ I2. We design a simpler test of minimality for the trivial fill-in
function. We define a set D(π) such that D(π) + {f} ⊆ P (π) (see Definition
6) and prove the following result in Section 4.

Theorem 2 (φ0̄, π) is a minimal inequality for MI(I2,R2, r) if and only if
P(D(π)) := {P(u) |u ∈ D(π)} = I2. Moreover if (φ0̄, π) is minimal, then it
is the unique minimal function for MI(I2,R2, r), i.e., if (φ0̄, π) and (φ′, π)
are minimal for MI(I2,R2, r), then φ′ = φ0̄. ¤
The set D(π)+ {f} consists of points w ∈ P (π) such that φ0̄(P(w))+φ0̄(r−
P(w)) = 1. Therefore, the main burden of the proof of Theorem 2 lies in
the reverse direction, i.e., to show that if P(w) /∈ P(D(π)), then φ0̄(P(w)) +
φ0̄(r − P(w)) > 1. Theorem 2 leads to the following corollary.

Corollary 1 If π is extreme for MI({0̄},R2, r) and P(D(π)) = I2, then
(φ0̄, π) is the unique extreme function for MI(I2,R2, r). ¤

Starting with a split set P (π), taking the corresponding π and using the
trivial fill-in function leads to the GMI inequalities (after application of a uni-
modular transformation, see [16]). Next we evaluate whether P(D(π)) = I2

for other maximal lattice-free convex sets P (π). Corollary 1 and a charac-
terization of extreme inequalities for MI({0̄},R2, r) (Cornuéjols and Mar-
got [10]) lead to Theorems 3 and 4.
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Theorem 3 If P (π) is a maximal lattice-free triangle of Type 1 or 2, then
(φ0̄, π) is an extreme function for MI(I2,R2, r). ¤

See Section 5 for a proof of Theorem 3. Besides providing a characterization
of extreme inequalities for MI(I2,R2, r) when P (π) is a maximal lattice-
free triangle of Type 1 or 2, Theorem 3 is of practical interest as it presents
a simple method to generate strong inequalities for two rows of a simplex
tableau. Specifically, since D(π) ⊆ P (π), if P (π) is a maximal lattice-free
triangle of Type 1 or 2, then we can generate coefficients of non-basic integer
variables x(u) by solving min{π(w) |P(w) = u,w ∈ P (π)}.
Theorem 4 If P (π) is a maximal lattice-free triangle of Type 3, or a maxi-
mal lattice-free quadrilateral corresponding to an extreme function for MI({0̄},
R2, r), then (φ0̄, π) is not an extreme function for MI(I2,R2, r). ¤

See Section 6 for a proof of Theorem 4. When P (π) is a maximal lattice-
free triangle of Type 3 or a maximal lattice-free quadrilateral, it should be
possible to strengthen the trivial fill-in function. In these cases, it is possible
that there exist different functions φ1, φ2 : I2 → R+ such that both (φ1, π)
and (φ2, π) are extreme for MI(I2,R2, r).

It is possible to define a two step process to construct a function that
generalizes the trivial fill-in function:

1. Let G be a subset of I2. We assume that we have a valid inequality
∑

u∈G

V (u)x(u) +
∑

w∈R2

π(w)y(w) ≥ 1 (8)

for the set
∑

u∈G ux(u) + P(
∑

w∈R2 wy(w)) = r (9)
x(u) ∈ Z+, y(w) ∈ R+, x and y have finite support.

One possible way of obtaining a valid inequality (8) is by standard lifting.
For example, assume for simplicity that G = {u1, u2}. Then we may
obtain the coefficients of x(u1) and x(u2) by sequential lifting as follows:

V (u1) = maxn∈Z+,n≥1{1− π(w)
n

|P(w) = r − nu1}, (10)

V (u2) = maxn1,n2∈Z+,n2≥1{1− π(w)− n1V (u1)
n2

|
P(w) = r − n1u

1 − n2u
2}. (11)

2. Next for all integer variables x(v) apply the fill-in procedure in the fol-
lowing fashion:

φG,V (v) = infn(u)∈Z+,u∈G{π(w) +
∑

u∈G

n(u)V (u) |

P(w) = v −
∑

u∈G

n(u)u}. (12)
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This step is essentially an update of the value function of the MIP whose
objective function corresponds to the left-hand-side of (8) and whose con-
straints set is (9) with right-hand-side value of v.

It is easily verified that (φG,V , π) is a valid inequality for MI(I2,R2, r).
Next we concentrate on the case in which |G| = 1 to generate one extreme

inequality when P (π) is a maximal lattice-free triangle of Type 3. In partic-
ular, let G = {u∗} and let φu∗ : I2 → R+ denote the inequality φ{u

∗},V (u∗)

where V (u∗) is obtained using (10) and the coefficients of the other integer
variables are obtained using (12). Notice that if u∗ = 0̄, then φu∗ is the triv-
ial fill-in function. We prove the following sufficient condition to generate an
extreme valid inequality for MI(I2,R2, r) in Section 7.

Theorem 5 Given f and P (π), one can define two points v̄0 and ū0 in R2

(see after Definition 9). If φP(v̄0)(P(v̄0)) = 1 − π(ū0), then (φP(v̄0), π) is an
extreme function for MI(I2, R2, r). ¤

We end this section with a sketch of a procedure to generate cutting
planes for two rows of a simplex tableau using the results presented above.
Consider the set XMIP

1 with two rows,

xBu +
∑n

j=1 aj
uxj +

∑p
j=1 gj

uyj = ru u ∈ {1, 2}
xB ∈ Z2, x ∈ Zn

+, y ∈ Rp
+.

Apply the following steps:

1. Fix the non-basic integer variables to zero.
2. Select three (four for a quadrilateral inequality) continuous variables yj1 ,

yj2 , and yj3 such that the positive combination of gj1 , gj2 and gj3 spans
R2.

3. Find a maximal lattice-free triangle P (π) such that the inequality π is
extreme for

xB + gj1yj1 + gj2yj2 + gj3yj3 = r, xB ∈ Z2, yj1 , yj2 , yj3 ≥ 0.

4. Lift the other continuous variables, i.e., use the function π as described
in (5) to generate the coefficients for the other continuous variables.

5. Lift the non-basic integer variables into this inequality.
– If P (π) is a triangle of Type 1 or Type 2, then use the trivial fill-

in function to lift all the integer variables. The coefficient of the in-
teger variable corresponding to the column aj can be generated as
min{π(w) |P(w) = aj , w ∈ P (π)}.

– If P (π) is a Type 3 triangle or a quadrilateral, select an integer variable
xj corresponding to column aj with uj = P(aj). Calculate φ0̄(uj) +
φ0̄(r − uj). If φ0̄(uj) + φ0̄(r − uj) = 1, then uj ∈ P(D(π)). (This is
a consequence of Propositions 5 and 7, see Section 4). In this case,
take φ0̄(uj) as the coefficient in the inequality for xj . Denote the set
of variables such that φ0̄(uj) + φ0̄(r − uj) = 1 by NT . For the other
variables with φ0̄(uj)+φ0̄(r−uj) > 1, denoted as NL, try to improve



Two Row Mixed-Integer Cuts Via Lifting 11

upon the coefficient φ0̄(uj). Lift a subset NI ⊆ NL of variables (as in
(10), (11), etc.) giving an inequality of the form

∑

j∈NT

φ0̄(uj)xj +
∑

j∈NI

Vjxj +
p∑

j=1

π(gj)yj ≥ 1. (13)

(Vi’s are the coefficients obtained using lifting). Finally, apply the
general fill-in function (12) to obtain the coefficients for the integer
variables in the set NL \NI .

