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Abstract

In this paper, we lay the foundation for the study of the two-dimensional mixed integer infinite group
problem (2DMIIGP). We introduce tools to determine if a given continuous and piecewise linear func-
tion over the two-dimensional infinite group is subadditive and to determine whether it defines a facet of
2DMIIGP. We then present two different constructions that yield the first known families of facet-defining
inequalities for 2DMIIGP. The first construction uses valid inequalities of the one-dimensional integer in-
finite group problem (1DIIGP) as building blocks for creating inequalities for the two-dimensional integer
infinite group problem (2DIIGP). We prove that this construction yields all continuous piecewise linear
facets of the two-dimensional group problem that have exactly two gradients. The second construction
we present has three gradients and yields facet-defining inequalities of 2DMIIGP whose continuous coef-
ficients are not dominated by those of facets of the one-dimensional mixed integer infinite group problem
(1DMIIGP).

1 Introduction.

One of the most effective methods to solve unstructured mixed integer programs (MIPs) is branch-and-cut;
see Marchand, Martin, Weismantel and Wolsey [16] and Johnson, Nemhauser and Savelsbergh [15] for recent
expositions of this technique. Over the years many families of cutting planes have been introduced that can
be added to the LP relaxations of MIPs to strengthen them. Interestingly, many of the cutting planes that
are currently used in commercial software are derived from single-row relaxations of the problem. Because the
interactions between multiple constraints cannot completely be captured by single constraints, cuts generated
from multiple constraints of the problem should help in the solution of MIPs. Therefore, it is interesting to
study how to derive strong inequalities from multiple row relaxations of MIPs.

Gomory and Johnson [12] recently put into light the possibility of using group-theoretic approaches to
generate cuts from multiple rows of simplex tableaux. A strong appeal of this method is that it is an elegant
approach to generate closed-form descriptions of cuts. Next we discuss its advantages and limitations further.
On the negative side, Gomory [8] proved that starting with integer data for a pure integer program, simplex
pivots may lead to tableaux in which any cut generated from a two-constraint group relaxation can also be
generated using a single constraint. This is because the rows of fractional parts of the tableau form elements
of a cyclic group. We mention however that this result does not hold for all pure integer problems. On the
positive side, Gomory and Johnson [12] note that using the group approach with multiple rows allows a more
accurate representation of the continuous variables as compared to using one-dimensional group approaches.
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This should therefore lead to stronger coefficients for continuous variables in the cuts. This observation
is important as recent computational studies by Dash and Günlük [5] on group cuts based on single row
relaxations suggest that continuous coefficients in mixed integer cuts are relatively weak. Therefore, we
believe that there is a significant advantage in using two-dimensional group cuts for the case of MIPs. In
this paper we show that the use of two-dimensional cuts is indeed fruitful by deriving two large families of
facet-defining inequalities for the two-dimensional mixed integer infinite group problem (2DMIIGP) whose
continuous variables coefficients are not dominated by those of the one-dimensional group cuts.

In §2 we give a short introduction to integer and mixed integer infinite group problems. In §3 we introduce
the concept of valid subadditive functions for group problem. In §4, we develop in Propositions 10 and 12,
tools to verify that continuous and piecewise linear functions defined over the two-dimensional infinite group
are subadditive. This method requires the verification of subadditivity of the function at a finite number of
carefully selected points. In §5 we introduce a method to prove that given valid inequalities are facet-defining
for the two-dimensional integer infinite group problem (2DIIGP). We then present the automorphism theorem
of Johnson [14] in Theorem 28 and generalize the homomorphism theorem of Gomory and Johnson [12] in
Theorem 30. These results can be used to create new facets for 2DIIGP from known facets. We then
present in the following two sections the first proven families of facets for 2DIIGP. In §6 we present a family
of subadditive functions for 2DIIGP that are obtained from subadditive functions of the one-dimensional
integer infinite group problem (1DIIGP) through a simple constructive procedure. Necessary and sufficient
conditions for these functions to be facet-defining for 2DIIGP are derived in Theorem 39. We also show in
Theorem 42 that all continuous and piecewise linear facets of the two-dimensional group problem that have
exactly two gradients can be generated using this construction. In §7 we present in Theorem 48 a second
family of facets for 2DIIGP that cannot be derived using the procedure described in §6. In §8 we extend
the facet-defining inequalities obtained in §6 and §7 for 2DIIGP to strong inequalities for the mixed integer
extension of 2DIIGP that we call 2DMIIGP. We show that the coefficients of continuous variables in two-
dimensional group cuts are not dominated by those of the Gomory mixed integer cuts from the individual
constraints. We conclude the paper in §9 with remarks and directions for future research.

2 The Group Problem.

In this section we give a brief introduction to the integer and mixed integer group problems. A more
detailed analysis of both the integer and mixed integer case can be found in Gomory [9], Gomory and
Johnson [10, 11, 12] and Johnson [14]. We begin with the pure integer case. Consider the integer programming
problem

minimize cT t

s.t. At = b

t ∈ Zn
+, (1)

where we assume that c ∈ Rn×1, A ∈ Rm×n, b ∈ Rm×1. We let AB be a basis matrix of the linear programming
relaxation of (1) and let tB be the corresponding basic variables. We also let AN represent the columns of A
that are not part of AB and let tN be the nonbasic variables associated with AN . The feasible set of (1) may
be written as

ABtB + AN tN = b where tB ∈ Zm
+ tN ∈ Zn−m

+ . (2)

If the nonnegativity constraints of the basic variables in (8) are relaxed, we obtain

AN tN ≡ b(mod AB) tN ∈ Zn−m
+ , (3)

where c ≡ b(mod AB) if ∃z ∈ Zm, such that c = b + ABz. The convex hull of feasible solutions to (3) is the
corner polyhedron introduced and studied by Gomory in [9]. Next if the inverse of the basis matrix AB is left
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multiplied to (8), the feasible set of (3) can be represented as

A−1
B AN tN ≡ A−1

B b(mod Ī) tN ∈ Zn−m
+ , (4)

where Ī is the m × m identity matrix. Consider now a relaxation of (4) by removing all but one of its
constraints. Multiplying this single row by D = det(AB), we obtain

∑

i∈N

Dājiti ≡ Db̄j(mod D), ti ∈ Z+ ∀i ∈ N, (5)

where āji, b̄j are the coefficients of the jth row of A−1
B Ai and A−1

B b respectively and Ai is the column of A
corresponding to the variable ti. Clearly, Dāji, Db̄j ∈ Z if A ∈ Zm×n and b ∈ Zm×1.

Next we consider a relaxation of (5) in which there is a variable associated with each possible coefficient
of the cyclic group of order D. More precisely, we consider

∑
u∈G utu ≡ r

tu ∈ Z+ ∀u ∈ G, (6)

where the coefficients Dāji of (5) are represented as the members of the finite cyclic group G and Db̄j is
denoted as r where r ∈ G. The group problem (6) is a relaxation of (5) since every solution of (5) can be used
to create a solution of (6) by setting the additional variables to zero. The convex hull of integer solutions of
(6) is known as the master cyclic group problem P (CD,r).

The master cyclic group problem is a useful relaxation of (1) since there exists an implicit representation
of its facet-defining inequalities as extreme rays of a particular polyhedron; see Gomory [9]. Furthermore,
Gomory [9] shows that the facet-defining inequalities of the convex hull of solutions of (5) may be obtained
from a subset of the facet-defining inequalities of P (CD,r). Over the years, many explicit families of facets for
these finite group problems were obtained from Gomory’s implicit characterization; see Gomory [9], Gomory,
Johnson and Evans [13], Aráoz, Evans, Gomory and Johnson [3], Richard, Li and Miller [20] and Miller, Li
and Richard [18]. Because these inequalities are facet-defining for P (CD,r), they are valid for (1) and so can
be used as cutting planes for general integer programs.

There is however a computational difficulty with the approach described above when the matrix A is
rational. In such a case a sufficiently large integer D has to be multiplied to the system to make the coeffi-
cients in (5) integers. We note that this integer D may be difficult to determine and may give rise to cyclic
group relaxations of large orders. To circumvent these difficulties, Gomory and Johnson [12] suggested the
following variation of the approach. Instead of considering only the columns corresponding to A−1

B AN in (4)
they proposed to include all the columns of Rm, considered as elements of a group where addition is done
modulo 1 componentwise. The relaxation obtained in this fashion is the integer infinite group problem.

Definition 1 The integer infinite group problem with right-hand-side r, where r ∈ Im \ {o}, is defined as the
set of functions t : Im → Z+ that satisfy

1. t(u) > 0 for some finite set U ⊂ Im

2.
∑

u∈Im ut(u) = r,

where Im is the infinite commutative group corresponding to the set {u ∈ Rm | 0 ≤ ui < 1 ∀i ∈ {1, ..., m}}
with addition modulo 1 componentwise and where we denote the element of Im whose components are all
equal to zero as o ∈ Im.

Note that the summation in 2 is well-defined as t is considered to be a feasible solution to the group problem
only if it has a finite support, i.e., t(u) > 0 for some finite set U ⊂ Im. This assumption is legitimate
since most integer programs encountered in applications have finitely many variables. We refer to the integer
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infinite group problem as one-dimensional group problem (1DIIGP ) in the case where m = 1. Gomory and
Johnson analyze 1DIIGP in [12]. In this paper we analyze the case when m = 2 which we refer as 2DIIGP.

Next we describe the infinite group relaxation for mixed integer problems. Consider the mixed integer
programming problem

minimize cT
I t + cT

Cs

s.t. AIt + ACs = b

t ∈ Zn
+, s ∈ Rn

+ (7)

where we assume that cI ∈ RnI×1, cC ∈ RnC×1, AI ∈ Rm×nI , AC ∈ Rm×nC , b ∈ Rm×1. We let tB represent
the basic variables that are integer in some basic feasible solution of the linear programming relaxation of
(7). The tableau rows corresponding to the variables tB are

tB + ĀItN + ĀCsN = b (8)

where ĀI and ĀC are the columns corresponding to integer and continuous non-basic variables. By following
the same sequence of relaxation that produced (3), we obtain

ĀItN + P(ĀCsN ) ≡ b(mod Ī) (9)

where Ī is the identity matrix and where the projection function P : Rm → Im is defined as P(x1, ..., xm) =
(x1(mod1), ..., xm(mod1)).

Next we relax the problem by introducing more variables to (9). Since continuous variables can always be
scaled, we only consider coefficients for continuous variables from the set Jm = {(w1, ..., wm) | max1≤i≤m|wi| =
1}. It is clear that as the dimension increases the continuous variables are better represented in the group
relaxation.

Definition 2 The mixed integer infinite group problem with right-hand-side r, where r ∈ Im \ {o}, is defined
as the set of pairs of functions t : Im → Z+ and s : Jm → R+ that satisfy

1. t(u) > 0 for some finite set U ⊂ Im,

2. s(w) > 0 for some finite set W ⊂ Jm.

3.
∑

u∈Im ut(u) + P(
∑

w∈Jm ws(w)) = r.

Johnson [14] analyzes general properties of the mixed integer infinite group problem and shows that strong
valid inequalities of the mixed integer infinite group problem are related to those of the integer infinite group
problem. In particular, strong inequalities for the two-dimensional mixed integer infinite group problem
(2DMIIGP) can be obtained from strong inequalities of the 2DIIGP. For this reason, it is natural to focus
first on purely integer infinite group problems as a way to obtain cuts for mixed integer infinite group problem.
We note however that the full power of the two-dimensional group approach is expected to be realized for
mixed integer problems.

3 Valid inequalities.

In this section, we first define the notion of valid functions over the two-dimensional group I2. We then define
subadditive functions and discuss the reason that it is sufficient to consider valid subadditive functions when
studying group problems. We conclude this section by describing the subset of valid subadditive functions
we study in this paper.

Definition 3 A function φ : I2 → R is defined to be a valid inequality for the two-dimensional group problem
with respect to right-hand-side r ∈ I2 if it satisfies the following conditions:
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1.
∑

u∈I2 φ(u)t(u) ≥ 1 ∀t ∈ 2DIIGP ,

2. φ(o) = 0,

3. φ(r) = 1,

4. φ(u) ≥ 0 ∀u ∈ I2.

Since valid inequalities are functions over I2 we will use the terms valid function and valid inequality inter-
changeably. In the rest of this paper, we only consider valid inequalities. Whenever the word right-hand-side
is used, it refers to r as presented in Definition 1. Next we introduce subadditive functions and describe their
relations to valid inequalities for 2DIIGP and consequently for (1).

Definition 4 (Subadditive) Let φ : I2 → R. We say that φ is subadditive if φ(a) + φ(b) ≥ φ(a + b) ∀a, b ∈
I2.

Subadditive functions play an important role in the group problem as they yield valid inequalities; see Wolsey
and Nemhauser [19] for a more detailed presentation of subadditive functions. Although it is possible to
construct valid functions that are not subadditive, these functions are always dominated by valid subadditive
functions; see Gomory and Johnson [10]. Therefore it is sufficient to consider valid subadditive functions
when studying the group problem.

The class of valid subadditive functions for I2 is large. In this paper we will narrow down our study to
a subset of these functions. In particular, we will study valid subadditive functions that have the following
two properties.

Property 1 φ is continuous.

The reason for restricting our study to continuous functions is that it can be proven that the extreme
inequalities of the mixed integer infinite group problem (MIIGP) are continuous; see Dey, Richard, Li and
Miller [7]. However, we do not include continuity in the definition of valid functions since it is possible to
construct discontinuous functions that define extreme inequalities for integer infinite group problem [7]. With
this respect, our approach is different from that of Gomory and Johnson [12] who included continuity as part
of the definition of valid functions.

We now introduce the second property.

Property 2 φ is piecewise linear, i.e. I2 can be decomposed into finitely many polytopes with non-empty
interiors P1, ..., Pk, such that φ(u) = αT

t u + βt, ∀u ∈ Pt, where αt ∈ R2, βt ∈ R ∀t ∈ {1, 2, ...k}.
Note that in Property 2 we say that S is a polytope in I2 if ∃S′, a polytope in R2, such that S = P(S′).

