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Abstract

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve
the performance of the algorithm, we present and combine two strategies. First, to avoid time-
consuming exact evaluations of the second-stage cost function, we propose a simple modification
that alternates between linear and mixed-integer subproblems. Then, to better approximate the shape
of the second-stage cost function, we present a general framework to generate optimality cuts via a
cut-generating linear program which considers information from all solutions found up to any given
stage of the method. In order to address the impact of the proposed approaches, we report computa-
tional results on two classes of stochastic integer problems.

1 Introduction

In this work we consider mixed-integer programs of the form

(IP) min
x,z,θ

cx + dz + θ

s.t. Ax + Cz ≤ b (1)
Q(x)− θ ≤ 0 (2)
x ∈ {0, 1}n (3)
z ≥ 0, z ∈ Z, (4)

where Z is a mixed-integer set and Q(x) is a real-valued function taking a binary vector x as argument.
We say that (x∗, z∗, θ∗) is a candidate solution if (x∗, z∗) satisfies (1), (3), and (4). If in addition (2) holds,
then we say (x∗, z∗, θ∗) is a feasible (candidate) solution. Constraint (2) together with the presence of θ
in the objective function ensures θ = Q(x) is satisfied by any optimal solution to (IP). A fundamental
assumption is that given x, Q(x) can be computed with a reasonable amount of effort.

In the context of two-stage stochastic integer programming, we usually have

Q(x) := Eξ

[
min

y
{qy : Wy = h− Tx, y ∈ Y}

]
,

which denotes the expected second-stage cost of x with respect to the random data ξ = (q, W, T, h).
We assume that Y imposes some integrality requirements on y. When ξ has a finite set of possible
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outcomes, we have Q(x) = ∑ξ pξ Qξ(x), where Qξ(x) denotes the optimal second-stage value of the
scenario associated to ξ, and pξ is the probability of occurrence of ξ. Thus, (IP) can be cast as a large-
scale mixed integer program. When the burden of solving (IP) is mainly due to the presence of a large
number of scenarios, schemes similar to Benders’ decomposition [5] and the L-shaped method [17] can
be effective. The idea is to relax (2) and consider θ as an underestimator of Q(x), and successively add
cuts in the (x, θ)-space to better approximate the shape of Q(x). This is done until an optimal solution
(x∗, z∗, θ∗) satisfying θ∗ = Q(x∗) is found. When the second-stage problem is a linear program, Q(x) is
convex in x and thus can be approximated by subgradients using optimal dual solutions. In contrast,
when the second-stage problem is a mixed-integer program, such a nice property does not hold, and
moreover, Q(x) can even be discontinuous. Thus, decomposition approaches for the linear case have
to be modified to accommodate integer variables in the second stage. In [9], such a modification,
the integer L-shaped method, is introduced. It is designed for two-stage stochastic integer problems
having binary first-stage variables as it exploits the facial property of 0-1 sets. More generally, the
integer L-shaped method can be applied to any mixed-integer problem having the form of (IP) as long
as Q(x) is computable from binary x. In particular, it also fits situations where Q(x) can be evaluated
with a closed-form analytical formula, but it does not have an amenable mixed-integer formulation.
Applications of this method include vehicle routing [12], [7], probabilistic traveling salesman problems
[10], location problems [11], and generalized assignment [2], among others.

Next we describe the integer L-shaped method. Let X be the projection of the feasible region of (IP)
onto the x-space, and let L ∈ R be a lower bound on Q(x) over X. Then (IP) can be equivalently
formulated as

(MP) min cx + dz + θ

s.t. Ax + Cz ≤ b
Πx− 1θ ≤ π0 (5)
x ∈ {0, 1}n

z ≥ 0, z ∈ Z
θ ≥ L,

where 1 denotes a vector of ones of appropriate size, as long as for each x∗ ∈ X constraints (5) include
a cut of the form πkx − θ ≤ πk

0 such that πkx − πk
0 ≤ Q(x) for all x ∈ X and πkx∗ − πk

0 = Q(x∗). In
other words, the affine function πkx − πk

0 underestimates Q(x) on X, and the estimate is tight at x∗.
The optimality cuts of Laporte and Louveaux [9] define such a cut family and form the basis of the
integer L-shaped method.

Given x∗ ∈ {0, 1}n, let S(x∗) := {i : x∗i = 1}. In [9], the (standard) integer optimality cut at x∗ is
defined as

θ ≥ (Q(x∗)− L)

 ∑
i∈S(x∗)

xi − ∑
i/∈S(x∗)

xi − |S(x∗)|

+ Q(x∗). (6)

Given the enumerative nature of (6), in practice, these cuts are complemented with other inequalities
that, albeit may not be tight, help to improve the global lower bound on Q(x). When Q(x) is the
expected second-stage value of x given by the value function of a mixed-integer program, the most
obvious inequalities to add are the subgradient cuts given by the continuous relaxation QLP(x) of
Q(x). They have the form

θ ≥ s(x− x∗) + QLP(x∗), (7)

where s is a subgradient of QLP(x) at x∗.

A typical implementation of the integer L-shaped method with a current state-of-the-art solver works
as follows. Having computed a lower bound L on Q(x) and solved the continuous relaxation of (IP)
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with Benders’ decomposition, we end up with a linear master problem that includes subgradient cuts
of the form (7). Then we reinforce the binary requirements on x and any integrality restrictions on z,
leading to a mixed-integer master problem of the form (MP), but where the system (5) is a relaxation
of (IP), so that an optimal solution to the current problem may not be feasible to (IP). The idea now is
to solve the mixed-integer master problem in a way such that all integer solutions are checked against
feasibility with respect to (IP) before being accepted as an incumbent. For this, the solver proceeds in
a similar fashion to branch-and-cut, that is, it generates a search tree by solving linear subproblems,
branching, and adding cutting planes. The main difference is that when a candidate integer solution
(x∗, z∗, θ∗) satisfying (1), (3) and (4) is found at a node of the search tree, an additional routine, the
so-called optimality cut function, is called in order to assert feasibility and add optimality cuts. If the
solution is infeasible to the true problem (IP), i.e., θ∗ < Q(x∗), this function generates an optimality cut
that is applied to all pending nodes in the master problem tree, ensuring that this solution is discarded.
Then the solver continues exploring the tree with the guarantee that any discarded, and thus infeasible,
solution will not appear again. If the solution is actually feasible to (IP), then it is accepted by the
optimality cut function and the current incumbent is updated accordingly. This description of the
(standard) integer L-shaped method is summarized in Algorithm 1 below.

Algorithm 1 Integer L-shaped method

Input: A, C, b, c, d, Q : X → R, QLP : X → R

Output: Optimal solution x∗ to (IP) and optimal value
1: Compute a lower bound L of Q(x)
2: Solve the LP relaxation of (IP) with Benders’ decomposition
3: Declare x variables as binary in master problem
4: Initialize the optimality cut function
5: Solve the integer master problem using the optimality cut function to assert feasibility of solutions

and add optimality cuts
6: return x∗ and optimal value

In line 4 of Algorithm 1 we initialize any additional structures that may be needed by the optimality cut
function before invoking the solver in line 5. In particular, as there may be several solutions sharing
the same x subvector, we keep a list V of first-stage x for which Q(x) has been computed to avoid
duplicate evaluations. In a standard implementation, the optimality cut function has the form shown
in Algorithm 2

Algorithm 2 Standard optimality cut function

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: Compute QLP(x∗)
5: Add the subgradient cut (7)
6: Compute Q(x∗)
7: V ← V ∪ {x∗}
8: if θ∗ < Q(x∗) then
9: Add the integer optimality cut (6)

10: return false
11: else
12: return true
13: end if

The optimality cut function returns true if the candidate integer solution is indeed feasible to (IP).
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Otherwise it returns false to reject the solution and apply the optimality cut. Note that the steps in
lines 4 and 5 in Algorithm 2 are not needed for convergence of the method, but help to improve the
global lower bound on Q(x).