It is shown in Proposition 3 that the value of the trivial (and similarly
the general) fill-in function can be found by evaluating the value of the
function π at a finite number of points. However, since the fill-in function
is calculated via a minimization problem and due to the form of the in-
equalities, it is not necessary to solve the fill-in coefficient calculation (12)
to optimality to obtain a valid inequality (in contrast to the traditional
lifting process).

We next present an example illustrating some of the steps outlined above.
Example 1 Consider the following instance:

(
1
0

)
y1 +

(
0
1

)
y2 +

(−1
−2

)
y3 +

(−3
−7

)
y4 +

(−4/5
6/5

)
x1

+
(

19/10
23/10

)
x2 +

(
3/10
−7/5

)
x3 +

(−2/3
11/6

)
x4 +

(
1/2
1/2

)
(14)

=
(

1
0

)
xB1 +

(
0
1

)
xB2

xB ∈ Z2, x ∈ Z4
+, y ∈ R4

+.

– Choose three continuous variables: y1, y2, y3. A maximal lattice-free tri-
angle generating a facet for

(
1
0

)
y1 +

(
0
1

)
y2 +

(−1
−2

)
y3 +

(
1/2
1/2

)
=

(
1
0

)
xB1 +

(
0
1

)
xB2(15)

xB ∈ Z2, y1, y2, y3 ∈ R+,

is the triangle with vertices: (3/2, 1/2), (1/2, 3/2), and (−1/2,−3/2). This
triangle P (π) is illustrated in Figure 2. Given P (π) one can calculate
π(−3,−7) = 4 using (5). Note now that P (π) is a Type 2 triangle. There-
fore it is enough to use the trivial fill-in procedure to lift the integer vari-
ables. We illustrate the computation of φ0̄(P(−4/5, 6/5)). Since in the
case D(π) ⊂ P (π) ⊂ {(w1, w2) | −1/2 ≤ w1 ≤ 3/2,−3/2 ≤ w2 ≤ 3/2} we
obtain,

φ0̄(1/5, 1/5) = min





π(1/5,−4/5) = 1
π(1/5, 1/5) = 2/5
π(1/5, 6/5) = 7/5
π(6/5,−4/5) = 2
π(6/5, 1/5) = 7/5
π(6/5, 6/5) = 12/5.

(16)
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By computing the trivial fill-in function for the other integer variables, we
obtain the inequality y1 + y2 + y3 + 4y4 + (2/5)x1 + (3/5)x2 + (7/10)x3 +
(1/2)x4 ≥ 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 2 P (π) to generate facet for (15)

– Now suppose instead that the three continuous variables: y1, y2, y4 are
chosen. A maximal lattice-free triangle generating a facet for

(
1
0

)
y1 +

(
0
1

)
y2 +

(−3
−7

)
y4 +

(
1/2
1/2

)
=

(
1
0

)
xB1 +

(
0
1

)
xB2(17)

xB ∈ Z2, y1, y2, y4 ∈ R+,

is given by the triangle with vertices: 7
10 (1, 0) + (1/2, 1/2), 7

4 (0, 1) +
(1/2, 1/2), and 7

26 (−3,−7)+(1/2, 1/2). This triangle is illustrated in Fig-
ure 3.

Given P (π), one can check that π(−1,−2) = 10/7. Note now that as P (π)
is a Type 3 triangle, we need to check whether the trivial fill-in function
is sufficient to obtain strong coefficients. (See Proposition 3 for a method
to compute the trivial fill-in function in this case).
1. x1: u1 = P((−4/5, 6/5)) = (1/5, 1/5). Now it can be verified that

φ0̄(1/5, 1/5) + φ0̄(3/10, 3/10) = 1 implying that φ0̄(1/5, 1/5) = 2/5
is the coefficient in the inequality.

2. x2: u2 = P(19/10, 23/10) = (9/10, 3/10). Now it can be verified that
φ0̄(9/10, 3/10) + φ0̄(3/5, 1/5) = 1 implying that φ0̄(9/10, 3/10) = 3/7
is the coefficient in the inequality.
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

Fig. 3 P (π) to generate facet for (17)

3. x3: u3 = P((3/10,−7/5)) = (3/10, 6/10). Now it can be verified that
φ0̄(3/10, 6/10) + φ0̄(2/10, 9/10) > 1. Therefore the value of coefficient
φ0̄(3/10, 6/10) = 27/35 can possibly be improved.

4. x4: u4 = P((−2/3, 11/6)) = (1/3, 5/6). Now it can be verified that
φ0̄(1/3, 5/6) + φ0̄(1/6, 2/3) > 1. Therefore the value of coefficient
φ0̄(1/3, 5/6) = 2/3 can possibly be improved.

Arbitrarily select x4 for exact lifting. Then solve the problem:

maxn∈Z,n≥1

{
1− π(w)

n
|w ≡ (1/2, 1/2)− n(1/3, 5/6)

}

= 8/21 < 2/3 = φ0̄(1/3, 1/6).

Now the generalized fill-in function coefficient for u3 is given by φu4
(u3) =

infn∈Z+{(8/21)n+π(w) |P(w) = u3−nu4} = 3/5 < φ0̄(3/10, 6/10). Thus,
the coefficients of both x3 and x4 have been decreased and the resulting
inequality is: (10/7)y1+(4/7)y2+(10/7)y3+(26/7)y4+(2/5)x1+(3/7)x2+
(3/5)x3 + (8/21)x4 ≥ 1. ¤

4 Trivial Fill-in Function

4.1 Validity and Computation of the Trivial Fill-in Function

We begin with a lemma that motivates the definition of the trivial fill-in
function.
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Lemma 1 Let π : R2 → R+ be a valid function for MI({0̄},R2, r). Consider
the function φ : I2 → R+ defined as φ(u) = π(û) where û ∈ R2 is any point
such that P(û) = u. Then (φ, π) is a valid inequality for MI(I2,R2, r).

Proof: Consider any (x̄, ȳ) ∈ MI(I2,R2, r). Now consider the point ỹ defined
as follows:

1. First set ỹ(w) = ȳ(w) ∀w ∈ R2.
2. For every u ∈ I2, such that x̄(u) > 0 (note there is a finite number of

such u ∈ I2), update ỹ(w) := ỹ(w) + x̄(u), where w = û.

Observe that P(
∑

w∈R2 wỹ(w)) =
∑

u∈I2 ux̄(u) + P(
∑

w∈R2 wȳ(w)) = r.
Moreover the support of ỹ is finite as the supports of x̄ and ȳ are finite. There-
fore ỹ ∈ MI({0̄},R2, r). Also observe that

∑
x̄(u)>0 φ(u)x̄(u) +

∑
ȳ(w)>0 π(w)

ȳ(w) =
∑

w∈R2 π(w)ỹ(w) ≥ 1 as π is valid for MI({0̄},R2, r). Thus (φ, π) is
a valid inequality for MI(I2,R2, r). ¤

Therefore, if we set the value of φ(u) to be that of π(û) for any û such that
P(û) = u, then φ(u) is a valid coefficient for x(u). To obtain the best possible
coefficient for the integer variables, we choose û so as to obtain the smallest
possible coefficient for φ(u), thus obtaining the trivial fill-in function.

Fill-in functions were first introduced in Gomory and Johnson [21]. One
interpretation of the trivial fill-in function is that its computation is equiva-
lent to applying the procedure for strengthening coefficients of integer vari-
ables presented in Balas and Jeroslow [5]. The focus here is to prove that
the trivial fill-in function provides the strongest possible coefficients for the
integer variables in certain cases. Before presenting this in the next section,
we show that the trivial fill-in function can be evaluated in finite time.