The reason we consider only functions that satisfy Property 2 is that Gomory and Johnson conjectured in [12]
that all facets of MIIGP are piecewise linear.

4 Verifying subadditivity.

In this section we develop a method to verify that a given continuous and piecewise linear function over I2

is subadditive by checking that it is subadditive at a finite number of points. Unless specified otherwise, if
u ∈ R2 and it is said or implied that u ∈ I2, then u should be considered to be P(u). For example, if it is
said that u = (1.5,−0.6) ∈ I2, then it should be understood that u = (0.5, 0.4). Also, the term “slope” along
a particular direction d will be often used to signify the directional derivative of the function in the direction
d.

Definition 5 (Boundary) For a continuous and piecewise linear function φ, we say that a point l belongs
to the boundary of φ, denoted B(φ), if l belongs to the intersection of two polytopes Pi and Pj where i 6= j
and the gradient of φ in Pi is not equal to the gradient of φ in Pj.
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Observe that for a piecewise linear and continuous function φ, φ is differentiable at a point u if u /∈ B(φ).
In the next proposition, we show that it is sufficient to consider the points on the boundary of a piecewise
linear and continuous function to prove that it is subadditive.

Proposition 6 Let φ be a continuous, piecewise linear and nonnegative function over I2. The function φ is
subadditive iff

φ(l1) + φ(l2) ≥ φ(l1 + l2) (10)
φ(l1) + φ(l2 − l1) ≥ φ(l2) (11)

∀l1, l2 ∈ B(φ).

Proof: The direct implication is straightforward. We therefore only prove the reverse implication. First
consider the case where B(φ) = ∅. We have that φ(u) = α1u + β1 ∀u ∈ I2. Let α1 = (αx

1 , αy
1). Because

φ(u) ≥ 0 we obtain that αx
1 + αy

1 + β1 ≥ 0 by considering a sequence of points converging to (1, 1). Similarly,
we also obtain αx

1 +β1 ≥ 0, αy
1 +β1 ≥ 0 and β1 ≥ 0. Therefore φ(u)+φ(v) = αx

1(ux +vx)+αy
1(uy +vy)+2β1

≥ φ(u + v) in all cases. Next we consider the case where B(φ) 6= ∅. Assume by contradiction that φ is not
subadditive. Then there exists u, v ∈ I2 such that

φ(u) + φ(v) < φ(u + v). (12)

We prove that (12) implies that (10) or (11) is violated, which gives the desired contradiction. The proof is
in two steps. In the first step we show that there exists some l ∈ B(φ), such that

φ(l) + φ(v′) < φ(l + v′). (13)

In the second step we show that either (10) or (11) is violated.
Step 1: First note that if either of u or v belongs to B(φ), (12) reduces to (13). So assume u /∈ B(φ) and

v /∈ B(φ). Then consider at u any direction d with the following property: ∃n+, n− ∈ R+, such that u+n+d ∈
B(φ) and u − n−d ∈ B(φ). Such a direction exists since B(φ) 6= ∅. Let the directional derivative of φ in the
direction d and −d for u and v be σ1 and σ2 respectively. There are two cases: σ1 + σ2 ≤ 0 or σ1 + σ2 > 0.
In the first case, let ε1 = min {ε|u + εd ∈ B(φ)}, let ε2 = min {ε|v − εd ∈ B(φ)} where ε2 is possibly ∞ and
let ε∗ = min(ε1, ε2). We obtain

φ(u + ε∗d) + φ(v − ε∗d) = φ(u) + φ(v) + ε∗(σ1 + σ2) < φ(u + v).

Furthermore either u + ε∗d ∈ B(φ) or v − ε∗d ∈ B(φ). Thus there exists a point l ∈ B(φ) such that
φ(l) + φ(v′) < φ(l + v′). If σ1 + σ2 > 0, we obtain the result similarly by considering the points u − εd and
v + εd.

Step 2: Now consider (13). We may assume that neither v′ nor (l + v′) belong to B(φ) since otherwise,
we have a contradiction to either (10) or (11). Then consider at v′ any direction d with directional derivative
σ1 such that ∃n+, n− ∈ R+, with v′ + n+d ∈ B(φ) and v′ − n−d ∈ B(φ). Let the value of the directional
derivative along d for l + v′ be σ2. There are two cases: σ1 ≤ σ2 or σ1 > σ2. In the first case, let
ε1 = min {ε|v′+εd ∈ B(φ)}, let ε2 = min {ε|v′+l+εd ∈ B(φ)} where ε2 is possibly∞ and let ε∗ = min(ε1, ε2).
We obtain,

φ(l) + φ(v′ + ε∗d)− φ(l + v′ + ε∗d) = φ(l) + φ(v′) + ε∗σ1 − ε∗σ2 − φ(l + v′) < 0.

Because either v′ + ε∗d ∈ B(φ) or l + v′ + ε∗d ∈ B(φ) we obtain a violation of either (10) or (11). For the
other case σ1 > σ2, we obtain the result similarly by considering the points v′ − εd and l + v′ − εd. ¤

Observe that the result of Proposition 6 also holds if the dimension of the group studied is larger than
two. Proposition 10 however is specific to the two-dimensional group and can be used to reduce the set of
points at which subadditivity is verified. Before proving Proposition 10, we give a few definitions specific to
I2.
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Definition 7 (Edges and Vertices of φ) Let φ be a continuous and piecewise linear function over I2 de-
fined by the polytopes P1, P2,...,Pk. We define an edge Q of φ to be the one-dimensional intersection of two
polytopes on which the gradient of φ is different. We let Q(φ) be the set of all edges of the function φ. A
vertex v of φ is defined to be the zero-dimensional intersection of at least three different polytopes on which
the gradient of φ is different. Finally, we let V(φ) be the set of all vertices of the function φ.

Observe that both the sets V(φ) and Q(φ) are finite because there is a finite number of polytopes in the
description of φ. Next we define parallel lines on I2.

Definition 8 (Parallel lines) The lines l1 and l2 are parallel (non-parallel) lines in I2, if ∃ two lines l
′
1

and l
′
2 parallel (non-parallel) in R2 such that P(l

′
1) = l1 and P(l

′
2) = l2.

Before we state the next proposition, we observe that there might be continuous and piecewise linear
functions defined on I2 that have edges without vertices. These edges cause difficulties when verifying
subadditivity. To circumvent these difficulties, we introduce the notion of a supplemental vertex.

Definition 9 (Supplemental vertex) A supplemental vertex is an arbitrarily selected point on an edge
that has no vertex. We denote the set of supplemental vertices of φ as V′(φ).

We next make an observation about edges of φ with supplemental vertices that will be used in the proof
of Proposition 10. Let Q be an edge without a vertex. The edge Q can be of two types. In the first case, Q
wraps around itself. Therefore, if we move along Q we will eventually reach its supplemental vertex. In the
other case, Q does not return to any point it passes over. This case however is not possible since edges are
the intersection of a finite number of polytopes.

Proposition 10 Let φ be a continuous, piecewise linear and nonnegative function on I2. Then φ is subad-
ditive iff

φ(v1) + φ(v2) ≥ φ(v1 + v2) ∀v1, v2 ∈ V(φ) ∪ V′(φ) (14)
φ(v1) + φ(v3 − v1) ≥ φ(v3) ∀v1, v3 ∈ V(φ) ∪ V′(φ) (15)

φ(v1) + φ(e2) ≥ φ(e3) where e2 ∈ q2, e3 ∈ q3, v1 + e2 = e3, ∀v1 ∈ V(φ) ∪ V′(φ), ∀q2, q3 ∈ Q(φ) (16)
φ(e1) + φ(e2) ≥ φ(v3) where e1 ∈ q1, e2 ∈ q2, e1 + e2 = v3, ∀v3 ∈ V(φ) ∪ V′(φ),∀q1, q2 ∈ Q(φ). (17)

Furthermore, if e2 and e3 (resp. e1 and e2) belong to identical or parallel edges, then (16) (resp. (17)) is
redundant.

Proof: The direct implication is straightforward. For the reverse implication we use the result of Proposi-
tion 6. The boundary B(φ) of piecewise linear functions on I2 only contains edges and vertices. Therefore
in (10) and (11), l1 and l2 can either be vertices or points on edges, while l1 + l2 and l1 − l2 can be vertices,
points on edges or points in the interior of the polytopes P1,...,Pk. We conclude that it is sufficient to verify
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the following set of conditions to prove that φ is subadditive.

φ(e1) + φ(e2) ≥ φ(n3) (18)
φ(v1) + φ(e2) ≥ φ(n3) (19)
φ(e1) + φ(n2) ≥ φ(e3) (20)
φ(v1) + φ(n2) ≥ φ(e3) (21)
φ(e1) + φ(e2) ≥ φ(e3) (22)
φ(v1) + φ(v2) ≥ φ(n3) (23)
φ(v1) + φ(n2) ≥ φ(v3) (24)
φ(e1) + φ(e2) ≥ φ(v3) (25)
φ(v1) + φ(e2) ≥ φ(e3) (26)
φ(v1) + φ(e2) ≥ φ(v3) (27)
φ(v1) + φ(v2) ≥ φ(e3) (28)
φ(v1) + φ(v2) ≥ φ(v3) (29)
φ(e1) + φ(n2) ≥ φ(v3). (30)

In these inequalities ni represents points that do not belong to B(φ), ei represents points on edges and vi

represents vertices. Furthermore, when writing φ(a1) + φ(a2) ≥ φ(a3) we always assume a1 + a2 = a3.
Inequalities (23) - (29) are directly implied by (14) - (17). We now have to prove that inequalities (18) - (22)
and (30) also hold because of (14) - (17). We will prove the contrapositive. In particular, we will consider
each of the conditions (18) - (22) and (30) iteratively and show that this condition is not satisfied only if some
of the other remaining condition is not satisfied. At the end of the iteration, this process will imply that the
conditions (18) - (22) and (30) are not satisfied if conditions (23) - (29) are not satisfied. Since inequalities
(23) - (29) are directly implied by (14) - (17) the result will be proved.

For u ∈ Q where Q is a edge of φ, we denote εd(u) = min{ε > 0 | u + εd ∈ V (φ) ∪ V ′(φ)}. If u /∈ B(φ),
we denote εd(u) = min{ε > 0 | u + εd ∈ B(φ)}.

1. Assume that there is e1, n2 and v3 that do not satisfy (30). We show that at least one of the inequalities
(18) - (29) is not satisfied. Let d be a direction of non-decreasing slope for the edge to which e1 belongs.
Let σ1, σ2 be the slopes at e1 and n2 along d and −d respectively. If σ1 + σ2 ≤ 0 then for sufficiently
small ε > 0 we have that φ(e1 + dε) + φ(n2 − dε) < φ(v3). If ε = min{εd(e1), ε−d(n2)}, then we obtain
one of the following situations

φ(v′1) + φ(n′2) < φ(v3) which violates (24)
φ(e′1) + φ(e′2) < φ(v3) which violates (25)
φ(e′1) + φ(v′2) < φ(v3) which violates (27)
φ(v′1) + φ(e′2) < φ(v3) which violates (27)
φ(v′1) + φ(v′2) < φ(v3) which violates (29).

Note that if σ1 + σ2 > 0, then it suffices to consider −d instead of d to obtain the same result.

2. Assume that there is e1, e2 and n3 that do not satisfy (18). We show that at least one of the inequalities
(19) - (29) is not satisfied. Let d be a direction of nondecreasing slope for the edge to which e1 belongs.
Let σ1, σ3 be the slopes at e1 and n3 along d respectively. If σ1 ≤ σ3, then for sufficiently small ε > 0
we have that φ(e1 + dε) + φ(e2) < φ(n3 + dε). If ε = min{εd(e1), εd(n3)}, then we obtain one of the
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following situations

φ(v′1) + φ(e2) < φ(n′3) which violates (19)
φ(e′1) + φ(e2) < φ(e′3) which violates (22)
φ(e′1) + φ(e2) < φ(v′3) which violates (25)
φ(v′1) + φ(e2) < φ(e′3) which violates (26)
φ(v′1) + φ(e2) < φ(v′3) which violates (27).

Note that if σ1 > σ3, then it suffices to consider −d instead of d to obtain the same result.

3. Assume that there is v1, e2 and n3 that do not satisfy (19). We show that at least one of inequalities
(20) - (29) is not satisfied. Let d be a direction of nondecreasing slope for the edge to which e2 belongs.
Let σ2, σ3 be the slopes at e2 and n3 along d respectively. If σ2 ≤ σ3, then for sufficiently small ε > 0
we have that φ(v1) + φ(e2 + dε) < φ(n3 + dε). If ε = min{εd(e2), εd(n3)}, then we obtain one of the
following situations

φ(v1) + φ(v′2) < φ(n′3) which violates (23)
φ(v1) + φ(e′2) < φ(e′3) which violates (26)
φ(v1) + φ(e′2) < φ(v′3) which violates (27)
φ(v1) + φ(v′2) < φ(e′3) which violates (28)
φ(v1) + φ(v′2) < φ(v′3) which violates (29).

Note that if σ2 > σ3, then it suffices to consider −d instead of d to obtain the same result.

4. Assume that there is e1, n2 and e3 that do not satisfy (20). We show that at least one of conditions
(21) - (29) is not satisfied. Let d be a direction of nondecreasing slope for the edge to which e1 belongs.
Let σ1, σ2 be the slopes at e1 and n2 along d and −d respectively. If σ1 + σ2 ≤ 0 then for sufficiently
small ε > 0, we have that φ(e1 + dε) + φ(n2 − dε) < φ(e3). If ε = min{εd(e1), ε−d(n2)}, then we obtain
one of the following situations

φ(v′1) + φ(n′2) < φ(e3) which violates (21)
φ(e′1) + φ(e′2) < φ(e3) which violates (22)
φ(e′1) + φ(v′2) < φ(e3) which violates (26)
φ(v′1) + φ(e′2) < φ(e3) which violates (26)
φ(v′1) + φ(v′2) < φ(e3) which violates (28).