The optimality cut (6) relies on exact evaluations of Q(x), which can be very time-consuming in the
case where Q(x) is given by a complicated mixed-integer program. Also, observe that (6) depends on
x∗ and Q(x∗) only, i.e., it only depends on the point to be cut-off. In particular, it does not take into
account the information provided by other solutions that we may have found while exploring the first-
stage set. To improve the performance of the integer L-shaped method, we propose two approaches to
deal with the above issues. First, in Section 2, we present a simple modification that alternates between
exact and approximate evaluations of Q(x). Then, in Section 3, we introduce of a new class of opti-
mality cuts that includes information obtained from different solutions; in particular, evaluations and
estimates of Q(x) at different points. These new cuts are obtained through a cut-generating linear pro-
gram which is constructed based on ideas from disjunctive programming and the forbidden-vertices
problem [3]. Then, in Section 4, we outline an implementation that combines both modifications in a
single method. Finally, in Section 5, we present computational results of the proposed variants on two
classes of stochastic integer programs.

2 Alternating cuts

In this section we present a simple cut strategy to decrease the overall effort incurred in computing the
function Q(x).

Suppose that while solving (IP) with the integer L-shaped method, a candidate solution (x∗, z∗, θ∗)
has been found along the search tree of (MP). Recall that we reject the solution if θ∗ < Q(x∗). Since
QLP(x) ≤ Q(x), a sufficient condition to reject (x∗, z∗, θ∗) is θ∗ < QLP(x∗). Given that QLP(x) is
convex, we have that the subgradient cut (7) is a valid inequality that cuts off the pair (x∗, θ∗) in
the (x, θ)-space. Therefore, instead of evaluating Q(x∗) exactly, we first evaluate QLP(x∗) and check
whether θ∗ < QLP(x∗). If so, we add the subgradient cut (7) to remove (x∗, θ∗). Otherwise, we compute
Q(x∗) and check whether θ∗ < Q(x∗). If so, we add the integer optimality cut (6). Otherwise, we
accept the solution. The key idea is to use QLP(x) as a proxy for Q(x) to check feasibility of a candidate
solution, preventing unnecessary, and more costly, computations of Q(x).

The modification just described is similar in spirit to sequential approximation schemes such as [16],
[6], [8], and [15], where the second-stage cost function Q(x) is approximated by linear programs which,
starting with QLP(x), are iteratively strengthened with additional cuts. Although these methods are
shown to converge after a finite number of steps, the convergence can be very slow and in practice
exact evaluations of Q(x) may be required. In contrast, in the context of the integer L-shaped method,
we propose to use QLP(x) as the unique intermediate approximation for Q(x), which is a simple yet
useful modification whose implementation is rather straightforward and, to the best of our knowledge,
has not been reported in the literature.

To implement the approach presented above, in addition to the set V of visited first-stage solutions
x for which Q(x) is known, we also keep a list VLP of solutions for which the continuous relaxation
QLP(x) has been computed. The modified strategy, which we call alternating cuts, proceeds as shown
in Algorithm 3.

Note that if x∗ /∈ VLP satisfies (7), then x∗ is included into VLP and thus the steps in lines 12–19 of
Algorithm 3 are applied to check whether (x∗, z∗, θ∗) is a feasible solution or not. As we shall see in
Section 5, this simple modification yields speedups of one order of magnitude on instances from the
literature.
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Algorithm 3 Optimality cut function with alternating cut strategy

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V, VLP
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: if x∗ /∈ VLP then
5: Compute QLP(x∗)
6: VLP ← VLP ∪ {x∗}
7: if θ∗ < QLP(x∗) then
8: Add the subgradient cut (7).
9: return false

10: end if
11: end if

// Now we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗)
12: Compute Q(x∗).
13: V ← V ∪ {x∗}
14: if θ∗ < Q(x∗) then
15: Add the integer optimality cut (6)
16: return false
17: else
18: return true
19: end if

3 New optimality cuts

In this section, we present a new class of integer optimality cuts that can be used as an alternative
to the standard cut (6). After providing an overview of the approach, we show how to construct a
cut-generating linear program to separate these new inequalities and then we discuss some implemen-
tation details. In this section we denote conv(T) the convex hull of a set T of real vectors.

Let S be the projection of the feasible set of (MP) onto the (x, θ)-space, which corresponds to the epi-
graph of Q(x) over X, i.e.,

S = {(x, θ) ∈ X×R : θ ≥ Q(x)} .

Let V ⊆ X be such that Q(x) is known for all x ∈ V. We have

S ⊆ S(X, V) :=
⋃

x∈V
{(x, θ) : θ ≥ Q(x)} ∪ (X \V)× {θ : θ ≥ L}.

In some sense, S(X, V) is the best approximation of S when only the values of Q(x) for x ∈ V are
known and only the trivial lower bound L is available over X \V. We consider the relaxation S(V) of
S(X, V) given by

S(X, V) ⊆ S(V) :=
⋃

x∈V
{(x, θ) : θ ≥ Q(x)} ∪ ({0, 1}n \V)× {θ : θ ≥ L}.

Figure 1 illustrates an example with x ∈ {0, 1}2 and V =
{(

1
0

)
,
(

1
1

)}
. The bold dots represent the

values of Q(x) that are known depending on whether x belongs to V or not. Then S(V) is given by the
union of the vertical rays.
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Figure 1: Illustration of S(V).

Observe that S(V) ⊆ S(U) for any U ⊆ V, and in particular, S(V) ⊆ S({x}) for x ∈ V. Moreover,
S(V) =

⋂
x∈V S({x}). Since (6) is a valid inequality for conv(S({x})), it is also valid for conv(S(V)). In

fact, (6) is the only nontrivial cut needed to describe conv(S({x})). However, in general, conv(S(V)) ⊆⋂
x∈V conv(S({x})) holds with strict containment, i.e., adding (6) for all x ∈ V does not yield conv(S(V)).

Our goal is to derive a compact extended formulation for conv(S(V)) and use it to generate optimality
cuts for a point (x∗, θ∗) in the (x, θ)-space that take into account the values of Q(x) for x ∈ V.

Continuing the example given by Figure 1 for x ∈ {0, 1}2 and V =
{(

1
0

)
,
(

1
1

)}
, Figure 2 shows

how additional information can improve our approximation of the convex hull of the epigraph of Q(x).
Figure 2a compares the standard optimality cut at (1, 1) with an improved cut which also takes Q(1, 0)
into account. Figure 2b shows that adding standard optimality cuts at (1, 0) and (1, 1) does not yield
conv(S(V)). In particular, it does not yield a tight formulation for {0, 1}n \V in the x-space.

Several steps of the construction of our cut-generating linear program rely on Lemma 1 below, which
follows from disjunctive programming [4] applied in the context of linear extended formulations of
polyhedra.

Lemma 1. Let P1, . . . , Pk be nonempty polyhedra in Rn having the same recession cone. If Pi = {x ∈ Rn| ∃yi ∈
Rmi : Eix + Fiyi ≥ hi}, then conv

(
∪k

i=1Pi

)
= {x ∈ Rn| ∃xi ∈ Rn, yi ∈ Rmi , λ ∈ Rk : x =

∑k
i=1 xi, Eixi + Fiyi ≥ λihi, ∑k

i=1 λi = 1, λ ≥ 0}.

3.1 Construction of CGLP

Clearly, we have conv(S(V)) = conv
(

PQ(V) ∪ PL(V)
)
, where

PQ(V) := conv

(⋃
x∈V
{(x, θ) : θ ≥ Q(x)}

)

and
PL(V) := conv({0, 1}n \V)× {θ : θ ≥ L}.
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(a) The standard cut at x = (1, 1) (light gray)
can be strengthened if Q(1, 0) is known
(dark gray).