Proposition 3 Let P (π) be a maximal lattice-free polytope. Then there exist
non-negative integers N1 and N2 such that

φ0̄(u) = mink1,k2∈Zπ(u1 + k1, u2 + k2) ∀u ∈ I2 (18)

with |k1| ≤ N1, |k2| ≤ N2.

Proof. Since P (π) is bounded, π(w1, w2) > 0 ∀(w1, w2) ∈ R2 \ {0̄}. Let
d := (d1, d2) be the vector in the direction of minimum slope with length 1.
By assumption this minimum slope is positive. Since the value of π is bounded
over the set [0, 1) × [0, 1), let k = sup{π(w1, w2) | (w1, w2) ∈ [0, 1) × [0, 1)}.
Let l be the real such that π(ld) = k. Set N1 = N2 = dle. Now for any (w1, w2)
and n1, n2 ∈ Z such that either |n1| > N1 or |n2| > N2 (or both), we have
π(w1 + n1, w2 + n2) ≥ π(||(w1 + n1, w2 + n2)||d) ≥ π(ld) = k ≥ π(w1, w2). ¤

4.2 Minimality and Extremality of the Trivial Fill-in Function

We use the following characterization of minimal inequalities for the mixed-
integer infinite group relaxation by Johnson [24].

Theorem 6 (Theorem 6.1, [24]) The pair of functions φ : I2 → R+ and
π : R2 → R+ is a minimal valid inequality for the convex hull of MI(I2,R2, r)
with r 6= 0̄ if and only if
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1. φ is subadditive, i.e., φ(u1) + φ(u2) ≥ φ(u1 + u2) ∀u1, u2 ∈ I2

2. φ(u) + φ(r − u) = φ(r) = 1 for all u ∈ I2,
3. π(w) = limh→0+

φ(P(hw))
h ∀w ∈ R2. ¤

As discussed in Section 3, we define a set D(π) that simplifies the verifi-
cation of minimality of the fill-in function.

Definition 6 Let P (π) be a maximal lattice-free triangle or maximal lattice-
free quadrilateral.

1. Let d1 , d2, ..., dk with k ∈ {3, 4} be vectors such that di + f are the
vertices of P (π).

2. Dij(π) : Denote the jth integer point in the relative interior of the edge
joining di+f and di+1+f (where d4 := d1, d5 := d1 when P (π) is triangle,
quadrilateral respectively) by Xij . Each Xij = δijdi + (1 − δij)di+1 + f
where 0 < δij < 1. Let Dij(π) = {ρdi + γdi+1|0 ≤ ρ ≤ δij , 0 ≤ γ ≤
1− δij}.

3. D(π) = ∪i,jDij(π).
4. Let Ci be the cone formed by the extreme rays di and di+1, i.e., Ci =
{λ1d

i + λ2d
i+1 |λ1, λ2 ≥ 0}. ¤

Geometrically, the set Dij(π) is obtained as follows: Take Xij , the jth

integer point in the relative interior of the ith edge of P (π), and construct a
parallelogram such that two of its vertices are Xij and f and the other two
vertices lie on the rays f + λdi and f + µdi+1 where λ, µ ≥ 0. If Q is this
parallelogram, then Dij(π) = {w−f |w ∈ Q}. See Figure 5 for an illustration
of D(π).

We prove Theorem 2 in the rest of the section, i.e., we prove that (φ0̄, π)
is a minimal inequality for MI(I2,R2, r) if and only if P(D(π)) := {P(u) |u ∈
D(π)} = I2. Moreover we show that if (φ0̄, π) and (φ′, π) are minimal for
MI(I2,R2, r), then φ′ = φ0̄.

We begin by establishing one direction of Theorem 2, namely if P(D(π)) =
I2, then (φ0̄, π) is a minimal inequality for MI(I2,R2, r).

The following result is standard. (See Johnson [24]).

Proposition 4 φ0̄ is subadditive, i.e., φ0̄(u1)+φ0̄(u2) ≥ φ0̄(u1+u2) ∀u1, u2 ∈
I2.

Note that it is easily verified that when there exists at least one point ȳ ∈
MI({0̄},R2, r) for which

∑
w∈R2 π(w)ȳ(w) = 1, then φ0̄(r) = 1.

The next proposition establishes some of the crucial properties of D(π).

Proposition 5 Let P (π) be a bounded maximal lattice-free convex set. For
any v ∈ D(π) the following are true:

1. There exists a point (x̄, ȳ) ∈ MI(I2,R2, r) with x̄(P(v)) > 0 which satis-
fies the inequality (φ0̄, π) at equality.

2. φ0̄(P(v)) = π(v).
3. φ0̄(P(v)) + φ0̄(r − P(v)) = 1.
4. If (φ̄, π) is any valid inequality for MI(I2,R2, r), then φ̄(P(v)) ≥ φ0̄(P(v)).
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Proof.

1. Since v ∈ Dij(π), let v = ρdi + γdi+1, ρ ≤ δij , γ ≤ 1 − δij . Consider
the point v′ = (δij − ρ)di + (1− δij − γ)di+1. Since ρ ≤ δij , γ ≤ 1− δij ,
v′ ∈ Ci. Now consider the solution:

x̄(u) =
{

1 if u = P(v)
0 otherwise (19)

ȳ(w) =
{

1 if w = v′

0 otherwise. (20)

Then
∑

u∈I2

ux̄(u) +
∑

w∈R2

wȳ(w) + f = P(v) + v′ + f

≡ (v + v′ + f)(mod 1̄)
= ρdi + γdi+1 + (δij − ρ)di

+(1− δij − γ)di+1 + f

= Xij ∈ Z2.

Also
∑

u∈I2 φ0̄(u)x̄(u) +
∑

w∈R2 π(w)ȳ(w) ≤ π(v) + π(v′)

= (ρ + γ) + (δij − ρ + 1− δij − γ) = 1. (21)

Finally (21) holds at equality because of the validity of (φ0̄, π).
2. Follows from the fact that (21) holds at equality.
3. Consider the point v′ constructed in the proof of part 1. Since P(v)+v′+

f ∈ Z2, we have that P(v) ≡ (−f − v′)(mod 1̄) or r − P(v) = P(v′) since
r = P(−f). Also note that v′ ∈ D(π) and therefore, π(v′) = φ0̄(P(v′)) =
φ0̄(r−P(v)). Since (21) holds at equality, we obtain that φ0̄(P(v))+π(v′) =
1 or φ0̄(P(v)) + φ0̄(r − P(v)) = 1.

4. Since (x̄, ȳ) ((19) and (20)) is a solution of MI(I2,R2, r), we obtain
that

∑
u∈I2 φ̄(u)x̄(u) +

∑
w∈R2π(w)ȳ(w) ≥ 1 or φ̄(P(v)) ≥ 1 − π(v′)

= φ0̄(P(v)). ¤
We next present a Corollary of Proposition 5.

Corollary 2 Let P (π) be a bounded maximal lattice-free convex set. Then

limh→0+
φ0̄(P(wh))

h = π(w) ∀ w ∈ R2.

Therefore the fill-in function is subadditive (Proposition 4) and satisfies

the condition limh→0+
φ0̄(P(wh))

h = π(w) ∀ w ∈ R2 (Corollary 2). Thus by The-
orem 6, we obtain the following result: (φ0̄, π) is minimal for MI(I2,R2, r)
if and only if φ0̄(u) + φ0̄(r − u) = 1 ∀u ∈ I2.