Note that if σ1 + σ2 > 0, then it suffices to consider −d instead of d to obtain the same result.

5. Assume that there is v1, n2 and e3 that do not satisfy (21). We show that at least one of inequalities
(22) - (29) is not satisfied. Let d be a direction of nondecreasing slope for the edge to which e3 belongs.
Let σ2, σ3 be the slopes at n2 and e3 along d respectively. Then if σ2 ≤ σ3, then for sufficiently small
ε > 0 we have that φ(v1) + φ(n2 + dε) < φ(e3 + dε). If ε = min{εd(n2), εd(e3)}, then we obtain one of
the following situations

φ(v1) + φ(e′2) < φ(e′3) which violates (26)
φ(v1) + φ(n′2) < φ(v′3) which violates (24)
φ(v1) + φ(e′2) < φ(v′3) which violates (27)
φ(v1) + φ(v′2) < φ(e′3) which violates (28)
φ(v1) + φ(v′2) < φ(v′3) which violates (29).

Note that if σ2 > σ3, then it suffices to consider −d instead of d to obtain the same result.
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6. Assume that there is e1, e2 and e3 that do not satisfy (22). We show that at least one of inequalities
(23) - (29) is not satisfied. There are two subcases:

(a) The edges to which e1 and e2 belong are parallel. Let d be the direction of nondecreasing slope
for the edge to which e1 belongs. Let σ1, σ2 be the slopes at e1 and e2 along d respectively. Then
if σ1 ≤ σ2, then for sufficiently small ε > 0 we have that φ(e1 + dε) + φ(e2 − dε) < φ(e3). If
ε = min{εd(e1), ε−d(e2)}, then we obtain one of the following situations

φ(v′1) + φ(e′2) < φ(e3) which violates (26)
φ(e′1) + φ(v′2) < φ(e3) which violates (26)
φ(v′1) + φ(v′2) < φ(e3) which violates (28).

Note that if σ1 > σ2, then it suffices to consider −d instead of d to obtain the same result.

(b) The edges to which e1 and e2 belong are not parallel. In this case, there exists α, β ∈ R such that
αu1 + βu2 = u3, where ui is a unit vector in the direction of nondecreasing slope for each of the
three edges to which e1, e2, e3 belong. Let σ1, σ2 and σ3 be the slopes at e1, e2 and e3 along u1,
u2 and u3 respectively. Then if ασ1 + βσ2 ≤ σ3, then for sufficiently small ε > 0 we have that
φ(e1 + αu1ε) + φ(e2 + βu2ε) < φ(e3 + u3ε). If ε = min{εαu1(e1), εβu2(e2), εu3(e3)}, then we obtain
one of the following situations

φ(v′1) + φ(e′2) < φ(e′3) which violates (26)
φ(e′1) + φ(v′2) < φ(e′3) which violates (26)
φ(e′1) + φ(e′2) < φ(v′3) which violates (25)
φ(v′1) + φ(v′2) < φ(e′3) which violates (28)
φ(e′1) + φ(v′2) < φ(v′3) which violates (27)
φ(v′1) + φ(e′2) < φ(v′3) which violates (27)
φ(v′1) + φ(v′2) < φ(v′3) which violates (29).

Note that if ασ1 + βσ2 > σ3, then it suffices to consider −d instead of d to obtain the same result.

This concludes the proof of the first part of the proposition as we have shown in cases (i)-(vi) that if φ is not
subadditive then one of the conditions (14) - (17) is violated.

Finally we consider the case where e2 and e3 belong to parallel or identical edges. We show next that in
this case (16) is not necessary as it is implied by (14) or (15). Let d be a direction of nonnegative slope for
the edge to which e2 belongs. Let this slope be σ2. Let the slope at e3 along direction d be σ3. If σ2 ≤ σ3,
we have φ(v1) + φ(e2 + εd) < φ(e3 + εd). If ε = min{εd(e2), εd(e3)}, then we obtain a contradiction to either
(14) or (15). If σ2 > σ3, consider −d instead of d to obtain a similar contradiction. Similarly it can be proven
that if e1 and e2 belong to parallel or identical edges then (17) is not necessary as it is implied by (14) or
(15). ¤

It follows from Proposition 6 and Proposition 10 that it is possible to verify that a continuous and piecewise
linear function defined over I2 is subadditive by verifying that a finite number of inequalities hold. We prove
in Proposition 12 that the number of inequalities that need to be checked can be further reduced if φ satisfies
a specific symmetry condition that is required for an inequality to be strong. This notion of symmetry is
presented in Johnson [14] and is a generalization of similar condition for one-dimensional group problems; see
Gomory and Johnson [12].

Definition 11 (Symmetry) A function φ : I2 → R is said to be symmetric if φ(u) + φ(r − u) = 1 ∀u ∈
I2, where r is the right-hand-side. Furthermore, for any point u ∈ I2, the point r − u, is said to be the
complementary point of u.

If symmetry conditions are satisfied for a function φ, it can easily be seen that the complement of an edge of
φ is also an edge of φ and the complement of a vertex is also a vertex. Therefore, if a supplemental vertex v
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is defined for φ we also define its complementary point as a supplemental vertex. In Proposition 12, we show
that the conditions needed to verify that a function φ is subadditive can be simplified when it is symmetric.

Proposition 12 Let φ be a continuous and piecewise linear function on I2 that is symmetric (with comple-
mentary supplemental vertices). Then φ is subadditive iff (14) and (17) hold.

Proof: Assume for a contradiction that (15) is violated, i.e.,

φ(v1) + φ(v3 − v1) < φ(v3).

We show that this implies that an inequality of the form (14) is also violated. Because φ is symmetric, (31)
implies that

φ(v1) + φ(r − v3) < φ(r − v3 + v1).

Since, v3 is a vertex, r − v3 is also a vertex, which yields the desired contradiction to (14). Similarly, we
can prove that if (16) is violated, then φ(r − e3) + φ(e2) < φ(r − v1), where r − v1 is a vertex, yielding a
contradiction to (17). ¤

5 Facets of 2DIIGP.

In this section, we develop conditions on the function φ under which the inequality
∑

u∈I2

φ(u)t(u) ≥ 1 (31)

is facet-defining for 2DIIGP. The following property is a necessary condition for a valid inequality (31) to be
strong.

Definition 13 (Minimal) Let r ∈ I2 and let φ : I2 → R be a valid function. We say that φ is minimal if
there does not exist a valid function φ∗ different from φ such that φ∗(u) ≤ φ(u) ∀u ∈ I2.

Necessary and sufficient conditions for φ to be minimal were derived in Gomory and Johnson [11] and are
given in the following theorem.

Theorem 14 Let r ∈ I2 and let φ : I2 → R be a valid function. Then φ is minimal iff φ is subadditive and
the symmetry condition φ(u) + φ(r − u) = 1 holds for every u ∈ I2. ¤

Since the minimality of a function φ is related to the right-hand-side r by the symmetry condition, we say
that a function is minimal with respect to right-hand-side r. Because the infinite group has an uncountable
number of columns the definition of “facet” is more technical than that used in finite group problems. The
following definition is from Gomory and Johnson [12].

Definition 15 (Facet) Let P (φ) be the set of points t that satisfy a given inequality φ at equality, i.e.,
t ∈ P (φ) if t ∈ 2DIIGP and

∑
u∈I2,t(u)>0 φ(u)t(u) = 1. We say that an inequality φ is facet-defining for I2

if there does not exists a valid function φ∗ such that P (φ∗) ) P (φ).

A valid subadditive function that induces a facet for 2DIIGP is called a facet-defining function. Facet-
defining functions are minimal; see [11]. However, not all minimal functions yield facet-defining inequalities for
2DIIGP. Proving that a subadditive function φ is facet-defining is typically difficult. Gomory and Johnson [12]
introduced the following definition to help simplify these proofs.

Definition 16 (Equality Set) For each point u ∈ I2, define g(u) to be the variable corresponding to the
point u. We define the set of equalities of φ to be the system of equations g(u) + g(v) = g(u + v) for all
u, v ∈ I2 such that φ(u) + φ(v) = φ(u + v). We denote it as E(φ).
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The following theorem gives a procedure to verify that φ is a facet-defining inequality for 2DIIGP. Although
it is proven in Gomory and Johnson [12] in the context of the one-dimensional group problem and for
continuous valid functions, the proof is general and works in our case.

Theorem 17 (Facet Theorem) If φ is minimal and subadditive, and if the set E(φ) of all equalities of φ
has no solution in the space of valid functions other than φ then φ is a facet. ¤

We next present two propositions that will be used extensively to prove that given families of inequalities are
facet-defining for 2DIIGP. Proposition 18 and its converse Proposition 19 are variations of the Facet Theorem
with very similar proofs to that of the Facet Theorem; see Dey [6].

Proposition 18 Let φ be a minimal function for 2DIIGP. If φ is not facet-defining then there exists a valid
subadditive and minimal function φ′ 6= φ such that E(φ

′
) ) E(φ). ¤

Proposition 19 Let φ be a minimal function for 2DIIGP. If there exists a valid subadditive and minimal
function φ′ 6= φ such that E(φ′) ) E(φ), then φ is not facet-defining. ¤

To prove that E(φ) has a unique solution, Gomory and Johnson [12] used a result that they refer to as
the Interval Lemma. However, this result does not apply here as it is specific to one-dimensional problems.
In Proposition 24, we introduce a new result that can be used to verify that E(φ) has an unique solution for
two-dimensional problems. The following proposition, given in Aczél [1], is used in the proof of Proposition 23.

Proposition 20 Let K be the closed interval [0, ε] ⊂ R for ε > 0. If g : K → R is such that g(x) + g(y) =
g(x + y) ∀x, y ∈ K and g(x) ≥ 0 for arbitrarily small x ∈ K, then g(x) = cx ∀x ∈ K, where c ∈ R. ¤

We give a two-dimensional version of this result in Proposition 24. Before we prove this result, we introduce
the notation [a, b] to represent the line segment between a and b. This notation is slightly ambiguous in I2

since there are multiple line segments with end points a, b ∈ I2. If we denote ã, b̃ to be elements of R2 that
have the same numerical values as a and b then we will use [a, b] to refer to the line segment P([ã, b̃]) unless
otherwise specified.

Definition 21 (Star-shaped) A set S ⊆ R2 is defined to be star-shaped with respect to a point u ∈ S, if
the line segment [u, v] ∈ S ∀v ∈ S.

We define a set S ∈ I2 to be star-shaped with respect to a point u, if there is a star-shaped set S′ ∈ R2 with
respect to a point u′ ∈ R2 such that P(S′) = S and P(u′) = u.

Definition 22 (Path Connected) A set S is path-connected if for any two points x, y ∈ S, there is a
continuous function f : [0, 1] → S such that f(0) = x and f(1) = y.

Proposition 23 Let U and V be closed sets in R2. Let g be a real-valued function defined over U , V and
U + V . Assume that

1. U is star-shaped with respect to the origin and U has a non-empty interior.

2. V is path connected.

3. g(u) + g(v) = g(u + v), ∀u ∈ U , ∀v ∈ V .

4.
∑

i∈S g(ui) = g(
∑

i∈S ui) ∀ui ∈ U such that
∑

i∈S ui ∈ U and ∀S with |S| ≤ 3.

5. g(u) ≥ 0, ∀u ∈ U .

Then g is a linear function with the same gradient in U , V and U + V .
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Proof: Let o represent the origin. It is easily verified that 1, 4 and 5 imply that g(o) = 0. Moreover, because
of 4 and because g(o) = 0 we can easily show that µ1g(u1)+µ2g(u2) = g(µ1u1+µ2u2), where µ1, µ2 ∈ {1,−1}
and u1, u2, (µ1u1 + µ2u2) ∈ U . Consider now two points p, q ∈ U such that p, q, o are affinely independent.
Such points exist since the interior of the set U is non-empty. It follows from Proposition 20 and conditions
1, 4 and 5 that g(θp) = c1θ and g(θq) = c2θ for all θ ∈ [0, 1] and for some c1, c2 ∈ R+. For any point
t ∈ U , ∃α1, α2 ∈ R such that t = α1p + α2q. Now, ∃δ ∈ Z, δ ≥ 1, such that α1 = δµ1θ1 and α2 = δµ2θ2,
where θ1, θ2 ∈ [0, 1], and µ1, µ2 ∈ {−1, 1}. Because U is star-shaped and because of assumption 4, we have
g(t) = g(α1p+α2q) = g(δµ1θ1p+δµ2θ2q) = δg(µ1θ1p+µ2θ2q) = δµ1g(θ1p)+δµ2g(θ2q) = δµ1θ1c1+δµ2θ2c2 =
α1c1 + α2c2. Therefore, g is linear over U . We can hence write g(x) = αT x.

Next we prove that ∃ε > 0 such that ∀b1, b2 ∈ V with |b1 − b2| < ε, (b1 + U) ∩ (b2 + U) 6= ∅. Since U
has a non empty interior, ∃u1 ∈ U and ε > 0 such that the open ball of radius 2ε around u1 is completely
contained in U , i.e., B(u1, 2ε) ⊆ U . Therefore u1 + b1 − b2 ∈ U , i.e., ∃u2 ∈ U such that u1 + b1 = u2 + b2.
Thus (b1 + U) ∩ (b2 + U) 6= ∅.

