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Abstract

A cutting-plane procedure for integer programming (IP) problems usually involves invoking a
black-box procedure (such as the Gomory-Chvátal (GC) procedure) to compute a cutting plane.
In this paper, we describe an alternative paradigm of using the same cutting-plane black-box.
This involves two steps. In the first step, we design an inequality cx ≤ d, independent of the
cutting plane black-box. In the second step, we verify that the designed inequality is a valid
inequality by verifying that the set P ∩ {x ∈ Rn : cx ≥ d + 1} ∩ Zn is empty using cutting
planes from the black-box. (Here P is the feasible region of the linear-programming relaxation
of the IP.) We refer to the closure of all cutting planes that can be verified to be valid using
a specific cutting plane black-box as the verification closure of the considered black box. This
verification paradigm naturally leads to the question of how much extra strength one might
hope to gain by having an oracle in place that provides us with potential cutting-planes and
we are left with the task of verifying that its output is valid. We show that the verification
closures are almost admissible operators, i.e., they are well-defined closures and share many
properties that are common to known cutting planes closures. Moreover the verification closure
of any admissible (i.e., ‘reasonable’) cutting planes scheme is at least as strong as the GC
and N0 closure, illustrating the power of verification. We then compare the strength of various
regular closures (GC cuts, split cuts, and matrix cone cuts N0,N,N+ cuts) with their verification
versions and with each other. We show that the verification closure of an admissible cutting plane
procedure is always stronger than the regular closure obtained from the admissible cutting plane
procedure. We show that verification closure of both the GC procedure and the N0 procedure
are stronger than the split closure. A number of other similar results comparing regular and
verification closures of different schemes are presented. We then provide lower bounds on the
rank of verification cutting planes for known difficult infeasible 0/1 instances, showing that while
verification procedure is strong, it is not unrealistically so. Finally, we consider well-known and
structured instances. We show that numerous families of inequalities with high GC, N0, or N
rank (such as clique inequalities) for the stable set polytope have a rank of 1 with respect to the
verification closure of any admissible cutting-plane procedure. We show that for the traveling
salesman problem the rank for the verification versions of GC,SC, N0, N , and N+ is in Θ(n)
where n is the number of nodes. It is well-known that GC rank for general polytopes in R2 can
be arbitrarily large. In contrast, we establish that the rank with respect to verification version
of GC is 1.
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1 Introduction

Cutting planes are a crucial tool in solving Integer Programs (IPs). Often the only guiding principal
(example: Kelley’s Method [15]) used in deriving generic cutting-planes (like Gomory-Chvátal or
split cuts) is that the incumbent fractional point must be separated. Therefore, cutting-planes are
generated ‘almost blindly’, where we apply some black-box method to constructively compute valid
cutting-planes and hope for the right set of cuts to appear that helps in proving optimality (or close
significant portion of the gap). Now if we were somehow able to deliberately design strong cutting-
planes that were tailor-made, for example to prove the optimality of good candidate solutions,
then we could possibly speed up IP solver. This motivates a different paradigm to generate valid
cutting-planes for integer programs: First we design a useful cutting-plane without considering its
validity. Then, once the cutting-plane is designed, we verify whether it is valid.

For n ∈ N, let [n] = {1, ..., n} and for a polytope P ⊆ Rn denote its integral hull by PI :=
conv (P ∩ Zn). We now precisely describe these verification schemes (abbreviated as: V-schemes).
Let M be an admissible cutting-plane procedure (i.e., a valid and ‘reasonable’ cutting-plane system
- we will formally define these) and let M(P ) be the closure with respect to the family of cutting-
planes obtained using M. For example, M could represent split cuts and then M(P ) represents the
split closure of P . Usually using cutting planes from a cutting plane procedure M, implies using
valid inequalities for M(P ) as cutting-planes. In the V-scheme, we apply the following procedure:
We design or guess the inequality cx ≤ d where (c, d) ∈ Zn×Z. To verify that this inequality is valid
for PI , we apply M to P∩{x ∈ Rn | cx ≥ d+1} and check whether M(P∩{x ∈ Rn | cx ≥ d+1}) = ∅.
If M(P ∩ {x ∈ Rn | cx ≥ d+ 1}) = ∅, then cx ≤ d is a valid inequality for PI and we say it can be
obtained using the V-scheme of M.