(b) The approximation of the remaining solutions
(dark gray) given by standard cuts at (1, 0) and
(1, 1) (light gray) can be made exact (bold segment).

Figure 2: Improving the description of conv(S(V)).

Thus to describe conv(S(V)) it suffices to provide compact extended formulations for PQ(V) and PL(V)
and then apply disjunctive programming to their union as illustrated in Figure 3.

Figure 3: conv(S(V)) = conv
(

PQ(V) ∪ PL(V)
)
.

PQ(V) can be described as follows. Let V = {x1, . . . , xt}. Then PQ(V) is the set of vectors (xQ, θQ) ∈
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Rn ×R for which there exists φ ∈ Rt satisfying

−xQ +
t

∑
s=1

φsxs = 0

−θQ +
t

∑
s=1

φsQ(xs) ≤ 0

t

∑
s=1

φs = 1

φ ≥ 0.

To describe PL(V), it is enough to describe conv({0, 1}n \V) and then take its Cartesian product with
{θ : θ ≥ L}. We build on results from the forbidden-vertices problem [3] to do this.

Let Vi be the projection of V onto the first i coordinates. Define V̂1 := {0, 1} \ V1, V̂i := [Vi−1 ×
{0, 1}] \ Vi ⊆ {0, 1}i for i ≥ 2, and write V̂i = {vi

1, . . . , vi
ki
}. Finally, for all i, let Wij := V̂i × {0}j−i =

{wij
1 , . . . , wij

ki
} ⊆ {0, 1}j for all j ≥ i and define Wi := Win = {wi

1, . . . , wi
ki
} ⊆ {0, 1}n.

From [3], for all 1 ≤ j ≤ n− 1 we have

{0, 1}j+1 \V j+1 =
[(
{0, 1}j \V j

)
× {0, 1}

]
∪ V̂ j+1. (8)

The idea behind (8) is that any vector in {0, 1}j+1 \ V j+1 is such that either its projection onto {0, 1}j

does not lie in V j or is obtained by flipping the value of the last component of a vector in V j+1.

Example 2. Consider n = 3 and V =

{(
0
1
0

)
,
(

0
1
1

)
,
(

1
0
1

)}
. For j = 2, we have V2 =

{(
0
1

)
,
(

1
0

)}
and therefore {0, 1}2 \V2 =

{(
0
0

)
,
(

1
1

)}
. Clearly, any vector in {0, 1}3 whose projection onto {0, 1}2 lies

outside V2 must belong to {0, 1}3 \V. Hence [{0, 1}2 \V2]×{0, 1} =
{(

0
0
0

)
,
(

0
0
1

)
,
(

1
1
0

)
,
(

1
1
1

)}
⊆

{0, 1}3 \ V. On the other hand, we have V ⊆ V2 × {0, 1} =

{(
0
1
0

)
,
(

0
1
1

)
,
(

1
0
0

)
,
(

1
0
1

)}
, and thus

V̂3 = [V2 × {0, 1}] \ V =

{(
1
0
0

)}
⊆ {0, 1}3 \ V. Then we can verify that (8) holds for j = 2, i.e.,

{0, 1}3 \V =
[(
{0, 1}2 \V2)× {0, 1}

]
∪ V̂3.

We use the recursion (8) to derive an explicit extended formulation for conv({0, 1}n \V) havingO(n|V|)
variables and constraints.

Proposition 3. For all 2 ≤ j ≤ n, conv
(
{0, 1}j \V j) is given by all x ∈ Rj for which there exist vectors y, λ,
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and µ satisfying

−x + y +
j

∑
i=1

ki

∑
l=1

µi
lw

ij
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ j− 1

kj

∑
l=1

µ
j
l + λj−1 = 1

y1 = 0
yi − λi−1 ≤ 0 ∀2 ≤ i ≤ j
y ≥ 0, λ ≥ 0, µ ≥ 0.

Proof. We apply induction on 2 ≤ j ≤ n. The base case reduces to proving that conv
(
{0, 1}2 \V2) is

given by

−x + y +
2

∑
i=1

ki

∑
l=1

µi
lw

i2
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

k2

∑
l=1

µ2
l + λ1 = 1 (9)

y1 = 0
y2 − λ1 ≤ 0
y ≥ 0, λ ≥ 0, µ ≥ 0.

Indeed, from (8), we have

{0, 1}2 \V2 =
[(
{0, 1}1 \V1

)
× {0, 1}

]
∪ V̂2. (10)

By definition, we have W12 = V̂1 × {0} = ({0, 1} \V1)× {0}. Then observe that(
{0, 1}1 \V1

)
× {0, 1} = W12 +

{(
0
0

)
,
(

0
1

)}
,

and thus

conv
((
{0, 1}1 \V1

)
× {0, 1}

)
= conv

(
W12

)
+
{

y ∈ R2 : y1 = 0, 0 ≤ y2 ≤ 1
}

.

Writing W12 = {w12
1 , . . . , w12

k1
}, it follows that conv

((
{0, 1}1 \V1)× {0, 1}

)
is given by p ∈ R2 such
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that

−p + y +
k1

∑
l=1

µ1
l w12

l = 0

k1

∑
l=1

µ1
l = 1

y1 = 0
y2 ≤ 1

y ≥ 0, µ1 ≥ 0.

We also have by definition V̂2 = W22 = {w22
1 , . . . , w22

k2
}, and thus conv

(
V̂2) is given by q ∈ R2 such

that

−q +
k2

∑
l=1

µ2
l w22

l = 0

k2

∑
l=1

µ2
l = 1

µ2 ≥ 0.

From (10), we apply Lemma 1 to the above polytopes: we introduce a multiplier 0 ≤ λ1 ≤ 1, we
include the equation x = p + q, and we multiply the right-hand-side vectors of the first and second
systems by λ1 and 1− λ1, respectively. After eliminating p and q, we immediately obtain the desired
system (9) for conv

(
{0, 1}2 \ V2).

Now, assuming that the claim holds for some 2 ≤ j ≤ n− 1, we will prove that it also holds for j + 1.
Since conv

(
({0, 1}j \ V j)× {0, 1}

)
= conv

(
({0, 1}j \ V j)

)
× [0, 1], by the inductive hypothesis, we

have that conv
(
({0, 1}j \ V j)× {0, 1}

)
is given by p ∈ Rj+1 satisfying

−p + y +
j

∑
i=1

ki

∑
l=1

µi
lw

ij+1
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ j− 1

kj

∑
l=1

µ
j
l + λj−1 = 1

y1 = 0
yi − λi−1 ≤ 0 ∀2 ≤ i ≤ j
yj+1 ≤ 1
y ≥ 0, λ ≥ 0, µ ≥ 0,

where we have appended a new variable 0 ≤ yj+1 ≤ 1 and vectors wij
l have been extended to wij+1

l by
appending another component with value 0.
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We also have that conv
(
V̂ j+1) is given by q ∈ Rj+1 satisfying

−q +
kj+1

∑
l=1

µ
j+1
l wj+1j+1

l = 0

kj+1

∑
l=1

µ
j+1
l = 1

µj+1 ≥ 0.

From (8), it is enough to apply Lemma 1 to the above polytopes to find an extended formulation for
conv

(
{0, 1}j+1 \V j+1). Analogously to the base case, we introduce a multiplier 0 ≤ λj ≤ 1, we include

the equation x = p + q, and we multiply the right-hand-side vectors of the first and second systems by
λj and 1− λj, respectively. After eliminating p and q, we immediately obtain the desired system for
conv

(
{0, 1}j+1 \ V j+1).

From Proposition 3, we obtain that conv({0, 1}n \V) is given by the vectors xL ∈ Rn such that

−xL + y +
n

∑
i=1

ki

∑
l=1

µi
lw

i
l = 0

k1

∑
l=1

µ1
l − λ1 = 0

ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ n− 1

kn

∑
l=1

µn
l + λn−1 = 1

y1 = 0
yi − λi−1 ≤ 0 ∀2 ≤ i ≤ n
y ≥ 0, λ ≥ 0, µ ≥ 0.