For any b ∈ V , g is linear with gradient α over the set (b + U) ⊂ (U + V ) since g is linear over U with
gradient α and 3 holds. Next suppose that we have b1, b2 ∈ V such that (b1 + U) ∩ (b2 + U) 6= ∅. Then let g
on (b1 + U) and (b2 + U) be αT x + β1 and αT x + β2 respectively. For any x0 ∈ (b1 + U) ∩ (b2 + U) we have
αT x0 + β1 = αT x0 + β2, or β1 = β2. Thus, if (b1 + U) ∩ (b2 + U) 6= ∅, the function is linear and identical
over the two sets. Finally we show that for b1, b2 ∈ V such that (b1 + U) ∩ (b2 + U) = ∅, g is linear and
identical over both sets. Since V is path-connected, there exists a path connecting b1 and b2. Therefore, we
can construct a finite sequence of points c1, ..., cn on this path such that |b1− c1| ≤ ε/2, |ci− ci+1| ≤ ε/2 and
|cn − b2| ≤ ε/2. Thus if g over b1 + U is αT x + β, then it is the same over all ci + U and therefore also over
b2 + U . Thus g over U + V is of the form αT x + β. Finally, we note that V ⊂ U + V , since o ∈ U . Thus g is
linear over U , V and U + V and has the same gradient α on these sets. ¤

Note that the condition 4 in Proposition 23 does not follow from a condition of the form g(u1) + g(u2) =
g(u1 + u2), ∀u1, u2 ∈ U since, it may be that ui + uj /∈ U even though

∑
i∈S ui ∈ U . Note also that it

may be that the function satisfying the conditions of Proposition 23 is of the form g(u) = αT u ∀u ∈ U and
g(u) = αT u + β ∀u ∈ V, U + V , where β ∈ R.

Next we prove a variant of Proposition 23 that is valid for I2 rather than R2.

Proposition 24 Let U ′ and V ′ be closed sets in R2 which satisfy conditions 1 and 2 of Proposition 23. Let
U = P(U ′) and V = P(V ′). Assume that ∀u ∈ U , ∃ũ ∈ U ′ such that P(ũ) = u and for all directions d, there
exists a sufficiently small positive ε such that if u + εd ∈ U , then ũ + εd ∈ U ′. Also assume that the previous
property holds for V and V ′, and for U +V and U ′+V ′. Finally assume that there is a real-valued function g
defined over U , V and U + V , that satisfies conditions 3, 4, 5 of Proposition 23. Then g is a linear function
on U , V and U + V .

Proof: Consider the real-valued function g′ defined over U ′, V ′ and U ′ + V ′ as, g′(ũ) = g(P(ũ)). Since,
P(x) + P(y) = P(x + y), g′ satisfies 3, 4, 5 of Proposition 23. Therefore by Proposition 23, g′ is a linear
function over U ′, V ′ and U ′ + V ′. Now consider any point u ∈ U and any direction d such that u + εd ∈ U
for sufficiently small ε. By assumption, there exists ũ, such that P(ũ) = u and ũ + εd ∈ U ′. Therefore,

g(u + εd)− g(u) = g(P(ũ + εd))− g(P(ũ))
= g′(ũ + εd)− g′(ũ)
= σdε, (32)

where σd is the slope of g′ in the direction d. Thus,

lim
ε→0+

g(u + εd)− g(u)
ε

= σd. (33)

We conclude that for all directions d and all points in U , the slope of g and g′ are equal. Since g′ is linear
over U ′, it follows that g is linear over U . A similar argument can be made to prove that g is linear over V
and U + V . ¤
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Note that Proposition 24 plays a role analogous to the Interval Lemma of Gomory and Johnson [12].
Proposition 24 is different from the Interval Lemma in that it does not assume continuity of g and is defined
over a two dimensional group. Next we give results about automorphisms and homomorphisms over I2.
These results are presented because they allow the derivation of new valid inequalities for I2 from known
valid inequalities of I2. Propositions 25 -27 and Theorem 28 are either from or adapted from Gomory and
Johnson [10] and Johnson [14].

Proposition 25 The rotation function ρ : I2 → I2, ρ(x, y) = (1− y, x) is an automorphism. ¤

Proposition 26 The reflection function ς : I2 → I2, ς(x, y) = (1− x, y) is an automorphism. ¤

Figures 1 and 2 illustrate the rotation and reflection functions. We also note that all finite compositions

Figure 1: Facet φ and its rotation φ ◦ ρ where ρ(x, y) = (1− y, x).

Figure 2: Facet φ and its reflection φ ◦ ς where ς(x, y) = (1− x, y).

of the above rotation and reflection functions are automorphisms. The next proposition is adapted from
Gomory and Johnson [10].
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Proposition 27 Let ω : I2 → I2 be a surjective map that is a homomorphism. The function φ with respect
to the right-hand-side r is subadditive and minimal iff the function φ ◦ ω(x) = φ(ω(x)) is subadditive and
minimal with respect to right-hand-side v, for any v such that ω(v) = r.

Proof: First we assume that φ is subadditive and minimal. We prove first that φ ◦ ω is subadditive. For
u1, u2 ∈ I2, we have φ ◦ ω(u1) + φ ◦ ω(u2) = φ(ω(u1)) + φ(ω(u2)) ≥ φ(ω(u1) + ω(u2)) = φ(ω(u1 + u2)) =
φ◦ω(u1+u2). The first inequality holds because φ is subadditive while the last but one equality holds because
ω is a homomorphism. We now prove that φ◦ω is minimal. We similarly write that φ◦ω(u1)+φ◦ω(v−u1) =
φ(ω(u1)) + φ(ω(v − u1)) = φ(ω(u1)) + φ(ω(v)− ω(u1)) = 1.

Now we assume that φ ◦ ω is subadditive and minimal. First we prove φ is subadditive. Since ω is
surjective we can choose u′1 ∈ {z | ω(z) = u1} and u′2 ∈ {z | ω(z) = u2}, for any u1, u2 ∈ I2. Because ω is a
homomorphism we have, ω(u′1 +u′2) = ω(u′1)+ω(u′2) = u1 +u2. Thus, φ(u1)+φ(u2) = φ◦ω(u′1)+φ◦ω(u′2) ≥
φ ◦ω(u′1 +u′2) = φ(ω(u′1 +u′2)) = φ(u1 +u2). The inequality holds because φ ◦ω is subadditive. To prove φ is
minimal, we note that ω(v−u′1) = ω(v)−ω(u′1) = r−u1. Thus, φ(u1)+φ(r−u1) = φ◦ω(u′1)+φ◦ω(v−u′1) =
φ ◦ ω(v) = φ(ω(v)) = 1. ¤

Proposition 27 shows that the subadditivity and minimality of a function are preserved under surjec-
tive homomorphisms. For automorphisms, an even stronger result can be proven. This result is given in
Proposition 28.

Theorem 28 Let ω : I2 → I2 be an automorphism and let φ be facet-defining for 2DIIGP. Then φ ◦ ω is
facet-defining for 2DIIGP. ¤

Because there exists an unique automorphism ω−1 where ω◦ω−1 is the identity function on I2, Theorem 28
also implies that φ is facet-defining if φ ◦ ω is facet-defining.

Next we prove that the facet-defining property of a function is also preserved for the following multiplicative
homomorphism λ : I2 → I2 defined as λ(x, y) = (λ1x(mod1), λ2y(mod1)), where λ1, λ2 are positive integers.
The following proposition is easily verified.

Proposition 29 λ is a surjective homomorphism on I2. ¤

The proof of the following theorem is similar to the proof for the one-dimensional case given by Gomory and
Johnson [12].

Theorem 30 φ is facet-defining with respect to right-hand-side r iff φ ◦ λ is facet-defining with respect to
right-hand-side v, where λ(v) = r.

Proof: Assume first that φ ◦ λ is facet-defining. It follows from Proposition 27 that φ is minimal and
subadditive. Assume by contradiction that φ is not facet-defining. Then by Proposition 18 there exists a
valid subadditive and minimal function φ∗ 6= φ such that E(φ∗) ) E(φ). First note that, by Proposition 29,
φ 6= φ∗ implies that φ◦λ 6= φ∗◦λ. Second, consider any equality that is satisfied by φ◦λ, φ◦λ(u1)+φ◦λ(u2) =
φ ◦ λ(u1 + u2). We also have φ∗(λ(u1)) + φ∗(λ(u2)) = φ∗λ(u1 + u2) or equivalently, φ∗ ◦ λ(u1) + φ∗ ◦ λ(u2) =
φ∗◦λ(u1+u2). Thus, φ∗◦λ satisfies all the equalities of E(φ◦λ). Also, since E(φ∗) ) E(φ), there exists u1, u2,
such that φ∗(u1)+φ∗(u2) = φ∗(u1 +u2) and φ(u1)+φ(u2) > φ(u1 +u2). Let v1, v2 ∈ I2 such that λ(v1) = u1

and λ(v2) = u2. Such point exists because λ is surjective. We obtain that φ∗◦λ(v1)+φ∗◦λ(v2) = φ∗◦λ(v1+v2)
and φ ◦ λ(v1) + φ ◦ λ(v2) > φ ◦ λ(v1 + v2). Thus E(φ∗ ◦ λ) ) E(φ ◦ λ) which is a contradiction to the fact
that φ ◦ λ is facet-defining, by Proposition 19.

Next we assume that φ is facet-defining. From Proposition 27, we have that φ ◦ λ is subadditive and
minimal. Assume by contradiction that φ ◦ λ is not facet-defining. It follows from Proposition 18 that
there exists a valid subadditive and minimal function η such that E(φ ◦ λ) ( E(η). First consider the
vector (x̂, ŷ) =

(
n1
λ1

, n2
λ2

)
where n1 and n2 are nonnegative integers. Then, λ(t(x̂, ŷ)) = (0, 0) for t ∈ Z

and thus φ(λ(t(x̂, ŷ))) = φ(0, 0) = 0. Further, if l is the least common multiple of λ1 and λ2, we have
(l)(x̂, ŷ) ≡ (0, 0) and therefore (l)φ(λ(x̂, ŷ)) = 0 = φ(0, 0) = φ(λ((l(x̂, ŷ))). Since E(φ ◦ λ) ( E(η), it is
easy to verify that (l)η

(
n1
λ1

, n2
λ2

)
= η(l(x̂, ŷ)) = η(0, 0) = 0 or equivalently η

(
n1
λ1

, n2
λ2

)
= 0. Furthermore for
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any vector (x, y) ∈ I2 we have that φ(λ(x + 1
λ1

, y)) = φ(λ(x, y)) = φ(λ(x, y)) + φ(λ( 1
λ1

, 0)) and also that
φ(λ(x, y + 1

λ2
)) = φ(λ(x, y)) = φ(λ(x, y)) + φ(λ(0, 1

λ2
)). Hence η must satisfy these equalities. This implies

that η has the same repeating pattern as φ ◦ λ and the value of η over I2 is completely defined by the value
of η over C = {(x, y) | 0 ≤ x < 1/λ1, 0 ≤ y < 1/λ2}.

Now we construct the function φ∗ on I2 as φ∗(x, y) = η( x
λ1

, y
λ2

). Using the fact that η has the same
repeating pattern as φ ◦ λ it is easy to verify that φ∗ is a valid subadditive inequality. Since by assumption
η 6= φ◦λ we have that φ∗ 6= φ. Now for any equality φ(x1, y1)+φ(x2, y2) = φ(x1 +x2, y1 +y2) that φ satisfies,
we have φ◦λ(x1

λ1
, y1

λ2
)+φ◦λ(x2

λ1
, y2

λ2
) = φ◦λ( (x1+x2)

λ1
, (y1+y2)

λ2
). Since η satisfies all the equalities of φ◦λ, we have

η(x1
λ1

, y1
λ2

) + η(x2
λ1

, y2
λ2

) = η( (x1+x2)
λ1

, (y1+y2)
λ2

). If follows from the definition of φ∗ that φ∗(x1, y1) + φ∗(x2, y2) =
φ∗(x1+x2, y1+y2). Thus, φ∗ satisfies all the equalities that φ satisfies. Moreover, E(φ◦λ) ( E(η). Therefore,
there exists u1, u2 ∈ I2 such that η(u1) + η(u2) = η(u1 + u2) and φ ◦ λ(u1) + φ ◦ λ(u2) > φ ◦ λ(u1 + u2).
This implies that φ∗(λ(u1)) + φ∗(λ(u2)) = φ∗(λ(u1 + u2)) and φ(λ(u1)) + φ(λ(u2)) > φ(λ(u1 + u2)). Thus
E(φ∗) ) E(φ). We conclude from Proposition 19 that this is a contradiction to the fact that φ is facet-defining.
¤

In Figure 3 we show an example of an application of the homomorphism result of Theorem 30 when
applied to the three-gradient facet that is discussed in detail in §7. Both the functions displayed in Figure 3
are facet-defining for 2DIIGP.

Figure 3: Generating new facets using the Homomorphism Theorem (λ1 = 2, λ2 = 3)

6 A simple family of facets.

In this section we describe a method to construct facets of 2DIIGP from facets of 1DIIGP. We then show
that all facets of 2DIIGP that have only two gradients can be derived using this construction.

Construction 31 Given ζ a piecewise linear and continuous valid inequality for 1DIIGP with right-hand-
side c, we construct the function κ for 2DIIGP with right-hand-side (f1, f2) where f1 + f2 = c as κ(x, y) =
ζ((x + y)(mod1)).

An example of Construction 31 is presented in Figure 4 where the function ζ that was used to generate
κ is a three-slope facet introduced in Gomory and Johnson [12]. The edges of κ are represented in Figure 5.
Note in particular that κ has no vertex and that the edges of κ are parallel. It can easily be seen that the
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intersection of these edges with the x-axis corresponds exactly to the points where ζ is non-differentiable.
Also the number of edges of κ is equal to the number of points where ζ is non-differentiable.

Construction 31 has a natural interpretation. First, the defining constraints of 2DIIGP are added. The
resulting constraint defines an instance of 1DIIGP that is a relaxation of the initial 2DIIGP. Then, a valid
inequality is created for the relaxation. Clearly this inequality is valid for the initial 2DIIGP. We will show
in Theorem 34 that if ζ is facet-defining for 1DIIGP then κ is facet-defining for 2DIIGP. Finally, we note
that some functions that can be derived through Construction 31 are given in Johnson [14]. However, they
are not proven to be facet-defining for 2DIIGP and they are obtained through a more involved procedure.