At an abstract level, we might wonder how much we gain from having to only verify that a
given inequality cx ≤ d is valid for PI , rather than actually computing it. In fact at a first glance, it
is not even clear that there would be any difference between computing and verifying. The strength
of the verification scheme lies in the following inclusion that can be readily verified for admissible
cutting plane procedures:

M(P ∩ {cx ≥ d+ 1}) ⊆M(P ) ∩ {cx ≥ d+ 1} . (1)

The interpretation of this inclusion is that an additional inequality cx ≥ d + 1 appended to the
description of P can provide us with crucial extra information when deriving new cutting-planes
that is not available when considering P alone and then adding the additional inequality afterwards
to the M-closure of P . In other words, (1) can potentially be a strict inclusion such that M(P ∩
{cx ≥ d+ 1}) = ∅ while M(P ) ∩ {cx ≥ d+ 1} 6= ∅. This is equivalent to saying that we can verify
the validity of cx ≤ d, however we are not able to compute cx ≤ d. To the best of our knowledge,
the only paper discussing a related idea is [4], but theoretical and computational potential of this
approach has not been further investigated.

The set obtained by intersecting all cutting-planes that can be verified to be valid using M will
be called the V-closure of M and denoted by ∂M(P ). Formally,

∂M(P ) :=
⋂

(c,d)∈Zn×Z
s.t. M(P∩{x∈Rn|cx≥d+1})=∅

{x ∈ Rn : cx ≤ d} . (2)

Under mild conditions (1) implies ∂M(P ) ⊆ M(P ) for all rational polytopes P . Since there
exist inequalities that can be verified but not computed, this inclusion can be proper. We illustrate
this in the next example.
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Example 1. Let SCi(P ) denote the i-th split closure of a polytope P . Also we denote SC1(P ) as
SC(P ). Consider the following family of polytopes [3] with n ∈ N:

An :=

x ∈ [0, 1]n |
∑
i∈I

xi +
∑
i 6∈I

(1− xi) ≥
1

2
∀ I ⊆ [n]

 . (3)

Note that (An)I = ∅ and recall that it takes n rounds of split cuts to establish that An is infeasible [6].
For simplicity, consider the instance P := A3. Then SC2(A3) 6= ∅ and SC3(A3) = ∅.

We will show that the V-split closure of A3 is the empty set, i.e., ∂SC(A3) = ∅. We first design
the inequality x1 + x2 + x3 ≥ 2. In order to show that the inequality x1 + x2 + x3 ≥ 2 is valid for
∂SC(A3) we will establish that SC(Q) = ∅ with Q := A3 ∩

{
x ∈ R3 | x1 + x2 + x3 ≤ 1

}
. It is easy

to see that max{xi | x ∈ Q} < 1 for i ∈ [3] and so we obtain that the split cuts xi ≤ 0 for i ∈ [3] are
valid for SC(Q). However, x1 + x2 + x3 ≥ 1

2 is in the description of Q. Thus, SC(Q) = ∅, and so
x1 +x2 +x3 ≥ 2 can be obtained via the V-split closure, i.e., it is valid for ∂SC(A3). By symmetry,
we also obtain that ∂SC(A3) ⊆

{
x ∈ R3 | x1 + x2 + x3 ≤ 1

}
and so it follows that ∂SC(A3) = ∅.

We note that rank of A3 with respect to Gomory-Chvátal (GC) cuts [14, 2], Lift-and-project
(LP) cuts [1], and Matrix cone cuts (N0,N,N+) [16] is also 3 but the V-rank is 1 for any of these
operators.