Appending the variable θL and the constraint θL ≥ L to the above system gives an extended formula-
tion for PL(V). Note that excluding the nonnegativity restrictions, the constraint matrix has 3n rows
and 3n +O(n|V|) columns, i.e, only its width changes with V. In particular, updating the formulation
can be done columnwise, which is a desirable property from the computational point of view.

Once again, we apply disjunctive programming, but this time to PL(V) and PQ(V) to derive an ex-
tended formulation for conv(S(V)). Note that both PL(V) and PQ(V) have {(0, θ) ∈ Rn ×R : θ ≥ 0}
as their recession cone and thus Lemma 1 applies. We introduce a multiplier 0 ≤ δ ≤ 1, we include the
equations x = xL + xQ and θ = θL + θQ, and we multiply the right-hand-side vectors of the systems
defining PL(V) and PQ(V) by δ and 1− δ, respectively.

Recall that in the definition of S(V) we have dropped the dependence on X. To recover part of that
information, we can describe a polyhedron that lies between conv(S) and conv(S(V)). For that, PL(V)
can be coupled with any valid inequality for (MP). In particular, including variables z ≥ 0 and the
system AxL + Cz ≤ b tightens the formulation. Lower bounds of the form ΠxL − 1θL ≤ π0 can be
useful too to better approximate the shape of the epigraph S of Q(x). Thus we may assume that both
types of constraints are added to the formulation of PL(V), and that θL ≥ L is absorbed in ΠxL− 1θL ≤
π0.
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Finally, we obtain that if (x∗, θ∗) does not belong to conv(S(V)), and thus not to conv(S), then the
following system is infeasible:

(α) xL + xQ = x∗

(β) θL + θQ = θ∗

(σ) −xL + y +
n

∑
i=1

ki

∑
l=1

µi
lw

i
l = 0

(ρ1)
k1

∑
l=1

µ1
l − λ1 = 0

(ρi)
ki

∑
l=1

µi
l + λi−1 − λi = 0 ∀2 ≤ i ≤ n− 1

(ρn)
kn

∑
l=1

µn
l + λn−1 − δ = 0

(ϕ1) y1 = 0
(ϕi) yi − λi−1 ≤ 0 ∀2 ≤ i ≤ n

(ψ) ΠxL − 1θL − π0δ ≤ 0

(ν) AxL + Cz− bδ ≤ 0

(γ) −xQ +
t

∑
s=1

φsxs = 0

(τ) −θQ +
t

∑
s=1

φsQ(xs) ≤ 0

(η)
t

∑
s=1

φs + δ = 1

y ≥ 0, λ ≥ 0, µ ≥ 0
φ ≥ 0
δ ≥ 0.

By Farkas’ Lemma, and after removing redundancies, we arrive at the alternative system

x∗α + θ∗β + η < 0

α− σ + A>ν + Π>ψ = 0
β− 1ψ = 0

−ρn + η − bν− π0ψ ≥ 0

C>ν ≥ 0
σi + ϕi ≥ 0 2 ≤ i ≤ n

−ρi + ρi+1 + ϕi+1 ≥ 0 1 ≤ i ≤ n− 1

wi
lσ + ρi ≥ 0 1 ≤ n, 1 ≤ l ≤ ki

xsα + Q(xs)β + η ≥ 0 1 ≤ s ≤ t
β ≥ 0, ϕ ≥ 0, ν ≥ 0, ψ ≥ 0.

Thus, any feasible solution to the above system yields an inequality αx + βθ ≥ −η that is valid for
conv(S), but is violated by (x∗, θ∗).
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For finite termination of the integer L-shaped method, we need a tightness condition at the current
solution, namely αx∗ + βQ(x∗) = −η. Including this condition yields 0 > x∗α + θ∗β + η = x∗α +
βQ(x∗)+ η− βQ(x∗)+ θ∗β = β(θ∗−Q(x∗)). Since θ∗ < Q(x∗), we conclude that β > 0 in any feasible
tight solution. Therefore, we replace the condition x∗α + θ∗β + η < 0 with x∗α + Q(x∗)β + η = 0 and
the normalization β = 1. Note that the objective function of the resulting linear program is fixed to
zero, and we only need to find a feasible solution, which always exists by definition of the system; in
particular, (6) is feasible. We arrive at the following result.

Proposition 4. Let (x∗, θ∗) ∈ {0, 1}n ×R be such that θ∗ < Q(x∗). Set xt := x∗ and let V = {x1, . . . , xt}
be the set of solutions for which Q(x) is known. Consider the cut-generating linear program CGLP below

α− σ + A>ν + Π>ψ = 0
1ψ = 1

−ρn + η − bν− π0ψ ≥ 0

C>ν ≥ 0
σi + ϕi ≥ 0 2 ≤ i ≤ n

−ρi + ρi+1 + ϕi+1 ≥ 0 1 ≤ i ≤ n− 1

wi
lσ + ρi ≥ 0 1 ≤ i ≤ n, 1 ≤ l ≤ ki (11)

xsα + η ≥ −Q(xs) 1 ≤ s < t (12)
xtα + η = −Q(xt) (13)

ϕ ≥ 0, ν ≥ 0, ψ ≥ 0,

where

1. (A, C, b) defines the system (1),

2. (Π, π0) defines a collection Πx− 1θ ≤ π0 of affine lower bounds that includes θ ≥ L, and

3. the vectors wi
l are given by the definition of Wi in Section 3.1.

Then any feasible solution to CGLP yields an optimality cut of the form

αx + θ ≥ −η (14)

that is tight at x∗ and thus is violated by (x∗, θ∗).

3.2 Implementation

The main difference that we are proposing with the standard implementation is the use of the CGLP-
based cut (14) in place of (6). This requires keeping a list V of first-stage solutions for which Q(x) has
been computed and updating CGLP accordingly. Algorithm 4 shows the procedure.

A key step is found in line 7 of Algorithm 4 as conv(S(V)) has to be recomputed whenever a new
vector x∗ is added to V. Of course, we could derive CGLP from scratch every time. Doing so requires
computing the sets Wi and thus creating O(n|V|) constraints in (11). Instead, we propose to perform
marginal updates from an iteration to the next one using the fact that Wi = V̂i × {0}n−i.

Let Vt = {x1, . . . , xt} be the set of the first t solutions found along the master tree. Similarly, let Vi
t be

the projection of Vt onto the first i components and set V̂i
t := [Vi−1

t ×{0, 1}] \Vi
t with V̂1

t := {0, 1} \V1
t .
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Algorithm 4 Optimality cut function with CGLP-based optimality cuts

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: Compute QLP(x∗)
5: Add the subgradient cut (7)
6: Compute Q(x∗)
7: Update CGLP.
8: V ← V ∪ {x∗}
9: if θ∗ < Q(x∗) then

10: Solve CGLP to obtain α and η
11: Add the integer optimality cut (14)
12: return false
13: else
14: return true
15: end if

Suppose a new vector xt+1 = (x1, . . . , xn) is to be included and let Vt+1, Vi
t+1, V̂i

t+1 be the updated
sets. Let x̄i := (x1, . . . , xi−1, xi) and x̂i := (x1, . . . , xi−1, 1− xi). Clearly, we have Vt+1 = Vt ∪ {xt+1}
and Vi

t+1 = Vi
t ∪ {x̄i}. Now, to obtain V̂i

t+1, observe that

V̂i
t+1 =

[
Vi−1

t+1 × {0, 1}
]
\Vi

t+1

=
[
Vi−1

t × {0, 1} ∪ {x̂i, x̄i}
]
\
[
Vi

t ∪ {x̄i}
]

=
[
Vi−1

t × {0, 1} ∪ {x̂i}
]
\
[
Vi

t ∪ {x̄i}
]

=
([

Vi−1
t × {0, 1}

]
\
[
Vi

t ∪ {x̄i}
])
∪
(
{x̂i} \

[
Vi

t ∪ {x̄i}
])

=
(

V̂i
t \ {x̄i}

)
∪
(
{x̂i} \ Vi

t

)
.