Now by part (3.) of Proposition 5 we obtain the proof of Theorem 2
in one direction, i.e., if P(D(π)) = I2, then (φ0̄, π) is a minimal inequality
for MI(I2,R2, r). Also observe that if P(D(π)) = I2, then by part (4.) of
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Proposition 5, (φ0̄, π) is the unique minimal function for MI(I2,R2, r), i.e.,
if (φ0̄, π) and (φ′, π) are minimal for MI(I2,R2, r) then φ′ = φ0̄.

To complete the proof of Theorem 2, we need to establish that if P(D(π)) (
I2, then (φ0̄, π) is not a minimal inequality for MI(I2,R2, r). This is done
next.

We first present a property of the function π corresponding to a maximal
lattice-free bounded set P (π).

Proposition 6 Let P (π) be a bounded maximal lattice-free polytope in R2

(i.e., either a triangle or a quadrilateral) containing f in its interior and let
w1, w2 ∈ R2. Then π(w1) + π(w2) = π(w1 + w2) if and only if w1, w2, w1 +
w2 ∈ Ci for some i.

Proof: ⇐ If w1, w2, w1 +w2 ∈ Ci, then clearly π(w1)+π(w2) = π(w1 +w2).
⇒ It is sufficient to prove that if w1 and w2 do not belong to the same

cone, then π(w1) + π(w2) > π(w1 + w2).
Since f ∈ int(P (π)), the set P (π)− {f} can be written as

(αi)T x ≤ 1 i ∈ {1, ..., k}, (22)

where k = 3 for a triangle and k = 4 for a quadrilateral. Now it is easily
verified (see for example Johnson [25]) that

π(u) = max1≤i≤k{(αi)T u}. (23)

Therefore, if d ∈ int(Ci), then π(d) = (αi)T d > (αj)T d for j 6= i and if
d ∈ Ci ∩ Ci+1, then π(d) = (αi)T d = (αi+1)T d > (αj)T d for j 6= i, i + 1.
(where i + 1 = 1 if i = k).

WLOG assume w1 + w2 ∈ C1. Since w1 and w2 do not belong to the
same cone, both cannot belong to C1. Thus we obtain that either π(w1) >
(α1)T (w1) or π(w2) > (α1)T (w2). Since (23) also implies that π(wj) ≥
(α1)T (wj), j ∈ {1, 2}, we obtain π(w1) + π(w2) > (α1)T (w1 + w2) = π(w1 +
w2). ¤

Next we present the final step in the proof of Theorem 2.

Proposition 7 Let P (π) be a lattice-free bounded convex set. Suppose u∗ /∈
D(π) and φ0̄(P(u∗)) = π(u∗). Then,

1. The following system has no solution

P(u∗)x(P(u∗)) +
∑

w∈R2

wy(w) + f ∈ Z2 (24)

φ0̄(P(u∗))x(P(u∗)) +
∑

w∈R2

π(w)y(w) = 1 (25)

x(P(u∗)) ∈ Z, x(P(u∗)) ≥ 1, y ≥ 0. (26)

2. φ0̄(P(u∗)) + φ0̄(P(r − u∗)) > 1.

Proof. Let si be the line segment between vertices di+f and di+1+f (where
d4 := d1, d5 := d1 when P (π) is triangle, quadrilateral respectively). Let pi

be the set of integer points in the interior of edge si of P (π).
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1. If u∗ /∈ P (π) − {f} the result is obvious since φ0̄(P(u∗)) > 1. Consider
the case when u∗ ∈ (P (π) − {f}) \D(π). WLOG assume that u∗ ∈ C1.
Assume by contradiction that there exists (x̄, ȳ) that satisfies (24), (25),
and (26). Therefore,

X = P(u∗)x̄(P(u∗)) +
∑

w∈R2

wȳ(w) + f, (27)

where X ∈ Z2. As P (π) is lattice-free, π(X − f) ≥ 1. Now

1 = φ0̄(P(u∗))x̄(P(u∗)) +
∑

w∈R2

π(w)ȳ(w)

= π(u∗)x̄(P(u∗)) +
∑

w∈R2

π(w)ȳ(w)

≥ π(u∗)x̄(P(u∗)) + π(
∑

w∈R2

wȳ(w)) (28)

≥ π(X − f). (29)

Therefore, π(X − f) = 1 and X ∈ P (π). Moreover by Proposition 6,
π(u) + π(v) = π(u + v) if and only if u, v, u + v ∈ Ci. Since u∗ ∈ C1,
x̄(P(u∗)) ≥ 1, and (29) is satisfied at equality, we obtain that X−f ∈ C1

or X − f ∈ p1 − f . We also obtain that
∑

w∈R2 wȳ(w) ∈ C1.
It is easily verified that if u ∈ Ci \ D(π), then there does not exist any
v ∈ Ci, n ∈ Z+ such that n ≥ 1 and nu + v + f ∈ pi: Assume by
contradiction that there exists a v ∈ Ci, n ∈ Z+ such that n ≥ 1 and
nu + v + f ∈ pi. Let δijdi + (1− δij)di+1 + f = Xij . Since u ∈ Ci \D(π),
by the definition of D(π), u = αdi + βdi+1 where either α > δij or
β > (1 − δij). Now v = (δij − nα)di + (1 − δij − nβ)di+1 which implies
that v /∈ Ci, a contradiction.
Therefore as u∗ ∈ C1 \D(π), we obtain that there does not exist a vector
v ∈ C1 such that v + nu∗ ∈ p1− f where n ∈ Z+ and n ≥ 1, which is the
required contradiction to (27).

2. This follows from the proof of part (1) since

φ0̄(P(r − u∗)) = min{
∑

w∈R2

π(w)y(w) |P(u∗) +
∑

w∈R2

wy(w) + f ∈ Z2}.

¤
Finally, if there exists a points u ∈ I2 such that u /∈ P(D(π)), then by

Proposition 7, φ0̄(u) + φ0̄(r − u) > 1 and by Theorem 6, the function is not
minimal. This completes the proof of Theorem 2.

Next we present a proof of Corollary 1 showing that if π is extreme for
MI({0̄},R2, r) and P(D(π)) = I2, then (φ0̄, π) is the unique extreme function
for MI(I2,R2, r).

Proof of Corollary 1: Assume by contradiction that (φ, π) is not ex-
treme. Then there exist two valid functions (φ1, π1) and (φ2, π2) such that
(φ1, π1) 6= (φ2, π2) and (φ, π) = 1

2 (φ1, π1) + 1
2 (φ2, π2). It can be easily

verified that (φi, πi) must be minimal. (Otherwise, there exists (φ′, π′) <
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(φ1, π1) which is valid for MI(I2,R2, r). However, this shows that there ex-
ists (φ′′, π′′) < (φ, π) which is valid, a contradiction to the minimality of
(φ, π)). Now note that π1 = π2 = π since π is an extreme inequality for
MI({0̄},R2, r). However since φ : I2 → R+ is the unique function such that
(φ, π) is minimal, it implies that φ1 = φ2 = φ, giving the required contradic-
tion. ¤

5 Unique Lifting Function

In this section, we present the proof of Theorem 3, namely if P (π) is a max-
imal lattice-free triangle of Type 1 or 2, then (φ0̄, π) is an extreme function
for MI(I2,R2, r).

We use the following result from Cornuéjols and Margot [10].

Theorem 7 ([10]) If P (π) is a maximal lattice-free triangle, then π : R2 →
R+ is extreme for MI({0̄},R2, r).

We now present a step-by-step outline of the proof of Theorem 3.
Step 1: Rather than verifying the result for all possible triangles of Type

1 and Type 2, we work with ‘standard’ triangles. This is valid because of the
following simple result.