Although it is clear that the inequalities generated by Construction 31 are valid, it is not obvious that
they are subadditive over I2. We prove next in Proposition 32 that inequalities obtained from Construction
31 are indeed subadditive.

Figure 4: Construction 31 applied to a three-slope facet of 1DIIGP.

Proposition 32 κ is subadditive iff ζ is subadditive.

Proof: The direct implication is straightforward. To prove the reverse implication, assume that ζ is subad-
ditive. We will use Proposition 10 to prove that κ is subadditive. It is easily seen that κ has no vertices.
Therefore, we place a supplemental vertex on each of the edges of κ along the x-axis. We do not add com-
plementary vertices since they are not required in Proposition 10. Since the edges of κ are parallel, it follows
from Proposition 10 that it is sufficient to show that (14) and (15) hold to prove that κ is subadditive. Finally
since all the vertices of κ are supplemental vertices that are located on the x-axis, (14) and (15) are satisfied
because ζ is subadditive. ¤

Proposition 33 The function κ is minimal iff ζ is minimal.

Proof: We first prove the reverse implication. We have κ(x, y) + κ(f1 − x, f2 − y) = ζ((x + y)(mod1)) +
ζ((f1 + f2 − x − y)(mod1)) = ζ((x + y)(mod1)) + ζ((c − (x + y))(mod1)) = 1. We now prove the direct
implication. For any x ∈ [0, 1), we have that κ(x, 0) + κ(f1 − x, f2) = 1. Since by construction κ(x, 0) = ζ(x)
and κ(f1 − x, f2) = ζ(c− x), we obtain that ζ(x) + ζ(c− x) = 1. ¤ The
proof of the next theorem requires us to identify specific points of I2. We introduce these points next and
illustrate them in Figure 5. Note that points described with the same letter are the same points in I2. First
let the line between c1 and d1 represent the first edge up to which κ has the same gradient, i.e., κ has the
same gradient at all points in the interior of the triangle formed by {o1, c1, d1}. Let a1, b1 be the midpoints
of [c1, o1] and [o1, d1]. Observe that κ has no edge between a1 and b1 or a2 and b2. Note also that there may
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Figure 5: Edges of κ

be more edges than shown in Figure 5 in the regions {o3, d1, c1, o2} and {o4, c2, d2, o4}. However, we do not
need these edges in the proof of Theorem 34.

Theorem 34 κ is facet-defining for 2DIIGP iff ζ is facet-defining for 1DIIGP.

Proof: Suppose first that κ is facet-defining for 2DIIGP. Assume by contradiction that ζ is not facet-defining.
Then from Proposition 18 we know that there exists a valid subadditive and minimal inequality ζ∗ 6= ζ, such
that E(ζ∗) ) E(ζ). Define κ∗(x, y) = ζ∗((x + y)(mod1)). Since ζ∗ 6= ζ, we have that κ∗ 6= κ. Now consider
any equality satisfied by κ, κ(x1, y1) + κ(x2, y2) = κ(x1 + x2, y1 + y2). By construction of κ, we have that
ζ(x1+y1)+ζ(x2+y2) = ζ(x1+x2+y1+y2). Therefore ζ∗(x1+y1)+ζ∗(x2+y2) = ζ∗(x1+x2+y1+y2). But it
follows from the construction of κ∗ that κ∗(x1, y1)+κ∗(x2, y2) = κ∗(x1 +y1, x2 +y2). Thus κ∗ satisfies all the
equalities of κ. Moreover, since E(ζ∗) ) E(ζ), there exists u1, u2 ∈ I1 such that ζ∗(u1)+ζ∗(u2) = ζ∗(u1 +u2)
and ζ(u1) + ζ(u2) > ζ(u1 + u2). Then by construction of κ and κ∗ we have that κ∗(u1, 0) + κ∗(u2, 0) =
κ∗(u1 + u2, 0) and κ(u1, 0) + κ(u2, 0) > κ(u1 + u2, 0). Thus E(κ∗) ) E(κ) which is contradiction since κ is
facet-defining.

Now suppose ζ is facet-defining for 1DIIGP. Assume by contradiction that κ is not facet-defining for
2DIIGP. From Proposition 18 we know that there is a valid subadditive and minimal function κ∗ 6= κ such
that E(κ∗) ) E(κ). Let U be the closed triangle formed by {o1, a1, b1}. Let V be the closed quadrilateral
formed by {o2, o3, a2, b2}. It is easy to see that U + V is the union of the closed triangle {o1, c1, d1} and the
closed quadrilateral {o2, o3, c2, d2}. Also, for u ∈ U and v ∈ V , we have κ(u) + κ(v) = κ(u + v). Since κ is
linear over U , κ(

∑
i∈S ui) =

∑
i∈S κ(ui), whenever ui ∈ U and S is a finite set. Since κ∗ satisfies the same

equalities as κ, κ∗ must satisfy these equalities. It can be verified that ∃U ′, V ′ ∈ R2 such that P(U ′) = U
and P(V ′) = V and U ′ and V ′ satisfy the conditions of Proposition 24. Thus it follows from Proposition 24
that κ∗ is linear over U , V , U + V and has the same gradient over these sets.

Let d be the direction (−1, 1). The value of κ∗ for the line segment joining o2 and o3 must be zero as κ∗

is linear over U + V and κ∗(o2) = κ∗(o3) = 0. This proves that κ∗(x, y) = 0 whenever (x, y) = nd(mod1),
where n ∈ R.

Observe now that ∀x ∈ I2, κ(x) + κ(nd) = κ(x + nd), ∀n ∈ R. Since, κ∗ also satisfies these equalities,
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we have κ∗(x) + κ∗(nd) = κ∗(x + nd). Since, κ∗(nd) = 0, we have that κ∗(x) = κ∗(x + nd). Thus, κ∗ is
completely determined by its value along the x-axis.

Let θ : I2 → I1 be the function θ(x, y) = (x + y)(mod1) and let ζ∗ : I1 → R+ be the function ζ∗(x) =
κ∗(x, 0)(mod1). It can be easily verified that ζ∗ is subadditive and minimal for 1DIIGP. Now consider
any equality that ζ satisfies, ζ(x1) + ζ(x2) = ζ(x1 + x2). By construction of κ, κ(u1, u2) + κ(v1, v2) =
κ(u1 + v1, u2 + v2) whenever (u1 + u2)(mod1) = x1 and (v1 + v2)(mod1) = x2. Then because κ∗ satisfies all
the equalities of κ, we conclude that κ∗(u1, u2) + κ∗(v1, v2) = κ∗(u1 + v1, u2 + v2). Since κ∗(u) = κ∗(u + nd),
we can obtain that ζ∗(x1) + ζ∗(x2) = ζ∗(x1 + x2). Thus ζ∗ satisfies all the equalities of ζ. Moreover,
E(κ∗) ) E(κ). Thus there exists u, v ∈ I2 such that κ∗(u) + κ∗(v) = κ∗(u + v) and κ(u) + κ(v) > κ(u + v).
Then ζ∗(θ(u)) + ζ∗(θ(v)) = ζ∗(θ(u + v)) and ζ(θ(u)) + ζ(θ(v)) > ζ(θ(u + v)). This is a contradiction to the
fact that ζ is facet-defining. ¤ An
interesting observation here is that although ζ and κ are assumed to be piecewise linear functions, the proof
of Theorem 34 uses only the fact that κ is piecewise linear in the region {o1, a1, b1} and {o2, o3, a2, b2}. In
other words, if the functions ζ and κ are piecewise linear around the origin, the result still holds.

Next we prove that any facet of 1DIIGP is also a facet of 2DIIGP. Formally we define the function π as
follows.

Construction 35 Given ζ a piecewise linear and continuous valid inequality for 1DIIGP with right-hand-side
c, we construct the function π for 2DIIGP with right-hand-side (f1, f2) where f1 = c as π(x, y) = ζ(x).

We prove that Construction 35 yields facets of 2DIIGP . The following proposition is easily verified.

Proposition 36 π is subadditive and minimal if and only if ζ is subadditive and minimal respectively. ¤

The proof of the next theorem uses some specific points from I2 that are illustrated in Figure 6. Note
that points described with the same letter are the same points in I2. First let the line between b1 and b2
represent the first edge up to which π has the same gradient, i.e., π has the same gradient at all points in the
quadrilateral formed by {o1, b1, b2, o3}. Let a1, a2 be the midpoints of [o1, b1] and [o3, b2]. Observe that π
has no edge between a1 and a2. Note that there may be more edges than shown in Figure 5 in the regions
{b1, o2, o4, b2}. However, we do not need these edges in the proof of Theorem 37.

Figure 6: Edges of π
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Theorem 37 π is facet-defining for 2DIIGP iff ζ is facet-defining for 1DIIGP.

Proof: First assume that π is facet-defining for 2DIIGP. Assume by contradiction that ζ is not facet-
defining. Then there exists a valid subadditive and minimal function ζ∗ 6= ζ such that E(ζ∗) ) E(ζ). Define
π∗(x, y) = ζ∗(x). Since ζ∗ 6= ζ, we have that π∗ 6= π. Now, consider any equality satisfied by π, π(x1, y1) +
π(x2, y2) = π(x1 + x2, y1 + y2). By construction of π, we have that ζ(x1) + ζ(x2) = ζ(x1 + x2). Therefore
ζ∗(x1) + ζ∗(x2) = ζ∗(x1 + x2). But it follows from the construction of π∗ that π∗(x1, y1) + π∗(x2, y2) =
π∗(x1 + y1, x2 + y2). Thus π∗ satisfies all the equalities of the π. Moreover since E(ζ∗) ) E(ζ) there exists
u1, u2 ∈ I1 such that ζ∗(u1) + ζ∗(u2) = ζ∗(u1 + u2) and ζ(u1) + ζ(u2) > ζ(u1 + u2). Then by construction
of π and π∗, we have that π∗(u1, 0) + π∗(u2, 0) = π∗(u1 + u2, 0) and π(u1, 0) + π(u2, 0) > π(u1 + u2, 0). We
conclude from Proposition 18 that this is a contradiction to the fact that π is facet-defining.

Now suppose ζ is facet-defining for 1DIIGP. Assume by contradiction that π is not facet-defining. Then
there exists a valid subadditive and minimal function π∗ 6= π such that E(π∗) ) E(π). Let U be the closed
quadrilateral formed by {o1, a1, a2, o3}. It is easy to see that U +U is the closed quadrilateral {o1, b1, b2, o3}.
Also, for u ∈ U and v ∈ U , we have π(u)+π(v) = π(u+v). Since π is linear over U , π(

∑
i∈S ui) =

∑
i∈S π(ui),

where ui ∈ U and S is a finite set. Since π∗ satisfies the same equalities as π, π∗ must satisfy these equalities.
It can be verified that ∃U ′ ∈ R2 such that P(U ′) = U and U ′ satisfies the conditions of Proposition 24. Thus
it follows from Proposition 24 that π∗ is linear over U + U .

Let d be the direction (0, 1). The value of π∗ for the line segment joining o1 and o3 must be zero as π∗

is linear over U + U and π∗(o1) = π∗(o3) = 0. This proves that π∗(x, y) = 0 whenever (x, y) = nd(mod1),
where n ∈ R.

Observe that ∀x ∈ I2, π(x) + π(nd) = π(x + nd), where n ∈ R. Since, π∗ also satisfies these equalities,
we have π∗(x) + π∗(nd) = π∗(x + nd). Since, π∗(nd) = 0, we have that π∗(x) = π∗(x + nd). Thus, π∗ is
completely determined by its value along the x-axis.

Let θ : I2 → I1 be the function θ(x, y) = x and let ζ∗ : I1 → R+ be the function ζ∗(x) = π∗(x, 0). It
is easy to verify that ζ∗ is subadditive and minimal for 1DIIGP. Now consider any equality that ζ satisfies,
ζ(x1) + ζ(x2) = ζ(x1 + x2). By construction of π, π(x1, y1) + π(x2, y2) = π(x1 + x2, y1 + y2) for any y1

and y2. Then since π∗ satisfies all the equalities of π, π∗(x1, y1) + π∗(x2, y2) = π∗(x1 + x2, y1 + y2). Since
π∗(x) = π∗(x + nd) we obtain that ζ∗(x1) + ζ∗(x2) = ζ∗(x1 + x2). Thus ζ∗ satisfies all the equalities of
ζ. Further because E(π∗) ) E(π), there exists u1, u2 ∈ I2 such that π∗(u1) + π∗(u2) = π∗(u1 + u2) and
π(u1) + π(u2) > π(u1 + u2). Therefore ζ∗(θ(u1)) + ζ∗(θ(u2)) = ζ∗(θ(u1 + u2)) and ζ(θ(u1)) + ζ(θ(u2)) >
ζ(θ(u1 + u2)). This is a contradiction since ζ is facet-defining for 2DIIGP. ¤

Note that we can generalize Construction 31 using the automorphism and homomorphism results of
Proposition 28 and Theorem 30. This corresponds to first multiplying the constraints of 2DIIGP by integers
before adding them up and generating a one-dimensional cut. This yields the following extended construction.

Construction 38 Given ζ a piecewise linear and continuous valid inequality for 1DIIGP with right-hand-
side c, we construct the function τ for 2DIIGP with right-hand-side (f1, f2) where λ1f1 + λ2f2 = c as
τ(x, y) = ζ((λ1x + λ2y)(mod1)), and λ1, λ2 ∈ Z and are not both zero.

Any function derived using Construction 38 is the composition of Construction 31 or 35, with the rotation
and reflection automorphisms and the multiplicative homomorphism λ. Propositions 25, 26, and Theorems 28,
30 thus give a proof that facet-defining inequalities for 2DIIGP can be obtained from facet-defining inequalities
for 1DIIGP using Construction 38. This result is presented next.

Theorem 39 τ is facet-defining for 2DIIGP iff ζ is facet-defining for 1DIIGP. ¤

It was computationally shown that aggregation of constraints before applying Gomory mixed integer cuts
(GMICs) produces strong cuts; see Marchand and Wolsey [17]. The facet-defining result of Theorem 39 gives a
theoretical foundation for the success of such aggregation procedures as it states that aggregating inequalities
after weighing them with integers and then generating facets of 1DIIGP produces facets for 2DIIGP.