Therefore, if x̂i /∈ V̂i
t and x̂i /∈ Vi

t , then x̂i is included in V̂i
t+1. Also, if x̄i ∈ V̂i

t , then x̄i is removed to
obtain V̂i

t+1. Further observe that both operations cannot occur at the same iteration since the equiva-
lence

x̄i ∈ V̂i
t ⇐⇒ x̂i ∈ Vi

t ∧ x̄i /∈ Vi
t

implies that x̂i /∈ Vi
t and x̄i ∈ V̂i

t cannot hold true at the same time.

It follows that updating V involves adding or removing at most one vector for each Wi, totaling at
most n such operations. The system CGLP is updated accordingly by appending or dropping at most
n rows in (11). Also, xt+1 takes the place of xt in (13) and the cut corresponding to xt now takes the
form (12) by changing the equality sign into inequality. The procedure to update CGLP is shown in
Algorithm 5.
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Algorithm 5 Updating CGLP

Input: CGLP, Vi, V̂i, t, xt+1 = (x1, . . . , xn)
Output: Updated CGLP, Vi, V̂i

1: for 1 ≤ i ≤ n do
2: x̄i ← (x1, . . . , xi−1, xi)
3: x̂i ← (x1, . . . , xi−1, 1− xi)
4: if x̂i /∈ V̂i and x̂i /∈ Vi then
5: w← x̂i × {0}n−i

6: Add wσ + ρi ≥ 0 to (11)
7: V̂i ← V̂i ∪ {x̂i}
8: end if
9: if x̄i ∈ V̂i then

10: w← x̄i × {0}n−i

11: Remove wσ + ρi ≥ 0 from (11)
12: V̂i ← V̂i \ {x̄i}
13: end if
14: Vi ← Vi ∪ {x̄i}
15: end for
16: Add xtα + Q(xt) + η ≥ 0 to (12)
17: Replace (13) with xt+1α + Q(xt+1) + η = 0

4 Combined method

Now we outline an implementation of the integer L-shaped method that combines the alternating
strategy discussed in Section 2 with the new optimality cuts presented in Section 3.

We keep two disjoint lists of first-stage solutions: in VLP we include solutions for which only QLP(x)
has been computed, while in V we keep solutions for which Q(x) has been evaluated. At any given
stage, we assume that for each x ∈ V we have added an optimality cut that is tight at x. Now, when
a candidate integer solution (x∗, z∗, θ∗) is found in the master tree, we check whether x∗ ∈ V or not.
If so, we accept the solution as we already know Q(x∗) ≤ θ∗. Now, if x∗ /∈ VLP, then we compute
QLP(x∗), we add x∗ into VLP, and in case θ < QLP(x∗), we add the subgradient cut (7). At this point, if
(x∗, θ∗) has been neither accepted nor rejected, we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗). Thus we compute
Q(x∗), we move x∗ from VLP to V, and in case θ < Q(x∗), we add the CGLP-based cut (14) and accept
the solution otherwise. Algorithm 6 presents the method.

5 Results

In this section we address the performance of the variants of the integer L-shaped method discussed
so far. Given that the implementations differ in the cut strategy used and in the type of optimality cut
added, we consider the following combinations:

1. Std-Std: standard cut strategy and standard optimality cut (6); see Section 1.

2. Alt-Std: alternating cut strategy and standard optimality cut (6); see Section 2.

3. Std-CGLP: standard cut strategy and new optimality cut (14); see Section 3.

4. Alt-CGLP: alternating cut strategy and new optimality cut (14); see Section 4.
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Algorithm 6 Optimality cut function with alternating cut strategy and CGLP-based optimality cuts

Input: (x∗, z∗, θ∗) candidate integer solution, Q : X → R, QLP : X → R, V, VLP
Output: true if solution is feasible, false otherwise

1: if x∗ ∈ V then // We know θ∗ ≥ Q(x∗)
2: return true
3: end if
4: if x∗ /∈ VLP then
5: Compute QLP(x∗).
6: VLP ← VLP ∪ {x∗}.
7: if θ∗ < QLP(x∗) then
8: Add the subgradient cut (7).
9: return false

10: end if
11: end if

// Now we have x∗ ∈ VLP and θ∗ ≥ QLP(x∗)
12: Compute Q(x∗).
13: Update CGLP.
14: V ← V ∪ {x∗}.
15: VLP ← VLP \ {x∗}
16: if θ∗ < Q(x∗) then
17: Solve CGLP to obtain α and η
18: Add the integer optimality cut (14)
19: return false
20: else
21: return true
22: end if

In other words, Std-Std corresponds to the usual implementation of the integer L-shaped method, on
top of which the variants are built.

Our computational implementation uses CPLEX 12.5.0.1 as a solver and its Callable Library for ad-
vanced control routines. Since either optimality cuts (6) or (14) are part of the complete formulation
(MP) but not included from the beginning, we have to add them on-the-fly through the optimality cut
function. This routine is called every time the solver finds a candidate integer solution to the master
problem and is in charge of generating an optimality cut if needed. In the case of CGLP, it calls addi-
tional subroutines to make the required updates to generate (14). We include the formulation of the
first-stage set in CGLP, along the subgradients cuts derived from the linear relaxation of Q(x) used in
Benders’ decomposition.

The experiments were carried out on a personal computer with 3.33 Ghz CPU, 4 Gb of RAM, and
running Linux. A relative optimality gap of 0.01% was set as stopping criterion and a time limit of
7200 seconds was imposed. We do not report on the extensive form of the instances as solving them
using an off-the-shelf solver is much slower than the decomposition approaches.

5.1 Stochastic server location problem

The stochastic server location problem is described in [13]. Given n locations, in the first stage we are
asked to decide where to place servers so that the demand given by m potential customers is satisfied
in the second stage. The uncertain data is the set of customers to be served in the second stage and the
objective is to maximize the expected second-stage revenue minus the first-stage installation costs. In
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minimization form, the problem can be written as

min cx + Q(x)
s.t. x ∈ {0, 1}n,

where Q(x) := Eξ [Qξ(x)] and

Qξ(x) := min q1y + q2s
s.t. W1y + W2s ≥ h(ξ)− Tx

y ∈ {0, 1}nm

s ∈ Rn
+.

The random right-hand-side vector h(ξ) represents the set of active customers in a given scenario.

We tested our methods on the instances presented in [14] which are part of the Stochastic Integer
Programming Library SIPLIB [1]. Instances SSLP.n.m.k have n locations, m customers, and k scenarios,
leading to n binary variables in the first stage and nm binary variables and n nonnegative variables per
scenario in the second stage. For each n and m, five replications with k scenarios each are considered.
We did not include instances having n = 5 as all of them took less than 1 second to solve with any
method.

Tables 1 and 2 summarize our results. In both tables, column Instance indicates the combination of n,
m and k as above. Headers Std-Std, Alt-Std, Std-CGLP, Alt-CGLP denote the type of implementation
under consideration. Here we present the averages over the five replications of each instance. Detailed
results are given in Tables 6 and 7 in the Appendix.

In Table 1 we present the overall results for all four methods. Columns Nodes show the average number
of nodes explored in the master problem. Columns Time show the average total time spent to reach
optimality, which includes computing an initial lower bound L, solving the LP relaxation with Benders’
decomposition, and exploring and evaluating candidate solutions in the master problem.