Proposition 8 ([16]) Let P (π) be a maximal lattice-free convex set with
a point f ∈ interior(P (π)). Let M be a two-by-two unimodular matrix. Let
PM (π) be the maximal lattice-free set defined as PM (π) = {x |x = M(u −
v), u ∈ P (π)} where v ∈ Z2. Define the functions φM : I2 → R+ and πM :
R2 → R+ as φM (u) = φ(P(M−1u)) and πM (w) = π(M−1w). Then (φ, π) is a
minimal (extreme resp.) inequality for MI(I2,R2, r) if and only if (φM , πM )
is a minimal (extreme rep.) inequality for MI(I2,R2,P(Mr)).

Step 2: The following result is easily verified.

Proposition 9 ([16]) Let P be a maximal lattice-free triangle of Type 2.
Then there exists a unimodular matrix M and v ∈ Z2 such that the set
{x ∈ R2 |x = M(u − v), u ∈ P} is a maximal lattice-free convex set with
the points (0, 0) and (1, 0) on one side and (0, 1) and (1, 1) in the relative
interior of the other two sides.

A similar ‘standard’ triangle can be obtained for triangles of Type 1. Propo-
sitions 9 and 8 together with Corollary 1 and Theorem 7 imply that it is
sufficient to verify that P(D(π)) = I2 for ‘standard’ triangles of Type 2 and
Type 1 to prove Theorem 3.

We now present a detailed proof that P(D(π)) = I2 for ‘standard’ maxi-
mal lattice-free triangles of Type 2. A similar proof can be given for maximal
lattice-free triangles of Type 1, see [16].

Definition 7 (Refer to Figure 4.) Any point w will be represented as w :=
(w1, w2). We denote the length of a line segment pq by |pq|. Let P (π) be a
maximal lattice-free triangle with (0, 0) and (1, 0) adjacent integer points in
the relative interior of one side and (0, 1) and (1, 1) in the relative interior of
the other two sides. We use the following notation for points in this section:
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1. The points a1, a2 and a3 represent the vertices of the lattice-free triangle
P (π).

2. b1 := (1, 1) is the integer point in the relative interior of the side a1a2.
3. b2 := (0, 1) is the integer point in the relative interior of the side a2a3.
4. b3 := (0, 0) and b4 := (1, 0) are adjacent integer points in the relative

interior of the side a3a1.
5. The union of quadrilaterals fc1b1e1, fc2b2e2, fc3b3e3, and fc4b4e4 rep-

resents a subset of the set D(π) + {f}. (In particular c1 lies on fa1, e1

lies on fa2 and f + (c1 − f) + (e1 − f) = b1. c2 lies on fa2, e2 lies on
fa3 and f + (c2 − f) + (e2 − f) = b2. c3 lies on fa3, e3 lies on fa1

and f + (c3 − f) + (e3 − f) = b3. c4 lies on fa3, e4 lies on fa1 and
f + (c4 − f) + (e4 − f) = b4).

6. Let g be the point where b3e3 and b4c4 intersect.
7. We will assume that f1 ≥ a2

1: therefore let i be the point of intersection
of b2e2 extended and b3e3.
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Fig. 4 A maximal lattice-free triangle with the points (0, 0) and (1, 0) on one side
and (0, 1) and (1, 1) in the interior of the other two sides

Proposition 10 records some geometric properties used below.

Proposition 10 Let P (π) be a standard Type 2 maximal lattice-free triangle.
Under the assumption f1 ≥ a2

1,

1. e1 and c2 are the same point.
2. Triangle b3gb4 is symmetric to triangle b2c2b1.
3. There exists a point h such that b1c1 extended to b1h intersects b4e4.
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4. Triangle b1hb4 is symmetric to b2ib3.

Proposition 11 If P (π) is a standard maximal lattice-free triangle of Type
2, then P (D(π)) = I2.

Proof. Refer to Figure 4. We present the proof in the case in which f1 ≥ a2
1.

A similar proof can be presented for the case in which f1 ≤ a2
1. Note that

the union of the parallelograms fc1b1e1, fc2b2e2, fc3b3e3 and fc4b4e4 is a
subset of D(π) + {f}. Using Proposition 10, we obtain that triangles b3gb4

and b2c2b1 are symmetric. Since b1, b2, b3, and b4 are integer points and
b1b2 is parallel to b3b4, the fractional parts of points in the triangles b3gb4

and b2c2b1 are exactly the same. Similarly, b1hb4 is symmetric to b2ib3 and
a similar result regarding fractional parts may be obtained. As the triangles
b2c2b1 and b1hb4 belong to D(π) + {f}, all the fractional parts within the
quadrilateral b1b2b3b4 belong to D(π) + {f}, completing the proof. ¤

6 Non-Unique Lifting Functions

In this section we prove Theorem 4, namely if P (π) is a maximal lattice-
free triangle of Type 3 or a maximal lattice-free quadrilateral such that π
is an extreme function for MI({0̄},R2, r), then (φ0̄, π) is not an extreme
function for MI(I2,R2, r). Observe that by Proposition 8 and Theorem 2,
it is sufficient to verify P(D(π)) ( I2 for ‘standard’ maximal lattice-free
triangles of Type 3 or ‘standard’ quadrilaterals.

We begin with a tool for the analysis of the area of D(π).

Proposition 12 ([16]) Let P (π) be a maximal lattice-free polytope in R2.
For any f := (f1, f2) ∈ P (π), let A(f) = Area(D(π)). If there exists only
one integer point in the interior of each side of P (π), then A is an affine
function of f , i.e., A(f) = α0 + α1f1 + α2f2 for some α0, α1, α2.

We construct the ‘standard’ triangle of Type 3 in Proposition 13.

Proposition 13 ([16]) Let P be a maximal lattice-free triangle of Type 3.
Then there exists a unimodular matrix M and v ∈ Z2 such that the set
PM := {x ∈ R2 |x = M(u − v), u ∈ P} is a maximal lattice-free convex
set with the points (0, 0), (1, 0), and (0, 1) in the interior of its sides. Let s1

be the side of PM passing thorough (1, 0), let s2 be the side of PM passing
through the point (0, 1), and let s3 be the side of PM passing through the point
(0, 0). Then s1 and s2 intersect at a point outside the unit square. Let −m1,
m2 and −m3 be the slopes of s1, s2 and s3 respectively. Either 1 < m1 < ∞,
0 < m2 < ∞ and 0 < m3 < 1 or −∞ < m1 < 0, −1 < m2 < 0 and
1 < m3 < ∞.

We next present a proof that P(D(π)) ( I2 for ‘standard’ maximal lattice-
free triangles of Type 3.

Definition 8 (Refer to Figure 5). Let P (π) be a maximal lattice-free triangle
with the points (1, 0), (0, 1) and (0, 0) in the relative interior of its sides. We
use the following notation for points in this section:
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Fig. 5 An example of triangle with one integer point in the interior of each side

1. The points a1, a2 and a3 represent the vertices of the lattice-free triangle
P (π).

2. b1 := (1, 0) is the integer point in the relative interior of the side a1a2.
3. b2 := (0, 1) is the integer point in the relative interior of the side a2a3.
4. b3 := (0, 0) is the integer point in the relative interior of the side a3a1.
5. The union of quadrilaterals fc1b1e1, fc2b2e2, and fc3b3e3 represents D(π)+
{f}. (In particular, c1 lies on fa1, e1 lies on fa2 and f+(c1−f)+(e1−f) =
b1. c2 lies on fa2, e2 lies on fa3 and f + (c2 − f) + (e2 − f) = b2. c3 lies
on fa3, e3 lies on fa1 and f + (c3 − f) + (e3 − f) = b3).

Proposition 14 If P (π) is a maximal lattice-free triangle of Type 3, then
(φ0̄, π) is not minimal for MI(I2,R2, r).