Outline and contribution. This paper conducts a systematic study of the strengths and
weaknesses of the V-schemes. In Section 2, we prove basic properties of the V-closure. In order to
present these results, we first describe general classes of reasonable cutting-planes in an abstract set-
ting, using the class of so called admissible cutting-plane procedures, a machinery developed in [19].
We prove that ∂M is almost admissible, i.e. the V-schemes satisfy many important properties that
all known classes of admissible cutting-plane procedures including GC cuts, lift-and-project cuts,
split cuts (SC), and N,N0,N+ cuts satisfy. In Section 3, we show first that V-schemes have natural
inherent strength, i.e., even if M is an arbitrarily weak admissible cutting-plane procedure, ∂M(P )
it is at least as strong as the GC and the N0 closures. We then compare the strength of various
regular closures (GC cuts, split cuts, and N0,N,N+ cuts) with their V-versions and with each other.
For example, we show that ∂GC(P ) ⊆ SC(P ) and ∂N0(P ) ⊆ SC(P ). The complete list of these
results is illustrated in Figure 1. In Section 4, we study the rank of valid inequalities with respect
to the V-closures. Here we present upper and lower bounds on the V-ranks of valid inequalities
for a large class of 0/1 problems showing that the V-closures are strong but not unrealistically
so. In Section 5, we illustrate the strength of the V-operation on specific structured problems. In
particular, we show that facet-defining inequalities of monotone polytopes contained in [0, 1]n have
low rank with respect to any ∂M operator. We show that numerous families inequalities with high
GC, N0, or N rank [16] (such as clique inequalities) for the stable set polytope have a rank of 1
with respect to any ∂M with M being arbitrarily weak and admissible. We will also show that for
the traveling salesman problem the rank for ∂M with M ∈ {GC,SC, N0, N,N+} is in Θ(n) where
n is the number of nodes, i.e., the rank is Θ(

√
dim(P )) with P being the TSP-polytope. It is

well-known that for the case of general polytopes in R2 the GC rank can be arbitrarily large. In
contrast to this we will establish that the rank with respect to ∂GC is 1.

2 General properties of the V-closure.
For the ease of presentation, we will only consider rational polytopes in the following definition,
although they readily generalize to compact convex sets.
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Definition 2.1 ([19]). A cutting-plane procedure M defined for polytopes P := {x ∈ [0, 1]n | Ax ≤ b}
is admissible if the following holds:

1. Validity: PI ⊆M(P ) ⊆ P .

2. Inclusion preservation: If P ⊆ Q, then M(P ) ⊆M(Q) for all polytopes P,Q ⊆ [0, 1]n.

3. Homogeneity: M(F ∩ P ) = F ∩M(P ), for all faces F of [0, 1]n.

4. Single coordinate rounding: If xi ≤ ε < 1 (or xi ≥ ε > 0) is valid for P , then xi ≤ 0
(or xi ≥ 1) is valid for M(P ).

5. Commuting with coordinate flips and duplications: τi(M(P )) = M(τi(P )), where
τi is either one of the following two operations: (i) Coordinate flip: τi : [0, 1]n → [0, 1]n

with (τi(x))i = (1 − xi) and (τi(x))j = xj for j ∈ [n] \ {i}; (ii) Coordinate Duplication:
τi : [0, 1]n → [0, 1]n+1 with (τi(x))n+1 = xi and (τi(x))j = xj for j ∈ [n].

6. Substitution independence: Let ϕF be the projection onto the face F of [0, 1]n. Then
ϕF (M(P ∩ F )) = M(ϕF (P ∩ F )).

7. Short verification: There exists a polynomial p such that for any inequality cx ≤ d that
is valid for M(P ) there is a set I ⊆ [m] with |I| ≤ p(n) such that cx ≤ d is valid for
M({x : aix ≤ bi, i ∈ I}). We call p(n) the verification degree of M.