From Table 1, we see that there is no significant variation in the number of explored nodes among the
different methods. In terms of solution time, the implementations that use the alternating cut strategy
clearly outperform the other two methods, with speedups of one order of magnitude. On the other
hand, with a few exceptions, the use of CGLP-based cuts does not cause major changes in the total
running time, especially when combined with the alternating cut strategy. This can be explained by
the fact that in these problems, the first-stage is very simple as X = {0, 1}n with n ≤ 15, which does
not present a challenge for CPLEX.

To understand the effect of alternating cuts, in Table 2 we present details regarding subproblems. Recall
that every time a candidate integer solution is found, we have to check whether it is feasible, by either
solving a series of MIPs or LPs, one per scenario, and then add a cut to discard the solution if necessary.
Headers #LP and #MIP denote the average number of times a candidate solution was checked using
linear or mixed-integer subproblems, while headers Time LP and Time MIP indicate the average time
spent in each case. We focus only on the implementations Std-Std and Alt-Std as the comparison for
the remaining pair is similar.

From Table 2, we see that with the alternating cut strategy the number of MIP evaluations reduces
considerably. This means that in the problems we tested, most of the time it is not necessary to com-
pute the exact second-stage value of a given first-stage solution to reject it. Furthermore, only a small
fraction of these solutions are visited twice, and only in those cases we have to solve MIP subproblems.
The benefits are evident.
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Instance Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

SSLP.10.50.50 402.4 70.9 394.8 71.5 406.8 6.8 404.2 6.8
SSLP.10.50.100 370.2 91.1 373.0 90.5 371.8 13.2 371.0 13.6
SSLP.10.50.500 381.0 548.5 385.0 561.7 386.8 64.0 385.0 65.5
SSLP.10.50.1000 360.0 1294.1 357.8 1307.1 367.4 128.2 368.2 129.3
SSLP.10.50.2000 392.2 3298.0 371.4 3160.7 404.4 339.3 404.6 336.7
SSLP.15.45.5 772.6 81.5 750.2 89.0 763.4 2.7 764.6 2.8
SSLP.15.45.10 1408.0 400.9 1370.8 353.6 1450.8 6.1 1414.0 6.5
SSLP.15.45.15 1500.0 534.3 1498.4 539.1 1526.0 11.7 1523.6 11.9
SSLP.15.45.20 495.6 358.4 481.4 347.8 500.4 8.0 502.4 8.1
SSLP.15.45.25 733.0 708.4 698.8 704.9 737.8 16.7 732.2 17.4

Table 1: Stochastic server location: overall results.

Instance Std-Std Alt-Std
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

SSLP.10.50.50 147.6 147.6 1.8 65.8 148.6 3.4 1.7 1.8
SSLP.10.50.100 131.6 131.6 3.3 81.0 130.8 3.8 3.0 3.5
SSLP.10.50.500 131.6 131.6 16.4 497.2 130.6 3.0 14.8 15.2
SSLP.10.50.1000 132.0 132.0 33.6 1193.3 127.2 3.0 30.2 32.8
SSLP.10.50.2000 142.6 142.6 72.4 3082.5 143.4 4.2 67.3 133.2
SSLP.15.45.5 143.0 143.0 0.3 80.6 143.2 5.8 0.3 1.9
SSLP.15.45.10 262.0 262.0 1.1 398.2 268.5 5.3 1.1 3.6
SSLP.15.45.15 310.6 310.6 1.9 530.1 317.4 6.0 1.9 7.9
SSLP.15.45.20 99.4 99.4 0.7 356.1 98.4 3.2 0.7 5.9
SSLP.15.45.25 162.4 162.4 1.5 704.3 163.0 5.4 1.4 12.8

Table 2: Stochastic server location: subproblems details.

5.2 Stochastic multiple binary knapsack problem

The second benchmark set corresponds to a class of stochastic multiple binary knapsack problems.
They have the form

min cx + dz + Q(x)
s.t. Ax + Cz ≥ b

x ∈ {0, 1}n

z ∈ {0, 1}n,

where Q(x) := Eξ [Qξ(x)],

Qξ(x) := min q(ξ)y
s.t. Wy ≥ h− Tx

y ∈ {0, 1}n,

and all data are nonnegative integers. In the second-stage problem, only the objective vector q(ξ) is
random, following a discrete distribution with finitely many scenarios.

We generated 30 instances of the above problem with n = 120 and 20 equiprobable scenarios. The
systems Ax + Cz ≥ b and Wy ≥ h− Tx have 50 and 5 rows, respectively. The entries of A, C, T, W, c,
d, and q are i.i.d. sampled from the uniform distribution over {1, . . . , 100}. We set b = 3

4 (A1 + C1) and
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h = 3
4 (T1 + W1), with 1 denoting the n-dimensional vector of ones. These instances can be found in

SIPLIB [1].

We divided the instances intro three groups depending on how much time the standard implemen-
tation took to solve each of them: Easy (less than 200 seconds, instances 1–6), Medium (between 200
and 1000 seconds, instances 7–18), and Hard (more than 1000 seconds, instances 19–29). We ommitted
instance 30 since none of the methods was able to solve it to optimality within the time limit.

Tables 3, 4, and 5 below summarize the results. Column Difficulty denotes the instance class. The
remaining headers and columns are as in Tables 1 and 2. Detailed results are given in Tables 8, 9, and
10 in the Appendix.

Difficulty Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

Easy 151531.5 87.1 127696.0 82.5 154611.7 86.0 133724.2 82.8
Medium 945487.8 520.8 714822.5 453.8 940249.3 516.1 748502.7 446.7

Hard 3356158.1 2125.7 2654448.1 1833.6 3371088.5 2065.2 2656526.5 1756.3

Table 3: Stochastic multiple knapsack: overall results.

From Table 3, we see that the application of the alternating cut strategy does not yield the time savings
we saw with the stochastic server location problems. On the other hand, in most instances, adding
CGLP-based cuts instead of standard cuts yields reductions in both the number of nodes and the total
time, regardless of the cut strategy being used. We would like to conclude that these improvements
are due to the fact that CGLP-based cuts help to explore the master tree. However, at this point, that is
not completely clear, as for example, time reductions could be consequence of less evaluations of Q(x)
and not because of the strength of the new cuts.

To aid our analysis, in Table 4 we report the average number of candidate solutions for which QLP(x)
and Q(x) were evaluated and the average time spent doing so. This time we compare Std-Std and
Std-CGLP, and the notation is similar to that of Table 2.

Difficulty Std-Std Std-CGLP
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

Easy 13.7 13.7 0.0 25.7 14.7 14.7 0.0 28.1
Medium 49.2 49.2 0.1 99.1 54.1 54.1 0.1 107.2

Hard 112.3 112.3 0.2 231.6 114.9 114.9 0.2 235.8

Table 4: Stochastic multiple knapsack: subproblems details.

We observe that both implementations require roughly the same number of evaluations of both QLP(x)
and Q(x), which explains why alternating cuts does not outperform the standard cut strategy. More-
over, the difference in the time solving subproblems is very small compared to the total running times
presented in Table 3. Thus, the reductions observed in Table 3 can be attributed to the better approxi-
mation of the first-stage set given by the CGLP-based cuts and not to the variability of the evaluations.
In this regard, it is important to stress that, in principle, having a better description of the first-stage set
does not have a direct relationship with the number of candidates solutions found in the master tree,
and actually, having more candidates could hurt the total running time if their evaluation is too costly.
However, in situations where after decomposing the problem the burden of the computation lies on
the master problem, our improved cuts may prove beneficial as exemplified by our results.

Finally, in Table 5 we present the overhead incurred by using CGLP to generate cuts, that is, the time
spent in additional operations to maintain and solve CGLP through the method. For each class, column
|V| shows the average final size of V, which is the number of candidate solutions for which Q(x)
was evaluated exactly. Headers Update and Generate denote the average total time spent updating
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the formulation of CGLP and actually solving the system to find an optimality cut, respectively. This
additional time is already included in the total running time presented in Table 3.