Proof. It is enough to analyze the ‘standard’ triangle presented in Proposi-
tion 13. Let s1, s2 and s3 be the sides of P (π) passing through (1, 0), (0, 1),
and (0, 0) respectively. We assume WLOG that the slope of s1 is negative
and the slope of s2 is positive (and s1 is not vertical). The other case can be
proven similarly. Let m1 be the negative of the slope of s1, m2 be the slope
of s2 and m3 be the negative of the slope of s3.

We know that f is in the strict interior of the triangle a1a2a3. By Propo-
sition 12, the area is an affine function of the position of f . Therefore the
area of D(π) is maximized when f is the same point as either a1, a2 or a3.
We consider these three cases, see Figure 6.

1. f is same as a1. The area of D(π) is the area of the parallelogram a1e2b2c2.
The equation of the line passing through c2a1 is m1x + y = m1. The
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Fig. 6 f is the same as vertex of the triangle P (π)

coordinates of c2 are
(

m1−1
m1−m3

, m1(1−m3)
m1−m3

)
. Using this, the area of a1e2b2c2

is m1−1
m1−m3

. As m1 > 1 and 0 < m3 < 1, we obtain that Area(a1e2b2c2) < 1.
2. f is same as a2. The area of D(π) is the area of the parallelogram a2e3b3c3.

The equation of the line passing through a2c3 is −m2x + y = 1. The
coordinates of e3 are

(
m1

m1+m2
, m1m2

m1+m2

)
. Using this, the area of a2e3b3c3

is m1
m1+m2

. As m1 > 0 and m2 > 0, we obtain that Area(a2e3b3c3) < 1.
3. f is same as a3. The area of D(π) is the area of the parallelogram a3e1b1c1.

The equation of the line passing through a3c1 is m3x + y = 0. The coor-
dinates of e1 are

(
m3−1

m2+m3
, m3(m2+1)

m2+m3

)
. Using this, the area of a3e1b1c1 is

(1+m2)m3
m2+m3

. As m2 > 0 and m3 < 1, we obtain that Area(a3e1b1c1) < 1.

Thus Area(D(π)) < 1. This implies that P(D(π)) is a proper subset of I2.
Therefore, it follows from Proposition 7 that (φ0̄, π) is not minimal. ¤

The next example illustrates that when P (π) is a maximal lattice-free trian-
gle of Type 3, the function (φ0̄, π) is not minimal.

Example 2 Let P (π) be the triangle with vertices (0.25, 1.25), (−0.75, 0.25),
and (1.25,−5/12) and let f = (0.5, 0.5). Then it can be verified that P (π)
is a lattice-free triangle with only one integer point in the interior of each of
its sides and non-integral vertices. φ0̄(0.1, 0.2) = 1.1 and φ0̄ is not minimal.
There are two distinct functions φ1 and φ2 such that both (φ1, π) and (φ2, π)
are extreme. See Figure 7. (The proof of the extremality of these functions
is similar to the proof of Theorem 7.1 in Dey and Richard [14]). ¤
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Fig. 7 There exist distinct functions φ1 and φ2 such that (φ1, π) and (φ2, π) are
extreme.

In the case of maximal lattice-free quadrilaterals, the inequality π is not
always extreme for MI({0̄},R2, r). (see Cornuéjols and Margot [10]). When
π is extreme, the proof that P(D(π)) ( I2 is similar to the proof for maximal
lattice-free triangles of Type 3, see [16].

7 Some Conditions for Extremality of General Fill-in Function

As discussed in Section 3, we now analyze the properties of the function
φu∗ : I2 → R+. The function φu∗ is obtained by first lifting the integer
variable x(u∗) using

V (u∗) = maxn∈Z+,n≥1{1− π(w)
n

|P(w) = r − nu∗}

and then applying the fill-in procedure to obtain,

φu∗(u) = infn∈Z+ {π(w) + nV (u∗) |P(w) = u− nu∗} ∀u ∈ I2.

Validity of the function (φu∗ , π) for MI(I2,R2, r) is easily verified. To estab-
lish that minimality of (φu∗ , π) along with extremality of π for MI({0̄},R2, r),
implies extremality of (φu∗ , π), we use the following result.

Theorem 8 ([24]) If (φ, π) is a minimal inequality for MI(I2,R2, r), then

1. φ(u) + φ(v) ≥ φ(u + v) ∀u, v ∈ I2.
2. φ(u) +

∑
w∈R2 π(w)y(w) ≥ φ(v) whenever u + P(

∑
w∈R2 wy(w)) = v.
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3.
∑

w∈R2 π(w)y(w) ≥ π(w′) whenever
∑

w∈R2 wy(w) = w′. ¤

Proposition 15 If π is extreme for MI({0̄},R2, r) and (φu∗ , π) is minimal,
then (φu∗ , π) is extreme for MI(I2,R2, r).

Proof: Assume by contradiction that (φu∗ , π) is not extreme for MI(I2,R2, r).
Then (φu∗ , π) = 1

2 (φ1, π1) + 1
2 (φ2, π2) where (φi, πi) are valid minimal func-

tions and (φ1, π1) 6= (φ2, π2). (Note that since (φu∗ , π) is minimal, (φi, πi)
must be minimal).

First observe that π1 = π2 since π is extreme for MI({0̄},R2, r).
Next we claim that φ1(u∗) = φ2(u∗) = V := maxn∈Z+,n≥1

1−π(r−nu∗)
n . As-

sume by contradiction that φ1(u∗) 6= φ2(u∗). WLOG suppose that φ1(u∗) <
V . By definition of V , there exists n̄ ∈ Z+, w̄ ∈ R2 such that n̄V + π(w̄) = 1
and P(w̄)+n̄u∗ = r. This implies that ∃(x̄, ȳ) ∈ MI(I2,R2, r) with x̄(u∗) = n̄,
x̄(v) = 0 ∀v ∈ I2, v 6= u∗ and y(w̄) = 1. Therefore φ1(u∗)n̄ + π(w̄) < 1, a
contradiction.

Finally, we claim that φ1 = φ2 = φu∗ . Assume by contradiction that
φ1 6= φ2. Since (φ1, π) and (φ2, π) are minimal, we obtain that ∃v′ such
that φ1(v′) = φu∗(v′) + δ, where δ > 0. By definition of φu∗ , there ex-
ists nv′ ∈ Z+, wv′ ∈ R2 such that φu∗(v′) ≥ nv′V + π(wv′) − δ

2 . Since
φ1(u∗) = V , we obtain that φ1(v′) ≥ δ + nv′φ1(u∗) + π(wv′)− δ

2 . Therefore,
φ1(v′) > nvφ1(u∗)+π(wv′). This contradicts Theorem 8 as φ1 is minimal. ¤

More generally, it is possible to present conditions when the minimal-
ity of the general fill-in function φG,V implies the extremality of (φG,V , π)
for MI(I2,R2, r), see [16].

The rest of this section is devoted to proving Theorem 5. We begin with
some definitions.

Definition 9 (Refer to Figure 8.) Let P (π) be a maximal lattice-free triangle
with (0, 0), (1, 0), and (0, 1) in the interior of its sides. We use the following
notation for the rest of this section:
1. The points a1, a2 and a3 represent the vertices of the lattice-free triangle

P (π).
2. b1 := (1, 0) is the integer point in the interior of the side a1a2.
3. b2 := (0, 1) is the integer point in the interior of the side a2a3.
4. b3 := (0, 0) is the integer point in the interior of the side a3a1.
Let

D11(π) = {ηd1 + γd2 | 0 ≤ η ≤ δ11, 0 ≤ γ ≤ (1− δ11)}
(Quadrilateral fc1b1e1 − {f})

D21(π) = {ηd2 + γd3 | 0 ≤ η ≤ δ21, 0 ≤ γ ≤ (1− δ21)}
(Quadrilateral fc2b2e2 − {f})

D31(π) = {ηd3 + γd1 | 0 ≤ η ≤ δ31, 0 ≤ γ ≤ (1− δ31)}
(Quadrilateral fc3b3e3 − {f}).