Now we prove that all two-gradient continuous and piecewise linear facets of 2DIIGP can be derived using
Construction 38. To prove this theorem, we first show the following two preliminary results.
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Lemma 40 Assume that:

1. ν1, ν2 ∈ Z,

2. gcd(ν1, ν2) = 1,

3. d1ν1 + d2ν2 = 0, where d1, d2 ∈ R.

Then (ν1x1 + ν2x2)(mod1) ≡ 0 iff x1 ≡ nd1(mod1) and x2 ≡ nd2(mod1) where n ∈ Z.

Proof: First assume that x1 ≡ nd1(mod1) and x2 ≡ nd2(mod1). We have x1 = α + nd1 and x2 = β + nd2,
where α, β ∈ Z. Therefore (ν1x1 + ν2x2) = ν1α + ν2β ≡ 0(mod1).

Now assume (ν1x1 + ν2x2)(mod1) = 0, i.e., (ν1x1 + ν2x2) = c where c ∈ Z. All the solutions of this
equation are of the form (x̃1 + nd1, x̃2 + nd2) since d1ν1 + d2ν2 = 0. Also, because gcd(ν1, ν2) = 1, there
exists integers x̃1, x̃2 such that ν1x̃1 + ν2x̃2 = c. Thus, all the solutions of (ν1x1 + ν2x2) = c are of the form
(x̃1 + nd1, x̃2 + nd2) where x̃1, x̃2 ∈ Z. Therefore x̃1 + nd1 ≡ nd1(mod1) and x̃2 + nd2 ≡ nd2(mod1) as
x̃1, x̃2 ∈ Z. ¤

Lemma 41 Let φ : I2 → R be a subadditive, valid and continuous function. If ∃ d ≡ (d1, d2) ∈ R2 such that
φ(u) = φ(u + nd) ∀u ∈ I2 and ∀n ∈ R, then ∃ ν1, ν2 ∈ Z such that ν1d1 + ν2d2 = 0 where at least one of ν1

and ν2 is not zero.

Proof: First note that if either d1 or d2 is zero, then the result is obvious. Therefore, assume d1 6= 0 and
d2 6= 0.

If d1
d2

is rational, then the result is obvious. We now prove that d1
d2

cannot be irrational. Assume by
contradiction that d1

d2
is irrational. By subadditivity and validity there exists a point of the form (x, 0) or

(0, y) such that φ(x, 0) 6= 0 or φ(0, y) 6= 0. Without loss of generality, we assume that ∃ (x, 0) ∈ I2 such that
φ(x, 0) = δ > 0. It follows from the lemma’s assumption on (d1, d2) that

φ((x + k
d1

d2
)(mod1), 0) = φ(x, 0), (34)

where k ∈ Z. Since d1
d2

is irrational, there is an infinite number of points of this form. Now we show
that this implies that the function φ is discontinuous, yielding the required contradiction. To prove that
φ is discontinuous, we show that there exists points arbitrarily close to the origin at which the value of
φ is δ. Choose any ε > 0. Since d1

d2
is irrational ∃k ∈ Z such that 0 < k d1

d2
(mod1) < ε. Next observe

that if x
kd1/d2(mod1) = p ∈ Z, we have (x − pk d1

d2
(mod1), 0 − pk) ≡ (0, 0) and therefore δ = φ(x, 0) =

φ(x − pk d1
d2

(mod1), 0 − pk) = φ(0, 0). This is a contradiction since φ(0, 0) = 0. Therefore x
kd1/d2(mod1) /∈ Z.

Thus, 0 < x −
⌊

x
kd1/d2(mod1)

⌋
kd1/d2(mod1) < ε. Finally, by (34), φ(x −

⌊
x

kd1/d2(mod1)

⌋
kd1/d2(mod1), 0) =

φ((x, 0)) = δ. Thus, there exists a point within a distance of ε from the origin where the value of the function
φ is δ. ¤

Theorem 42 Any continuous piecewise linear two-gradient facet of 2DIIGP can be derived from a facet of
1DIIGP using Construction 38.

Proof: Let φ be a valid two-gradient continuous and piecewise linear function over I2. Thus φ(x) = αix +
βi ∀x ∈ Pi, where ∪iPi = I2. Since φ has two gradients, the set of polytopes Pi can be partitioned into
two groups g1 and g2, such that αi = αj if i, j ∈ g1 or i, j ∈ g2 and αi 6= αj if i ∈ g1 and j ∈ g2. Let
S1 = ∪i∈g1Pi and S2 = ∪i∈g2Pi. Observe that B(φ) = S1 ∩S2. The proof is divided into four parts. First, we
prove that two-gradient functions have no vertices and that all their edges are parallel. Second, we prove that
any two-gradient function must have an edge passing through the origin. Third, we show that the function
value is zero along this edge and consequently show that the function is of the form given in Construction
38. Fourth, we use Theorem 39 to show that the corresponding one-dimensional function ζ is facet-defining
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for the 1DIIGP.
Assume by contradiction that there exist two edges l1, l2 along the unit vectors u1 ≡ (ux

1 , uy
1), u2 ≡ (ux

2 , uy
2)

respectively that are not parallel. Let the slope of φ along li be σi. We have

αx
i ux

1 + αy
i uy

1 = σ1, (35)
αx

i ux
2 + αy

i uy
2 = σ2, (36)

for i = 1, 2. Since l1 and l2 are not parallel, the above systems of equations have unique and identical
solutions, i.e., α1 = α2. This is a contradiction since the gradients in S1 and S2 are not equal. Therefore
we conclude that all the edges of φ are parallel. As all the edges of φ are parallel, φ has no vertices. Let
d ≡ (dx, dy) be the direction of all the edges of φ.

Now assume by contradiction that the origin o does not belong to an edge of φ. Without loss of generality
we may assume that o belongs to the interior of S1. Since φ(o) = 0, we must have the slope of φ in S1 is
zero in all directions (i.e., φ(x) = βi∀x ∈ Pi ⊂ S1). This is because if there is a direction d̃ with positive
slope, then all points sufficiently close to o along the direction −d̃ in S1 have a negative value of φ, which is
not possible. Next we show that the slope along all directions for φ in S2 is also zero which will provide the
desired contradiction. Observe first that the slope of φ along d is zero. Thus, the slope of φ in S2 along d
is zero. Consider a point a ∈ S1 ∩ S2. There exists a direction d2 which is not parallel to d for which there
exists n′, n > 0, n′ < n such that a + nd2 = a and a + n′d2 ∈ interior(S2). Since φ(a) = φ(a + nd2) and φ is
continuous, piecewise linear and the slope of φ in S1 along d2 is zero, the slope along d2 for S2 is zero. Since
d2 is not parallel to d, this implies that the gradient of φ in S2 is zero. This proves that the gradient of φ is
identical for S1 and S2, which is the required contradiction. Hence o belongs to S1 ∩ S2 = B(φ).

Now consider the edge to which o belongs. By contradiction assume that the slope along this edge is
nonzero for φ. Then there exists x′ such that φ(x′) < 0, which is a contradiction. Thus, the slope of the
function along the edge passing through o is 0. Since, o ∈ S1 ∩ S2, the slope of φ in both S1 and S2 along
the direction d is zero. Thus, ∀x ∈ I2, φ(x) = φ(x + nd), where n ∈ R. Then by application of Lemma 41, ∃
ν1, ν2 ∈ Z, such that ν1d

x +ν2d
y = 0. Further we can always select ν1 and ν2 such that gcd(ν1, ν2) = 1. Then,

by application of Lemma 40, we have that φ(x1, y1) = φ(x2, y2) if (ν1x1+ν2y1)(mod1) = (ν1x2+ν2y2)(mod1).
Therefore, φ may be written as φ(x, y) = ζ((ν1x+ν2y)(mod1)), where ζ is a two-slope continuous function over
the one-dimensional group with, ζ(o) = 0. It follows from Proposition 32 that ζ is subadditive. Furthermore,
ζ is of the form given in Construction 38. Finally we deduce from Theorem 39 that ζ is facet-defining for
1DIIGP. ¤

Next we use Theorem 42 to prove an extension of the Two-Slope Theorem of Gomory and Johnson [12]
to 2DIIGP. In the Two-Slope Theorem, Gomory and Johnson prove that all piecewise linear subadditive
continuous functions with exactly two slopes are facets of 1DIIGP. In the proof of Theorem 42 it was shown
that if φ is a two-gradient piecewise linear and continuous function it must be of the form φ(x, y) = ζ((ν1x +
ν2y)(mod1)), where ζ has two slopes. This result together with Gomory and Johnson Two-Slope Theorem,
implies the following corollary.

Corollary 43 If φ : I2 → R+ is a valid, continuous, minimal, piecewise linear function with exactly two
gradients over I2 then φ is facet-defining for 2DIIGP. ¤

7 A family of three-gradient facets.

Next we consider a family of functions ψ that have three gradients. These functions are nontrivial as they
cannot be obtained from known families of facet-defining functions for the one-dimensional problem using
Construction 38. Furthermore, they define facets for 2DIIGP. We first give a procedure to build these
inequalities. This construction is illustrated in Figure 7.

Construction 44 Let f1 6= 0 and f2 6= 0. We divide I2 into five polytopes R1, R2, R3, R4, R5 as shown in
Figure 7. Polytopes R1, R2, R3, R4, R5 are defined by the points
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Figure 7: The three gradient facet-defining function with f1 = 0.3, f2 = 0.8

1. (0, 0),(f1, 0), (f1, f2) and (0, f2),

2. (0, f2), (f1, f2), (f1 + (1− f1)(1− f2), 1) and (0, 1),

3. (f1, 0), (1, 1), (f1 + (1− f1)(1− f2), 1) and (f1, f2),

4. (f1, 0), (f1 + (1− f1)(1− f2), 0), (1, 1− f2) and (1, 1),

5. (f1 + (1− f1)(1− f2), 0), (1, 0) and (1, 1− f2)

respectively. We construct ψ to be the only continuous piecewise linear function with ψ(f1, f2) = 1 and
ψ(0, 0) = 0, whose gradients in R2 and R4 are equal and whose gradients in R3 and R5 are equal.

Observe from Construction 44 that we may write ψ as

ψ(u) =





αT
1 u + β1 ∀u ∈ R1

αT
2 u + β2 ∀u ∈ R2

αT
3 u + β3 ∀u ∈ R3

αT
2 u + β4 ∀u ∈ R4

αT
3 u + β5 ∀u ∈ R5.

(37)

There are some relations between the vectors α1, α2 and α3. First denote α1 = (σ1, σ2). Since R1 and R2
share an edge parallel to the x-axis we conclude that α2 = (σ1, σ3). Moreover, since R1 and R3 share an edge
parallel to the y−axis we have that α3 = (σ4, σ2). We next show by computing explicit values for σ1, σ2, σ3

and σ4 that there exists only one function that meets the requirements of Construction 44 for each value of
(f1, f2).

The following proposition is easily verified.

Proposition 45 The only possible values for σ1, σ2, σ3 and σ4 for Construction 44 are 1
1+f1−f2

, 1−f2
f2(1+f1−f2)

,

− 1
1+f1−f2

and − 1−f2+f1f2
f2(1−f1)(1+f1−f2)

respectively. ¤

As a corollary to Proposition 45, we can derive that the scalars βi are β1 = 0, β2 = 1 − σ1f1 − σ3f2 =
1

1+f1−f2
, β3 = (σ1 − σ4)f1 = f1

f2(1−f1)(1+f1−f2)
, β4 = 0, β5 = −σ4 = 1−f2+f1f2

f2(1−f1)(1+f1−f2)
.

Note that the origin lies in each of the polytopes R1, ..., R5. Therefore we can also compute the function
value at any given point by using the gradient of the function ψ in that polytope and the relative position
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Figure 8: Edges of the three gradient function

of the point with respect to the origin. We will prove next that ψ is facet-defining for 2DIIGP. In order to
do so, we first have to prove that ψ is symmetric and subadditive. To this end, we use the points described
in Figure 8. Points described with the same letter are the same point in I2. The points o1, o2, o3, o4 all
correspond to the origin. The point c1 ≡ (f1, f2) is the right-hand-side of 2DIIGP. The edges [c1, d2, b1]
and [o4, a1] are parallel. Further we note that line segments [b2, o4], [a1, d1], [d1, o3] are not edges since they
belong to polytopes with the same gradient. So the edges of ψ are the line segments [o1, a1], [a1, c1], [o1, b1],
[b1, c1], [c1, d2, b1] and [o4, a1]. Although d1 belongs to the three polytopes R2, R3 and R4, it is not a vertex
since φ has the same gradient over R2 and R4. Thus, the vertices of ψ are o1, a1, b1, c1.

Proposition 46 The function ψ is symmetric.

Proof: We consider the following four cases:

1. x ≤ f1 and y ≤ f2. Then (f1 − x, f2 − y) ∈ R1. Thus ψ(x, y) + ψ(f1 − x, f2 − y) = σ1(x) + σ2(y) +
σ1(f1 − x) + σ2(f2 − y) = σ1f1 + σ2f2 = 1.

2. x ≤ f1 and y > f2. Then (f1 − x, f2 − y + 1) ∈ R2. Thus ψ(x, y) + ψ(f1 − x, f2 − y + 1) =
σ1(x)− σ3(1− y) + σ1(f1 − x)− σ3(1− (f2 − y + 1)) = σ1f1 − σ3(1− f2) = f1

1+f1−f2
+ 1−f2

1+f1−f2
= 1.

3. x > f1 and y ≤ f2. There are three subcases:

(a) (x, y) ∈ R3. Then (f1 − x + 1, f2 − y) ∈ R5. Thus ψ(x, y) + ψ(f1 − x + 1, f2 − y) = −σ4(1− x)−
σ2(1−y)−σ4(1−(f1−x+1))+σ2(f2−y) = σ4(f1−1)+σ2(f2−1) = 1−f2+f1f2

f2(1+f1−f2)
− 1−2f2+f2

2
f2(1+f1−f2)

= 1.