Difficulty |V| Update Generate
Easy 14.7 0.0 0.5

Medium 54.1 0.2 7.2
Hard 114.9 0.4 24.7

Table 5: Stochastic multiple knapsack: CGLP overhead.

As expected, the overhead increases as more solutions are included in the extended formulation. Up-
dating CGLP takes practically no time, whereas generating the cut takes a nonnegligible amount of
time. However, compared to the total running time, the overhead is very small and the effort of com-
puting improved cuts pays off as shown in Table 3. For more complicated problems where the number
of binary first-stage variables is too large or where too many candidate solutions are evaluated, the cost
of maintaining CGLP is likely to be higher. In those cases, we can enforce rules to limit the number of
calls to CGLP, such as using the standard optimality cuts as a baseline and applying the improved cuts
only once in a while.

6 Concluding remarks

In this work, we have presented two modifications to the integer L-shaped method with the objective
of reducing the running time of the algorithm. The first one, termed alternating cuts strategy, seeks
to avoid expensive evaluations of the second-stage cost function, while the second, the use of CGLP-
based optimality cuts, helps to better approximate the shape of the epigraph of the cost function when
evaluations at different points are available. Our computational results suggest the following:

1. The alternating cuts strategy works better in problems where the computational bottleneck of
(IP) is in evaluating Q(x). Even when that is not the case, this modification does not seem to hurt
the total running times and thus it could be considered as the base method on top of which more
evolved algorithms can be built.

2. CGLP-based cuts are a viable alternative when the first-stage set is difficult to explore and com-
puting Q(x) is a relatively cheap operation. As the sole purpose of these new cuts is to have a
better representation of the epigraph of the second-stage cost function within the master problem,
there is no guarantee about the number or the sequence of solutions for which Q(x) is evaluated,
and thus, in general, this method performs well when the impact of this variability is small com-
pared with the effort of solving the master problem.

3. We also point out that our overall computational experience indicates that CGLP-based cuts are
particularly suitable for problems having additional integer variables in the set Z, since a deep
cut discarding a point (x∗, θ∗) in the (x, θ)-space may also prove effective in discarding a large
number of points of the form (x∗, z, θ∗) for z ∈ Z.

4. As favorable conditions for both modifications are unlikely to be attained at the same time, we
observe that time reductions in a combined method are mainly consequence of one strategy or
the other, but not because of the combination of both. That being said, it would be interesting to
experiment with implementations where CGLP also incorporates approximations of Q(x) such as
subgradient cuts or ad-hoc lower bounds rather than exact evaluations only. That would require
also keeping track of firt-stage vectors x for which estimates of Q(x) have been computed.

5. Finally, in more general settings where Q(x) is an easy-to-evaluate nonconvex function for which
a tractable convex underestimator is not available, CGLP-based cuts may prove helpful in solving
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problems having the form (IP). Situations where Q(x) is given by black-box computations remain
a case study to be explored.
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Appendix

Stochastic server location problem

Instance Rep. Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

SSLP.10.50.50

a 478 61.1 485 67.8 468 7.0 466 7.1
b 452 91.3 434 85.5 472 6.7 466 6.7
c 300 79.3 297 80.0 303 7.0 298 7.1
d 237 25.3 224 26.9 230 5.0 230 5.0
e 545 97.5 534 97.2 561 8.2 561 8.3

SSLP.10.50.100

a 452 109.7 434 106.2 462 17.1 470 18.3
b 497 80.3 494 83.7 493 11.0 493 11.1
c 313 95.3 291 98.0 302 12.8 289 13.6
d 216 49.5 224 43.6 229 10.7 229 10.5
e 373 120.5 422 121.0 373 14.2 374 14.4

SSLP.10.50.500

a 466 605.5 470 643.9 472 63.3 476 63.5
b 441 482.6 447 492.9 449 57.7 449 57.8
c 277 571.7 292 557.6 275 64.0 271 64.8
d 235 348.8 239 353.5 247 57.5 247 57.6
e 486 733.8 477 760.8 491 77.5 482 84.0

SSLP.10.50.1000

a 481 1542.1 473 1549.6 486 134.5 487 135.4
b 473 1128.7 477 1142.2 460 114.5 466 116.8
c 276 1509.3 261 1509.7 282 124.2 279 125.5
d 225 752.8 227 782.2 229 113.2 229 113.7
e 345 1537.6 351 1551.8 380 154.4 380 155.3

SSLP.10.50.2000

a 466 3777.1 467 3769.2 472 382.7 478 373.2
b 472 2565.3 471 2751.8 483 246.7 478 251.0
c 286 3189.4 286 3158.8 302 368.9 300 360.5
d 219 1937.1 219 1994.5 223 249.0 225 249.4
e 518 5021.2 414 4129.2 542 449.4 542 449.6

SSLP.15.45.5

a 230 11.3 233 11.6 244 0.7 244 0.7
b 261 2.9 262 3.0 270 0.5 262 0.5
c 2364 320.9 2288 354.9 2298 9.9 2294 10.2
d 870 56.2 826 58.7 872 1.4 888 1.7
e 138 16.4 142 16.8 133 1.0 135 1.0

SSLP.15.45.10

a 430 79.0 442 80.1 429 2.7 428 2.8
b 284 189.0 251 190.9 256 6.2 278 7.6
c 2384 245.0 2240 236.6 2512 7.4 2449 7.7
d 2534 1090.7 2550 906.8 2606 7.9 2501 8.0

SSLP.15.45.15

a 1408 1646.1 1329 1594.5 1368 13.1 1358 13.3
b 223 55.7 216 55.5 212 2.3 219 2.3
c 2676 580.6 2718 611.0 2791 19.0 2785 18.9
d 2986 359.1 2994 404.1 3038 22.3 3024 23.0
e 207 30.1 235 30.2 221 1.9 232 1.9

SSLP.15.45.20

a 498 186.4 469 181.4 506 4.0 523 4.1
b 351 87.2 335 87.5 341 7.6 331 7.6
c 380 196.8 358 193.4 380 5.1 387 5.2
d 552 873.0 548 898.1 560 20.7 562 20.9
e 697 448.4 697 378.5 715 2.8 709 2.8

SSLP.15.45.25

a 658 554.1 629 532.0 662 18.4 633 18.5
b 671 324.7 620 435.1 670 9.0 680 6.7
c 433 165.2 399 160.7 447 11.8 422 11.9
d 965 435.2 946 465.7 967 26.9 1001 32.3
e 938 2062.7 900 1931.0 943 17.6 925 17.8

Table 6: Stochastic server location: overall results per instance.
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Instance Rep. Std-Std Alt-Std
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

SSLP.10.50.50

a 189 189 2.2 55.5 185 3 2.1 1.7
b 154 154 1.6 86.2 166 3 1.6 1.6
c 113 113 1.6 74.5 109 4 1.6 2.3
d 44 44 0.6 21.3 45 2 0.6 0.9
e 238 238 2.8 91.6 238 5 2.7 2.6

SSLP.10.50.100

a 181 181 4.3 98.4 183 6 3.9 6.4
b 176 176 4.0 69.7 175 2 3.7 0.9
c 112 112 3.1 86.2 109 5 2.9 4.1
d 51 51 1.3 40.9 50 2 1.2 2.2
e 138 138 3.7 109.8 137 4 3.3 4.0

SSLP.10.50.500

a 178 178 21.1 549.8 179 2 19.1 11.0
b 152 152 17.8 428.5 150 2 15.2 7.4
c 89 89 13.7 523.9 89 4 12.0 18.6
d 56 56 8.1 303.3 56 2 8.1 12.4
e 183 183 21.1 680.4 179 5 19.8 26.7

SSLP.10.50.1000

a 188 188 46.4 1429.6 185 3 41.9 29.4
b 163 163 36.6 1028.5 156 2 32.4 21.2
c 106 106 29.6 1410.1 95 3 25.8 30.2
d 56 56 16.0 665.2 55 2 15.3 27.3
e 147 147 39.4 1433.1 145 5 35.5 56.1