Note that δij was presented in Definition 6. (For a triangle of Type 3, j = 1
for all i). To describe D(π) + {f}, we need the following points,
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1. c1: f + δ11d1.
2. e1: f + (1− δ11)d2.
3. c2: f + δ21d2.
4. e2: f + (1− δ21)d3.
5. c3: f + δ31d3.
6. e3: f + (1− δ31)d1.

The set D(π)+{f} is represented by the union of the quadrilaterals: fc1b1e1,
fc2b2e2, and fc3b3e3. Some points in R2 are described next:

1. g: f + (1− δ11)d2 + (δ11 − 1 + δ31)d1. (Note: g = b1 − e3 + f .)
2. i: f+(1−δ11)d2+(δ11−1+δ31)d1−(δ31−1+δ21)d3. (Note: i = g−c3+e2.)
3. j: f + δ21d2 +(δ11− 1+ δ31)d1− (δ31− 1+ δ21)d3. (Note: j = i− e1 + c2.)
4. m: Mid point of i and j.
5. k: f + δ21d2 − (δ31 − 1 + δ21)d3. (Note: k = j − g + e1.)
6. l: midpoint of e1 and c2.
7. u0: f +

(
1−δ11+δ21

2

)
d2 + (δ11 + δ31 − 1)d1. (Note: u0 = g − i + m.)

8. v0: f +
(

1−δ11+δ21

2

)
d2 + (1− δ31 − δ21)d3. (Note: v0 = k −m + i.)

It can be verified that (u0 − f) + (v0 − f) + f = (1, 1). ¤

For any point p ∈ R2, we denote the point p − f by p̄. In particular,
v̄0 = v0 − f and ū0 = u0 − f .

Theorem 5 provides a sufficient condition for (φP(v̄0), π) to be extreme for
MI(I2,R2, r) for the specific point P(v̄0) ∈ I2. More precisely, we prove the
following statement.

Theorem 5 If φP(v̄0)(P(v̄0)) = 1 − π(ū0), then (φP(v̄0), π) is an extreme
function for MI(I2,R2, r). ¤

Next we present some results needed in the proof of Theorem 5.

Proposition 16 Let δ21, δ31, and δ11 be as presented in Definition 9. Then

1. 1− δ21 < δ31, 1− δ31 < δ11, and 1− δ11 < δ21.
2. (1, 0) = f + δ11d1 + (1 − δ11)d2, (0, 1) = f + δ21d2 + (1 − δ21)d3, and

(0, 0) = f + δ31d3 + (1− δ31)d1. ¤

Definition 10 Let T (π) ⊂ R2 be the set (D(π) + {f}) ∪ H where H =
conv(c2e1gijk).

Lemma 2 ([16]) P(T (π)) = I2. ¤

We also need the following result from Gomory and Johnson [20].

Theorem 9 ([20]) If φ : I2 → R+ is a valid function for MI(I2, ∅, r) and
if φ(u) + φ(r − u) ≤ 1 ∀u ∈ I2, then φ is subadditive.

Proof of Theorem 5: Since π is extreme for MI({0̄},R2, r), the result
will follow from Proposition 15 if we show that (φP(v̄0), π) is minimal for
MI(I2,R2, r).



Two Row Mixed-Integer Cuts Via Lifting 27

−0.5 0 0.5 1 1.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

a3

a2

a1

b1

b2

b3

f

c1

e1

c2

e2
c3

e3

g i

j

k

l

u
0 m

v
0

Fig. 8 T (π)

To prove that φP(v̄0) is minimal, we need to verify the conditions of Theo-
rem 6. However, using the definition of (φP(v̄0), π) directly is not convenient;
because for any u ∈ I2, we do not know the values of n̂ ∈ Z+ and ŵ ∈ R2

for which n̂P(v̄0) + P(ŵ) = u and φP(v̄0)(u) = n̂φ(P(v̄0))(P(v̄0)) + π(ŵ).
Therefore, instead of working with φP(v̄0), we prove the minimality of

φP(v̄0) by creating an upper bound φ̃ on φP(v̄0). We then show that φ̃ satisfies
the symmetry conditions, i.e., φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ I2. Since φP(v̄0) is
a valid function and φ̃ is an upper bound, φ̃ is a valid function. Now using
Theorem 9 we will show that φ̃ is subadditive. It will also be verified that φ̃

satisfies limh→0+
φ̃(P(wh))

h = π(w) ∀w ∈ R2 and φ̃(r) = 1. This will show that
(φ̃, π) is minimal for MI(I2,R2, r) implying that φ̃ is the same function as
φP(v̄0) and thus completing the proof.

The proof has two main steps. Step one involves creating the function
φ̃ : I2 → R+ and showing that this function is an upper bound on the func-
tion φP(v̄0). Step two involves proving that φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ I2,
limh→0+

φ̃(P(wh))
h = π(w) ∀w ∈ R2, and φ̃(r) = 1.

Step 1: To define the function φ̃, we first define a function φ1 : T (π) → R+. By
Lemma 2, we know that P(T (π)) = I2. This allows us to define φ̃ : I2 → R+

as:

φ̃(u) = min{φ1(w)|P(w̄) = u}. (30)

We next present the function φ1. Refer to Figure 8. We use the symbols
Q11, and Q21 to represent the quadrilaterals e1gu0l and gimu0 respectively.
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φ1(u) =





π(u− f) if u ∈ (D(π) + {f}) ∪Q11

π(u− (1, 0)− f) if u ∈ Q21

V (P(v̄0)) + π(u− v0) otherwise.
(31)

Claim: φ1 is well-defined. We need to verify that if u belongs to different
categories in (31), then φ1(u) has the same value for all the categories. Since
by assumption φP(v̄0)(P(v̄0)) = 1−π(ū0) and π(ū0) = π(( 1−δ11+δ21

2 )d2+(δ11+
δ31 − 1)d1) = δ11+δ21−1

2 + δ31, we obtain φP(v̄0)(P(v̄0)) = 3
2 − δ11

2 − δ21

2 − δ31.

1. u belongs to the line segment c2l: It is easily verified that the function
is linear (both the first and third case) over this interval. Therefore it is
enough to check the value of the function φ1 at u = c2 and u = l.
(a) u = c2: From the first case in (31), φ1(c2) = π(c̄2) = π(δ21d2) = δ21.

From the third case in (31), φ1(c2) = V (P(v̄0)) + π(c2 − v0), or

φ1(c2) =
3
2
− δ11

2
− δ21

2
− δ31

+π((
−1 + δ11 + δ21

2
)d2 + (δ31 + δ21 − 1)d3)

= δ21.

(b) u = l: From the first case in (31), φ1(l) = π(l̄) = π( (δ21−δ11+1)
2 d2) =

δ21−δ11+1
2 . From the third case in (31), φ1(l) = V (P(v̄0)) + π(l − v0),

or

φ1(l) =
3
2
− δ11

2
− δ21

2
− δ31 + π((δ31 + δ21 − 1)d3)

=
δ21 − δ11 + 1

2
.

2. u belongs to the line segment lu0: the proof is similar.
3. u belongs to the line segment u0g: the proof is similar.
4. u belongs to the line segment u0m: the proof is similar.