(b) (x, y) ∈ R4. Then (f1 − x + 1, f2 − y) ∈ R4. Thus ψ(x, y) + ψ(f1 − x + 1, f2 − y) = −σ1(1− x)−
σ3(1−y)−σ1(1−(f1−x+1))−σ3(1−(f2−y)) = σ1(f1−1)+σ3(f2−2) = f1−1

1+f1−f2
− f2−2

1+f1−f2
= 1.

(c) (x, y) ∈ R5. This is similar to the first subcase since (f1 − x + 1, f2 − y) ∈ R3.

4. x > f1 and y > f2. There are three subcases:

(a) (x, y) ∈ R2. Then (f1 − x + 1, f2 − y + 1) ∈ R4. Thus ψ(x, y) + ψ(f1 − x + 1, f2 − y + 1) =
σ1x−σ3(1−y)−σ1(1−(f1−x+1))−σ3(1−(f2−y+1)) = σ1f1+σ3(−1+f2) = f1

1+f1−f2
− −1+f2

1+f1−f2
= 1.
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(b) (x, y) ∈ R3. Then (f1 − x + 1, f2 − y + 1) ∈ R3. Thus ψ(x, y) + ψ(f1 − x + 1, f2 − y + 1) =
−σ4(1− x)− σ2(1− y)− σ4(1− (f1 − x + 1))− σ2(1− (f2 − y + 1)) = σ4(f1 − 1) + σ2(f2 − 1) =
1−f2+f1f2

f2(1+f1−f2)
− 1+f2

2−2f2
f2(1+f1−f2)

= 1.

(c) (x, y) ∈ R4. This is similar to the first subcase since (f1 − x + 1, f2 − y + 1) ∈ R2.

¤

Proposition 47 The function ψ is subadditive.

Proof: The vertices of ψ are the points o1, a1, b1 and c1. Note also that there is at least one vertex on each
edge. Therefore there is no need to add supplemental vertices. To prove that ψ is subadditive we know from
Proposition 12 that it is sufficient to verify that

ψ(v1) + ψ(v2) ≥ ψ(v1 + v2), (38)

for all vertices v1, v2 ∈ V(φ) and to verify that

ψ(e1) + ψ(e2) ≥ ψ(v), (39)

for all points e1 and e2 on edges of ψ such that e1 + e2 = v, e1, e2 ∈ B(ψ) and v is a vertex.
We first verify that (38) is satisfied. Observe that it is trivially satisfied if either v1 or v2 is the origin.

Now consider the other cases.

1. We have ψ(a1) + ψ(a1) = 2f1σ1 and ψ(2a1) = ψ(2f1, 0). There are three subcases:

(a) f1 ≤ 0.5 and 2f1 ≤ (1− f1)(1− f2) + f1. Then, ψ(2a1) = ψ(2f1, 0) = 2f1σ1 = 2ψ(f1, 0) = 2ψ(a1).

(b) f1 ≤ 0.5 and 2f1 > (1−f1)(1−f2)+f1. Then, ψ(2a1) = ψ(2f1, 0) = (1−f2 +f1f2)σ1 +(2f1−(1−
f2 + f1f2))σ4 = 1−f2−2f1+3f1f2−2f2

1 f2
(1+f1−f2)(f2)(1−f1)

. Also, 2ψ(a1) = 2f1σ1 = 2f1
1+f1−f2 = 2f1f2−2f2

1 f2
(1+f1−f2)(f2)(1−f1)

. But
2f1f2−2f2

1 f2 > 1−f2−2f1+3f1f2−2f2
1 f2, since, 2f1 > 1−f2+f1f2. Therefore, ψ(2a1) ≥ 2ψ(a1).

(c) f1 > 0.5. Then 2f1 − 1 < f1. Therefore, ψ(2a1) = ψ(2f1 − 1, 0) < ψ(f1, 0) < 2ψ(f1, 0) = 2ψ(a1)
since σ1 > 0.

2. ψ(a1) + ψ(b1) = f1σ1 + f2σ2 = 1 = ψ(a1 + b1).

3. ψ(a1) + ψ(c1) = f1σ1 + 1 > 1 ≥ ψ(a1 + c1) as ψ(x, y) ≤ 1 ∀(x, y) ∈ I2.

4. ψ(b1) + ψ(b1) = 2f2σ2. There are two subcases:

(a) f2 > 0.5. Then 2f2 − 1 < f2. Therefore ψ(2b1) = ψ(0, 2f2 − 1) < ψ(0, f2) < 2ψ(b1).

(b) f2 ≤ 0.5. Then ψ(2b1) < ψ(b1) < 2ψ(b1). The first inequality is because σ3 < 0.

5. ψ(b1) + ψ(c1) = f2σ2 + 1 > 1 ≥ ψ(b1 + c1) as ψ(x, y) ≤ 1 ∀(x, y) ∈ I2.

6. ψ(c1) + ψ(c1) = 2 > ψ(c1 + c1) as ψ(x, y) ≤ 1 ∀(x, y) ∈ I2.

We next verify that (39) is satisfied. To simplify notation we denote ∆ = (1 − f1)(1 − f2). It is easily seen
that the edges of ψ are the line segments [o1, b1], [o1, a1], [b1, c1], [a1, c1], [c1, d2, b2] and [a1, o4]. Further,
by Proposition 10, we only need to verify (39) for edges that are not parallel to each other. Thus for each
vertex, (except for the origin for which (39) is always satisfied), we examine the following combinations:

1. e1 ∈ [o1, a1], e2 ∈ [o1, b1].

(a) a1: e1 = a1, e2 = o1. Thus subadditive.

(b) b1: e1 = o1, e2 = b1. Thus subadditive.
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(c) c1: e1 = a1, e2 = b1. Thus subadditive.

2. e1 ∈ [o1, a1], e2 ∈ [a1, c1].

(a) a1: e1 = o1, e2 = a1. Thus subadditive.

(b) b1: If f1 < 0.5, there is no solution. If f1 ≥ 0.5, we have e1 = b1 − c1, e2 = c1. Then,
ψ(e1) + ψ(c1) > 1 > ψ(b1).

(c) c1: e1 = o1, e2 = c1. Thus, subadditive.

3. e1 ∈ [o1, a1], e2 ∈ [c1, d1, b2].

(a) a1: There is no solution. Suppose by contradiction there is one, then e2 = d1. In such a case,
e1 = a1 − d1 must belong to the line segment between o1 and a1. However, a1 − d1 = −∆ =
−1 + f1 + f2 − f1f2 ≡ f1 + f2 − f1f2 > f1, a contradiction. Thus e1 /∈ [o1, a1].

(b) b1: e1 = o1, e2 = b2; e1 = (1− f1, 0), e2 = c1, if f1 ≥ 1/2. Thus subadditive.

(c) c1: e1 = o1, e2 = c1; e1 = a1, e2 = b2. Thus subadditive.

4. e1 ∈ [o1, a1], e2 ∈ [a1, o4].

(a) a1: e1 = o1, e2 = a1; e1 = a1, e2 = o. Thus subadditive.

(b) b1: We must have e2 = ((1−∆), f2). Then e1 = (∆, 0). If e1 ∈ [o1, a1], we have ψ(e1) + ψ(e2) =
∆σ1 −∆σ1 − (1− f2)σ3 = f2σ2 = ψ(b1).

(c) c1: No solution. Suppose there is, then we must have e2 = ((1−∆), f2). Then e1 = (f1 + ∆, 0) /∈
[o1, a1].

5. e1 ∈ [o1, b1], e1 ∈ [b1, c1].

(a) a1: Then we must have e2 = c1. If there is e1, such that e1 + c1 = a1, then ψ(e1) + ψ(e2) > 1 >
ψ(a1).

(b) b1: e1 = o1 and e2 = b1. Thus subadditive.

(c) c1: e1 = o1 and e2 = c1. Thus subadditive.

6. e1 ∈ [o1, b1], e2 ∈ [c1, d1, b2].

(a) a1: Then we must have e2 = c1. Thus, if there is any e1 such that e1 + e2 = a1, we obtain,
ψ(e1) + ψ(e2) ≥ 1 > ψ(a1).

(b) b1: Then e1 = o1 and e2 = b2. Thus subadditive.

(c) c1: Then e1 = o1 and e2 = c1. Thus subadditive.

7. e1 ∈ [o1, b1], e2 ∈ [a1, o4].

(a) a1: Then e1 = o1 and e2 = a1. Thus subadditive.

(b) b1: Then e1 = b1 and e2 = o4. Thus subadditive.

(c) c1: Then e1 = b1 and e2 = a1. Thus subadditive.

8. e1 ∈ [b1, c1], e2 ∈ [a1, c1].

(a) a1: We must have e1 = b1. Then e2 = (f1, (1 − f2)). If feasible, ψ(e1) + ψ(e2) = f2σ2 + f1σ1 +
(1− f2)σ2 = f1σ1 + σ2 > f1σ1 = ψ(a1).

(b) b1: We must have e2 = a1. If e1 = ((1 − f1), f2) ∈ [b1, c1], we have a solution. Then, we have
ψ(e1) + ψ(e2) = f1σ1 + (1− f1)σ1 + f2σ2 > f2σ2 = ψ(b1).
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(c) c1: e1 = b1 and e2 = a1. Thus subadditive.

9. e1 ∈ [b1, c1], e2 ∈ [c1, d1, b2].

(a) a1 There are two subcases:

i. f2 < 0.5: Clearly the y coordinate of e2 must be 1 − f2. Therefore e2 must be (1 − 2f2 +
2f1f2, 1 − f2). Thus, e1 = (f1 + 2f2 − 2f1f2, f2). Then ψ(e1) + ψ(e2) = (2 + f1)σ1. On the
other hand ψ(a1) = f1σ1.

ii. f2 ≥ 0.5: Clearly the x2 coordinate of e2 must be 1−f2. Therefore e2 must be ((f1 +2∆), (1−
f2)). Also, we must have (f1 + 2∆) < 1. Under these conditions, e1 = (1 − 2∆), f2). Then
ψ(e1) + ψ(e2) = (1 − 2∆)σ1 + f2σ2 − (1 − f1 − 2∆)σ1 − f2σ3 = f1σ1 + f2σ2 + f2σ1. On the
other hand ψ(a1) = f1σ1.

(b) b1: Clearly, e2 = d1. If (1 − f1 −∆, f2) ∈ [b1, c1], then e1 = (1 − f1 −∆, f2). Since σ1 > 0, we
have that ψ(e1) + ψ(e2) > σ1 + f2σ2 ≥ f2σ2 > ψ(b1).

(c) c1: Clearly, e2 = d1. Now, if (1 − ∆, f2) ∈ [b1, c1], then we have e1 = (1 − ∆, f2). Then
ψ(e1) + ψ(e2) = (1−∆)σ1 + f2σ2 + (f1 + ∆)σ1 = 1 + σ1 > 1 = ψ(c1).

10. e1 ∈ [b1, c1], e2 ∈ [a1, o4].

(a) a1: Clearly, we must have that e2 = (f1 + ∆, 1− f2). Thus when feasible, e1 = (1−∆, f2). Then
ψ(e1) + ψ(e2) = (1−∆)σ1 + f2σ2 − (1− f1 −∆)σ1 − f2σ3 = (1 + f1)σ1 > f1σ1 > ψ(a1).

(b) b1: e1 = b1 and e2 = o4. Thus subadditive. Also, we can have e1 = (1 − f1, f2) and e2 = (f1, 0).
Then ψ(e1) + ψ(e2) = s1 + s2f2. On the other hand ψ(b1) = s2f2.

(c) c1: e1 = c1 and e2 = o4. Or, e1 = b1 and e2 = a1. Thus subadditive.

11. e1 ∈ [a1, c1], e2 ∈ [c1, d2, b2].

(a) a1: Clearly e2 = b2. Then e1 = (f1, 1− f2). But ψ(e1) > ψ(a1).

(b) b1: Clearly the x1 coordinate of e2 must be 1 − f1. If f1 > 0.5, there is no solution. There are a
few subcases we have to consider:

i. 1− f1 > f1 + ∆ ( Or f1
1−f1

< f2). Then, we have e2 = (1− f1,
1−2f1−∆

1−f1
) and e1 = (f1,

f1
1−f1

).
Therefore, ψ(e1)+ψ(e2) = −(1− (1−f1))σ1− (1− 1−2f1−∆

1−f1
)σ3 +f1σ1 + f1

1−f1
σ2 = ∆f2+f1

(1−f1)f2
σ1.

On the other hand ψ(b1) = f2σ2 = ∆f2
(1−f1)f2

σ1. Thus subadditive.

ii. 1 − f1 ≤ f1 + ∆. Then we have e2 = (1 − f1,
1−2f1
1−f1

+ f2) and e1 = (f1,
f1

1−f1
). Therefore,

ψ(e1) + ψ(e2) = (1 − f1)σ1 − (1 − 1−2f1
1−f1

− f2)σ3 + f1σ1 + f1
1−f1

σ2 = f2−f2
2 +f1+f1f2

2−f1f2
(1−f1)f2

σ1.

Thus, ψ(e1) + ψ(e2)− ψ(b1) = f1
f2(1−f1)

> 0.

(c) c1: e1 = a1 and e2 = b2. Thus subadditive.

12. e1 ∈ [a1, c1], e2 ∈ [a1, o4]. Thus subadditive.

(a) a1: e1 = a1 and e2 = o4.