SSLP.10.50.2000

a 184 184 92.6 3548.0 181 5 82.4 169.9
b 158 158 70.3 2352.7 156 2 65.4 44.2
c 98 98 60.7 2980.4 103 5 56.6 167.0
d 59 59 34.2 1746.0 58 2 31.2 62.1
e 214 214 104.3 4785.4 219 7 101.0 222.7

SSLP.15.45.5

a 28 28 0.1 10.9 28 2 0.1 0.2
b 42 42 0.1 2.5 41 4 0.1 0.2
c 481 481 1.0 318.3 496 17 0.9 7.7
d 154 154 0.3 55.2 141 4 0.3 0.6
e 10 10 0.0 16.1 10 2 0.0 0.7

SSLP.15.45.10

a 93 93 0.3 77.8 90 2 0.3 1.6
b 68 68 0.2 188.2 67 5 0.2 5.4
c 501 501 2.2 240.1 538 9 2.3 2.9
d 386 386 1.7 1086.8 379 5 1.7 4.4

SSLP.15.45.15

a 263 263 1.6 1642.3 262 4 1.5 9.7
b 41 41 0.2 54.4 39 2 0.2 1.0
c 623 623 4.3 572.8 645 16 4.4 11.8
d 597 597 3.3 352.0 613 6 3.1 16.2
e 29 29 0.2 29.0 28 2 0.2 0.8

SSLP.15.45.20

a 134 134 0.9 183.7 132 2 0.9 1.4
b 63 63 0.4 85.1 61 2 0.4 5.6
c 61 61 0.4 195.2 60 4 0.4 3.6
d 148 148 1.1 870.2 145 6 1.0 18.0
e 91 91 0.7 446.2 94 2 0.7 0.7

SSLP.15.45.25

a 156 156 1.3 550.0 147 4 1.2 14.4
b 135 135 1.3 321.0 148 4 1.4 5.3
c 73 73 0.6 162.1 74 4 0.6 8.8
d 213 213 2.2 430.0 215 7 2.1 21.9
e 235 235 2.0 2058.5 231 8 1.9 13.7

Table 7: Stochastic server location: subproblems details per instance.
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Stochastic multiple binary knapsack problem

Instance Std-Std Std-CGLP Alt-Std Alt-CGLP
Nodes Time Nodes Time Nodes Time Nodes Time

1 27705 26.4 27615 27.0 27837 25.5 26295 24.9
2 63528 41.1 55448 38.6 65213 41.1 57170 38.2
3 93185 59.9 87560 60.2 101121 57.8 81480 50.9
4 137303 101.1 121687 97.3 132782 89.1 127963 89.1
5 224063 107.2 183462 94.1 244755 112.1 251017 128.3
6 363405 186.6 290404 177.5 355962 190.1 258420 165.5
7 503998 245.8 401809 204.4 517313 250.4 397677 200.2
8 436738 267.5 310136 218.0 431356 249.3 334569 214.8
9 470356 273.3 451931 269.7 502174 280.5 450104 254.8
10 507120 315.6 320672 251.1 518329 333.1 342582 257.5
11 623424 379.4 675292 404.9 637749 422.5 615580 342.6
12 887595 468.7 672117 422.7 954211 502.8 741931 436.2
13 1099397 541.0 1024147 692.2 1172464 579.1 984003 527.4
14 1416129 686.6 880154 516.9 1484427 711.5 1057895 600.3
15 1650580 714.4 1120524 509.8 1692521 726.8 1148229 516.0
16 1322774 749.9 832266 533.7 1013473 572.2 956447 579.2
17 1197577 771.1 900476 652.4 1192205 753.2 974525 686.0
18 1230166 836.7 988346 769.7 1166769 811.6 978490 745.9
19 2189204 1158.0 1618305 950.0 2225393 1160.4 1713778 962.0
20 2395096 1460.9 1663945 1142.5 2383548 1404.2 1756720 1109.5
21 3277812 1488.2 2789613 1328.8 3563188 1603.1 3144784 1499.3
22 2702878 1664.7 2244862 1422.6 2816341 1714.0 2087732 1430.1
23 2309196 1825.3 1919811 1711.6 2306792 1715.5 1833302 1520.5
24 3301135 1998.1 2690441 1771.6 3101311 1816.8 2580654 1620.4
25 3346788 2310.7 2987190 2149.9 3541754 2346.8 2998747 2068.1
26 3024670 2319.8 2966064 2373.0 3087399 2258.1 2806757 2172.3
27 3890594 2344.4 3225433 2099.7 3787260 2210.1 3128508 1980.4
28 4762714 3223.2 3253202 2425.3 4449516 2890.2 3285741 2311.3
29 5717652 3589.2 3840063 2795.1 5819471 3597.8 3885068 2645.9

Table 8: Stochastic multiple knapsack: overall results per instance.

25



Instance Std-Std Std-CGLP
#LP #MIP Time LP Time MIP #LP #MIP Time LP Time MIP

1 9 9 0.0 14.4 9 9 0.0 14.7
2 9 9 0.0 15.7 9 9 0.0 15.8
3 14 14 0.0 24.7 14 14 0.0 26.0
4 24 24 0.0 46.2 24 24 0.0 45.9
5 12 12 0.0 21.0 12 12 0.0 19.8
6 14 14 0.0 32.1 20 20 0.0 46.2
7 10 10 0.0 17.3 10 10 0.0 17.2
8 40 40 0.1 80.3 40 40 0.1 80.7
9 34 34 0.1 74.5 36 36 0.1 74.6
10 46 46 0.1 97.9 49 49 0.1 102.1
11 46 46 0.1 77.6 47 47 0.1 78.9
12 45 45 0.1 108.5 51 51 0.1 123.0
13 45 45 0.1 87.2 87 87 0.2 160.9
14 51 51 0.1 124.4 51 51 0.1 123.9
15 22 22 0.0 29.9 26 26 0.1 36.2
16 79 79 0.2 128.8 74 74 0.2 119.3
17 80 80 0.2 168.0 81 81 0.2 167.5
18 92 92 0.2 194.7 97 97 0.2 202.1
19 66 66 0.1 134.3 65 65 0.1 131.9
20 97 97 0.2 193.0 98 98 0.2 193.9
21 49 49 0.1 99.8 48 48 0.1 97.7
22 93 93 0.2 245.2 91 91 0.2 237.2
23 175 175 0.4 341.7 176 176 0.4 339.1
24 89 89 0.2 211.2 92 92 0.2 221.1
25 127 127 0.3 222.2 127 127 0.3 221.8
26 155 155 0.3 331.5 157 157 0.3 331.4
27 103 103 0.2 246.0 111 111 0.2 264.1
28 150 150 0.3 263.7 152 152 0.3 268.0
29 131 131 0.3 259.4 147 147 0.3 287.6

Table 9: Stochastic multiple knapsack: subproblems details per instance.

Instance |V| Update Generate
1 9 0.0 0.2
2 9 0.0 0.2
3 14 0.0 0.4
4 24 0.0 1.0
5 12 0.0 0.3
6 20 0.0 0.8
7 10 0.0 0.2
8 40 0.1 2.7
9 36 0.1 2.5

10 49 0.1 3.4
11 47 0.1 4.7
12 51 0.1 4.5
13 87 0.2 13.2
14 51 0.1 5.3
15 26 0.1 1.3
16 74 0.2 11.9
17 81 0.3 15.7
18 97 0.4 21.2
19 65 0.2 6.9
20 98 0.3 21.7
21 48 0.1 4.0
22 91 0.3 18.8
23 176 0.9 41.2
24 92 0.3 13.8
25 127 0.4 29.8
26 157 0.6 37.0
27 111 0.4 25.1
28 152 0.6 39.6
29 147 0.6 33.3

Table 10: Stochastic multiple knapsack: CGLP overhead per instance.
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