Finally we verify that φ̃ is an upper bound on φP(v̄0). This follows from the
definition φP(v̄0)(u) = infn∈Z+{nφ(P(v̄0))(P(v̄0)) + π(w) |P(w) + nP(v̄0) = u}.
Now this claim easily follows from (31) and (30).

Step 2:

– limh→0+
φ̃(P(wh))

h = π(w) ∀w ∈ R2: This follows from the fact that φ̃(u) =
φ0̄(u) ∀u ∈ D(π) and Corollary 2.

– φ̃(r) = 1: We know that φ̃ is an upper bound to φP(v̄0). Therefore, φ̃(r) ≥
1. Moreover we have that φ̃(r) ≤ φ1(b̄1) = 1.

– Finally we show that φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ I2. For u ∈ I2, we call
r − u ∈ I2 the complementary point. By the definition of φ1 and φ̃, it is
easily verified that φ̃(u) + φ̃(r− u) ≤ 1 ∀u ∈ D(π). We now present some
key complementary points:
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1. Complement of P(ē1) is P(j̄): ē1 + j̄ + f = e1 + j − f = e1 + (i− e1 +
c2) − f = i + c2 − f = (g − c3 + e2) + c2 − f = b1 − e3 + f − c3 +
e2 + c2 − f = b1 + (−e3 − c3 − f) + (e2 + c2 + f) = (1, 1). Therefore,
P(ē1) + P(j̄) = −f = r.

2. Complement of P(ḡ) is P(k̄): ḡ + k̄ + f = ē1 + j̄ + f = (1, 1).
3. Complement of P(ū0) is P(v̄0): ū0 + v̄0 + f = ḡ + k̄ + f = (1, 1).
4. Complement of P(l̄) is P(m̄): l̄ + m̄ + f = ē1 + j̄ + f = (1, 1).
5. Complement of P(̄i) is P(c̄2): ī + c̄2 + f = l̄ + m̄ + f = (1, 1).
Note that the function φ1 is linear in each of the following quadrilaterals:
kv0mj, kv0lc

2, lv0mu0, le1gu0, and u0gim. Therefore to prove that φ̃(u)+
φ̃(r − u) ≤ 1 ∀u ∈ I2 \ P(D(π)), it is enough to check the following five
cases:
1. φ̃(P(ē1))+φ̃(P(j̄)) ≤ 1: φ̃(P(ē1)) ≤ φ1(e1) = 1−δ11. φ̃(P(j̄)) ≤ φ1(j) =

φ(P(v̄0))(P(v̄0))+π(j−v0) = 3
2 − δ11

2 − δ21

2 − δ31 +π((δ11 + δ31−1)d1 +
( δ21+δ11−1

2 )d2) = δ11. Therefore, φ̃(P(ē1)) + φ̃(P(j̄)) ≤ 1.
2. φ̃(P(ḡ)) + φ̃(P(k̄)) ≤ 1: φ̃(P(ḡ)) ≤ φ1(g) = π(ḡ) = δ31. φ̃(P(k̄)) ≤

φ1(k) = φ(P(v̄0))(P(v̄0)) + π( δ21+δ11−1
2 d2) = 1− δ31.

3. φ̃(P(ū0))+ φ̃(P(v̄0)) ≤ 1: φ̃(P(ū0))+ φ̃(P(v̄0)) ≤ φ̃(P(v̄0))+φ1(u0) ≤ 1.
4. φ̃(P(l̄)) + φ̃(P(m̄)) ≤ 1: φ̃(P(l̄)) ≤ φ1(l) = δ21+1−δ11

2 . φ̃(P(m̄)) ≤
φ1(m) = 1+δ11−δ21

2 .
5. φ̃(P(̄i)) + φ̃(P(c̄2)) ≤ 1: φ̃(P(c̄2)) ≤ φ1(c2) = δ21. φ̃(P(̄i)) ≤ φ1(i) =

π(i− (1, 0)− f) = π((1− δ21)d3) = 1− δ21. ¤

8 Concluding Remarks

Computational experiments are under way to test the effectiveness of the
inequalities based on two rows of a simplex tableau. Even though our ap-
proach leads to only a very special set of inequalities, the number of these
inequalities is huge - first one can select three or four continuous non-basic
variables, and then for each such choice there are potentially a large number
of triangles or quadrilaterals. There are also obvious questions concerning
the relative effectiveness of the triangle inequalities of different types and the
quadrilateral inequalities. It is also possible that data independent choices
such as inequalities based on 45o splits, or specific triangles such as those
obtained from mixing sets (see [16]) may be effective complements to the
GMICs.

Other than the important problem of selecting appropriate triangle or
quadrilateral inequalities, various other theoretical questions remain open.
This includes further analysis of lifting functions in the case of maximal
lattice-free triangles of Type 3 and maximal lattice-free quadrilaterals, the
incorporation of information about bounds on integer variables when lift-
ing, the derivation of closed-form expressions for the trivial fill-in functions
(see [16] for closed-form expressions of trivial fill-in function for subclasses
such as sequential-merge inequalities and mixing inequalities), and a study
of maximal lattice-free convex sets in higher dimensions.
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Appendix 1
In this section we show that if a function π̃ : Q2 → R+ as defined in (4)

is minimal (extreme resp.) for (1) and f ∈ interior(P (π)), then π as defined
in (5) is minimal (extreme resp.) for MI({0̄},R2, r).

The proof of the following proposition is exactly the same as the proof
of Theorem 1 from Borozan and Cornuéjols [6] and related to the proof of
Theorem 8 from Johnson [24].

Proposition 17 If π : R2 → R+ is a minimal inequality for MI({0̄},R2, r),
then

1. π is positively homogenous.
2. π is subadditive.

Since the function π : R2 → R+ is positively homogenous and subadditive,
it is convex, see Rockafeller [31]. Moreover, if π(w) is finite for every w ∈ R2,
then it is continuous.

Proposition 18 ([31]) If π : R2 → R+ is a finite, subadditive, and posi-
tively homogenous function, then π is a continuous function.

Proposition 19 If P (π) is a maximal lattice-free set with f ∈ interior(P (π))
and π : R2 → R+ is defined as (5), then π is minimal.

Proof: Note that π is a continuous function by construction. Assume by con-
tradiction that π is not minimal. Then there exists a minimal valid function
π′ : R2 → R+ such that π > π′. Since π is a finite function, this implies that
π′ is finite. Using Proposition 17, π′ is positively homogenous and subaddi-
tive. Thus using Proposition 18, π′ is continuous. However, by Theorem 1,
π(u) = π′(u) ∀u ∈ Q2. Since Q2 is dense in R2, continuity of π and π′ implies
that π = π′. ¤

Proposition 20 Let π̃ : Q2 → R+ be an inequality for (1) corresponding
to a maximal lattice-free convex set P (π) with f ∈ interior(P (π)). Let π :
R2 → R+ be as defined in (5). If π̃ is extreme for (1), then π is extreme for
MI({0̄},R2, r).

Proof: Observe that π(u) = π̃(u) ∀u ∈ Q2. Assume by contradiction that
there exist two valid functions π1, π2 : R2 → R+ such that π = 1

2π1+ 1
2π2 and

π1 6= π2. By Proposition 19, π is a minimal inequality. This implies that π1
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and π2 are minimal. By Proposition 17, π1 and π2 are positively homogenous
and subadditive. Moreover since π is finite by construction, π1 and π2 are
finite. Thus by Proposition 18, π1 and π2 are continuous.

Since π̃ is extreme, π̃(u) = πi(u) ∀u ∈ Q2. Since f ∈ interior(P (π)), π
is a continuous function. However since Q2 is dense in R2, this implies that
π1 = π2, a contradiction. ¤