(b) b1: Then we have e2 = (1− f1,
1−2f1
1−f1

). There are two subcases:

i. f1 > ∆. Then e1 = (f1,
f1−∆
1−f1

). Therefore, ψ(e1) + ψ(e2) = −(1 − (1 − f1))σ1 − (1 −
1−2f1
1−f1

)σ3 + f1σ1 + f1−∆
1−f1

σ2 = f1−∆+f2∆
(1−f1)f2

σ1. On the other hand ψ(b1) = f2σ2 = ∆f2
(1−f1)f2

σ1.
Thus subadditive.

ii. f1 ≤ ∆. Then e1 = (f1,
1−∆
1−f1

). Therefore, ψ(e1)+ψ(e2) = −(1− (1− f1))σ1− (1− 1−2f1
1−f1

)σ3 +
f1σ1 + 1−∆

1−f1
σ2 = f1+f2∆

(1−f1)f2
σ1. Thus subadditive.
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(c) c1: e1 = c1 and e2 = o4. Thus subadditive.

¤
We conclude from Theorem 14 that, ψ is minimal since ψ is subadditive and symmetric. Next we describe

some of the other points represented in Figure 8 that will be helpful in proving that ψ is facet-defining for
2DIIGP. The point g1 is the center of [o1, a1]. The point h1 is the center of [o1, b1]. The line segment [g1, q1]
is parallel to the line segment [a1, c1]. Similarly, the line segment [h1, q1] is parallel to [b1, c1]. The point
i1 is the center of [o2, b1]. The distance between j1 and o2 is ∆/2. The line segment [i1, j1] is parallel to
[c1, d2]. The point v1 is the center of [o2, d2]. The line segment [p1, i1] is parallel to the line segment [o2, d2].
Similarly, [v1, p1] is parallel to [c1, d2]. The point k2 is the center of [d2, o4] and the point l1 is the center of
the line segment [a1, d1]. Line segments [a2, r1] and [j1, t1] are parallel to [o2, b1], while [r1, u1] is parallel to
[a2, d2]. Finally, [t1, b1] is parallel to [c1, d2].

Theorem 48 ψ is a facet of 2DIIGP.

Proof: We assume by contradiction that ψ is not facet-defining for 2DIIGP. From Theorem 17 we conclude
that there exists a solution ψ∗ to the system of equations E(ψ) that is different from ψ. Let U be the closed
rectangle {o1, g1, q1, h1}. Then U + U is the closed rectangle {o1, a1, c1, b1}. It is easy to verify that all
requirements of Proposition 24 are satisfied. Therefore we conclude that ψ∗ is linear over U and U +U ≡ R1.

Next we let U be the closed quadrilateral {o2, g2, p1, i1}. Then U + U is the closed quadrilateral
{o2, d2, c1, b1} ≡ R2 . It is easy to verify that all the requirements of Proposition 24 are satisfied. Therefore
we conclude that ψ∗ is linear over the quadrilateral {o2, d2, c1, b1}.

Then we consider U to be the closed triangle {o2, i1, j1}, and V to be the closed quadrilateral {a1, l1, i2, o4}.
Then U + V is the union of the closed quadrilaterals, {o2, b1, t1, j1}, {a2, r1, u1, d2} and {a1, d1, b2, o4}. It
is easy to verify that all the requirements of Proposition 24 are satisfied. Therefore we conclude that ψ∗ is
linear over U , V and U + V and has the same the same gradient over these sets. This implies that ψ∗ has
the same gradient on the closed quadrilaterals {o2, b1, c1, d2} ≡ R2 and {a1, d1, b2, o4} ≡ R4.

Let U be the union of the closed triangle {k1, o3, h2} and the closed quadrilateral {o4, k2,m1, n1}. Then
U + U is the union of the closed polytopes {d1, o3, b2} and {d2c1a1o4}, i.e., the union of R3 and R5. All
the requirements of Proposition 24 are satisfied. We therefore conclude that ψ∗ is linear and has the same
gradient over R3 and R5.

Denote the slope of ψ in R1 to be σ∗1 and σ∗2 along the x-axis and y-axis respectively. Since ψ∗(f1, f2) = 1,
we must have

f1σ
∗
1 + f2σ

∗
2 = 1. (40)

Now since the line segments [o1, a1] and [b1, c1] belong to both R1 and R2, the slope of ψ∗ along the x-axis
in R2 must be σ∗1 . Let the slope of ψ∗ along the y-axis in R2 be σ∗3 . Then we must have

f2σ
∗
2 + (1− f2)σ∗3 = 0. (41)

Similar argument leads to the equations,

(f1 + ∆)σ∗1 + (1− f1 −∆)σ∗4 = 0 (42)
(1− f1)σ∗1 + σ∗3 = (1− f1)σ∗4 + σ∗2 (43)

where σ∗4 is the slope of ψ∗ along the x-axis in R3 and R5. Since Proposition 45 states that (40) - (43) has a
unique solution we conclude that ψ∗ = ψ, a contradiction. ¤

Next, we give an example in which the above three-gradient facet of the 2DIIGP yields a facet of the
convex hull of the feasible region of an integer program.

Example 49 Consider the system

−4x + 3y ≥ 10 (44)
−2x + 4y ≥ 16. (45)

x, y ∈ Z+ (46)
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After introducing nonnegative integer slack variables s1 and s2, and performing simplex iterations, we obtain
the following tableau

x + 0.4s1 − 0.3s2 = 0.8 (47)
y + 0.2s1 − 0.4s2 = 4.4. (48)

We now obtain the GMIC from both the rows and an automorphism of the three-gradient cut, namely, ψ ◦ ϕ
where ϕ(x, y) = (1 − y, x). This cut is 0.5s1 + 0.25s2 ≥ 1 or equivalently −x + y ≥ 4. This inequality is
facet-defining. The two GMICs are

0.5s1 + 0.8750s2 ≥ 1 ⇒ −3.75x + 5y ≥ 20
0.5s1 + 0.6667s2 ≥ 1 ⇒ −4x + 5y ≥ 20.

It can be verified that the GMICs are not facet-defining for this example. ¤

8 Mixed Integer Extension.

In the previous sections, we described facet-defining inequalities for 2DIIGP. We now extend these results to
the mixed integer case.

Definition 50 A pair of functions φ : I2 → R+ and µφ : J2 → R+ defines a valid inequality for 2DMIIGP,
where φ satisfies 2, 3, 4 of Definition 3 along with the conditions

1. µφ is a nonnegative function,

2.
∑

u∈I2 φ(u)t(u) +
∑

w∈J2 µφ(w)s(w) ≥ 1 ∀(t, s) ∈ 2DMIIGP.

We next give a theorem of Johnson [14] that allows us to generate coefficients for continuous variables in
MIIGP of any dimension. We present the result for the two dimensional case.

Theorem 51 Assume r ∈ I2 where r 6= (0, 0), then the pair of functions φ : I2 → R+ and µφ : J2 → R+

defines a minimal valid inequality for the convex hull of feasible points of 2DMIIGP if and only if

1. φ is subadditive

2. φ satisfies the symmetry condition

3. µφ(u) = limh→0+
φ(P(hu))

h . ¤

Thus, if a function φ is subadditive and minimal for 2DIIGP, and its directional derivatives exist at (0, 0),
then it can be used to generate minimal inequalities for 2DMIIGP.

We now use the result of Theorem 51 to extend the facets τ given in Construction 38 into facets for
2DMIIGP by computing the coefficients µτ of the continuous variables. Note that τ was obtained from ζ, a
facet for 1DIIGP. We therefore denote ζ+ = limh→0+

ζ(h)
h and ζ− = limh→0+

ζ(−h)
h .

Proposition 52 For τ given in Construction 38

µτ (v1, v2) =
{

(λ1v1 + λ2v2)ζ+ if λ1v1 + λ2v2 ≥ 0
(λ1v1 + λ2v2)ζ− if λ1v1 + λ2v2 ≤ 0.

(49)

Proof: The proof is identical for both the cases. Therefore we only prove the result for the first one.
For sufficiently small h > 0, τ(P(vh)) = ζ(h(λ1v1 + λ2v2)). Therefore by application of Theorem 51,
limh→0+

τ(P(vh))
h = (λ1v1 + λ2v2)ζ+. ¤

In Proposition 52, we observe that the coefficients of continuous variables of µτ are obtained through
aggregation. This result is interesting because one of the main computational difficulties with one-dimensional
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group cuts is that the coefficients of their continuous variables can be weak. Andersen, Cornuéjols, and Li [2]
show that significant computational improvements can be obtained by aggregating constraints so as to reduce
the coefficients of continuous variables in the resulting cuts. The result of Proposition 52 presents a group-
theoretical basis for this result.

In the following proposition, we show how ψ given in Construction 44 can be extended to yield a family
of facets for 2DMIIGP as shown in the next proposition.

Proposition 53 For ψ given in Construction 44

µψ(v1, v2) =





v1σ1 + v2σ2 if v1 ≥ 0, v2 ≥ 0
v1σ1 + v2σ3 if v1 ≥ 0, v2 ≤ 0
v1σ4 + v2σ2 if v1 ≤ 0, v2 ≥ 0
v1σ1 + v2σ3 if v1 < 0, v2 < 0 and |v1| ≤ |v2|(1− f1)
v1σ4 + v2σ2 if v1 < 0, v2 < 0 and |v1| ≥ |v2|(1− f1)

(50)

where σi represents the slopes obtained in Proposition 45.

Proof: The proof is similar for the five cases. Therefore we only prove the result for the first one. For
sufficiently small h, ψ(P(vh)) = hv1σ1 + hv2σ2. Thus limh→0+

ψ(P(vh))
h = v1σ1 + v2σ2. ¤

It appears from Proposition 53 that the three-gradient facet ψ yields diverse coefficients for continuous
variables. In particular we will show that it can generate coefficients for continuous variables that are not
dominated by GMICs from the individual rows. This is significant because it can be shown that GMIC gen-
erates the strongest possible coefficients for continuous variables among all facets of 1DMIIGP. Although this
result seems to be well-known and was proven in Cornuéjols, Li, and Vandenbussche [4] for homomorphisms
of the GMIC, we did not find it explicitly written for the general case. We therefore include its proof for
completeness in Proposition 54.

Proposition 54 Among all the facets of 1DMIIGP, the coefficients of continuous variables are strongest in
GMIC.

Proof: The cut coefficients for continuous variables in a GMIC for 1DMIIGP with right-hand-side f(6= 0)
are,

µGMIC(u) =
{ u

f u ≥ 0
− u

1−f u ≤ 0.
(51)

We prove the result for continuous variables with positive coefficients. The proof for the other case is similar.
Assume by contradiction that (π, µπ) is a facet of 1DMIIGP such that µπ(1) = σ < 1

f = µGMIC(1). Using
Theorem 51, we have that

µπ(1) = lim
h→0+

π(P(h))
h

= σ. (52)

Choose ε > 0 such that σ + ε < 1
f . Since the limit in (52) exists, ∃ δ̃ > 0 such that π(δ)

δ < σ + ε ∀0 < δ < δ̃.
Choose δ∗ ∈ [0, δ̃) such that f

δ∗ = n ∈ Z. Clearly, π(δ∗) < δ∗(σ + ε) < δ∗
f . Also, by subadditivity of π, we

have nπ(δ∗) ≥ π(nδ∗) = π(f) = 1, or π(δ∗) ≥ 1/n = δ∗
f , which is the desired contradiction. ¤

We illustrate now the fact that coefficients of continuous variables from µψ can be strictly better than the
coefficients generated from the GMICs of each of the individual constraints. In Figure 9, we represent the
region where µψ dominates both the GMICs and the region where it is dominated by GMICs for 2DMIIGP
with right-hand-side (0.3, 0.8). We see that the region where the µψ dominates the GMICs is large, which
is very encouraging. This implies that, (ψ, µψ) may be useful in generating stronger cuts for mixed integer
programs.

Next we present an example of a simple MIP for which the three-gradient yields a facet-defining inequality.
It is interesting to note that in this example the GMICs generated from the individual constraints do not
yield facet-defining inequalities of the MIP.
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Figure 9: Comparison of coefficients of continuous variables in ψ and GMIC

Example 55 Consider the system

−0.3077x− 0.3077y ≤ −2.2462 (53)
1.3846x− 0.6154y ≤ −0.0923 (54)

x, y ∈ Z+ (55)

We introduce the nonnegative continuous slack variables s1 and s2 and after performing simplex iterations,
we obtain the tableau

x− s1 + 0.5s2 = 2.2 (56)
y − 2.25s1 − 0.5s2 = 5.1. (57)

The three-gradient cut is 1.1364s1 +0.9091s2 ≥ 1, which becomes −x+y ≥ 4. This inequality is facet-defining
for the convex hull of points represented by (53), (54) and (55). The two GMICs are

1.25s1 + 2.5s2 ≥ 1 ⇒ −1.6x + y ≥ 2.1
2.5s1 + 0.5556s2 ≥ 1 ⇒ y ≥ 6.

It can be verified that the GMICs are not facet-defining in this example. ¤

9 Conclusion.

In this paper, we laid the foundation for the study of 2DMIIGP. We developed tools to analyze piecewise
linear functions defined over I2. We presented tools to prove that a function is subadditive and presented a
two-dimensional version of Gomory and Johnson’s Interval Lemma. We presented two different constructions
that yield the first known families of facet-defining inequalities for 2DMIIGP. The first construction uses valid
inequalities of 1DMIIGP and uses them as building block for creating inequalities for the two-dimensional
group problem. This family of facets for 2DMIIGP gives a theoretical explanation for the success of con-
straints aggregation in practical implementations. The second construction we present has three gradients
and yields facet-defining inequalities of 2DMIIGP that cannot be obtained directly from 1DMIIGP using the
first construction. This construction is interesting because it yields coefficients for continuous variables that
are not dominated by those of the GMICs obtained from the individual rows of 2DMIIGP. We believe that
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obtaining stronger coefficients for continuous variables is the main improvement in the cuts that are based
on higher-dimensional group relaxations.

This paper opens the way for future research on the group problem. Research directions include (1)
the evaluation of the computational potential of the derived inequalities inside branch-and-cut frameworks,
(2) the derivation of other families of facets for 2DMIIGP and finally (3) the extension of the tools and
constructions proposed in this paper to n−dimensional group problems.
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