If M is defined for general rational polytopes P ⊆ Rn, then we say M is admissible if (A.) M
satisfies (1.)-(7.) when restricted to polytopes contained in [0, 1]n and (B.) for general polytopes
P ⊆ Rn, M satisfies (1.), (2.), (7.) and Homogeneity is replaced by

8. Strong Homogeneity: If P ⊆ F≤ := {x ∈ Rn | ax ≤ b} and F = {x ∈ Rn | ax = b} where
(a, b) ∈ Zn × Z, then M(F ∩ P ) = M(P ) ∩ F .

In the following, we assume that M(P ) is a closed convex set. If M satisfies all required properties
for being admissible except (7.), then we say M is almost admissible.

Requiring strong homogeneity in the general case leads to a slightly more restricted class than
the requirement of homogeneity in the 0/1 case. We note here that almost all known classes of
cutting-plane schemes such as GC cuts, lift-and-project cuts, split cuts, and N,N0, N+ are admis-
sible (cf. [19] for more details). Observe that (1) in Section 1 follows from inclusion preservation.

Next we present a technical lemma (without proof due to lack of space) that we require for the
main result of this section. We will use {αx ≤ β} as a shorthand for {x ∈ Rn | αx ≤ β}.
Lemma 2.2. Let Q be a compact set contained in the interior of the set {βx ≤ ζ} with (β, ζ) ∈
Zn × Z and let (α, η) ∈ Zn × Z. Then there exists a positive integer τ such that Q is strictly
contained in the set {(α+ τβ)x ≤ η + τζ}.

We next show that ∂M satisfies almost all properties that we should except from a well-defined
cutting-plane procedure. It can be verified that short verification (7.) also follows whenever ∂M(P )
is a rational polyhedron. However, we do not need this property for the results in this paper.

Theorem 2.3. Let M be an admissible cutting-plane procedure. Then ∂M is almost admissible.
In particular,

1. For 0/1 polytopes, ∂M satisfies properties (1.) to (6.).

2. If M is defined for general polytopes, then ∂M additionally satisfies property ( 8.).

Proof. It is straightforward to verify (1.), (2.), and (4.) - (6.). The non-trivial part is property (8.)
(or (3.) respectively). In fact it follows from the original operator M having this property. We will
prove (8.); property (3.) in the case of P ⊆ [0, 1]n follows mutatis mutandis.
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First observe that ∂M(P ∩ F ) ⊆ ∂M(P ) and ∂M(P ∩ F ) ⊆ F . Therefore, ∂M(P ∩ F ) ⊆
∂M(P )∩F . To verify ∂M(P∩F ) ⊇ ∂M(P )∩F , we show that if x̂ /∈ ∂M(P∩F ), then x̂ /∈ ∂M(P )∩F .
Observe first that if x̂ /∈ P ∩F , then x̂ /∈ ∂M(P )∩F . Therefore, we assume that x̂ ∈ P ∩F . Hence
we need to prove that if x̂ /∈ ∂M(P ∩ F ) and x̂ ∈ P ∩ F , then x̂ /∈ ∂M(P ). Since x̂ /∈ ∂M(P ∩ F ),
there exists c ∈ Zn and d ∈ Z such that cx̂ > d and M(P ∩ F ∩ {cx ≥ d + 1}) = ∅. By strong
homogeneity of M, we obtain

M(P ∩ {cx ≥ d+ 1}) ∩ F = ∅. (4)

Let F≤ = {ax ≤ b} and F = {ax = b} with P ⊆ F≤. Now observe that (4) is equivalent to
saying that M(P ∩ {cx ≥ d + 1}) is contained in the interior of the set {ax ≤ b}. Therefore by
Lemma 2.2, there exists a τ ∈ Z+ such that M(P ∩ {cx ≥ d + 1}) is contained in the interior of
{(c+ τa)x ≤ d+ 1 + τb}. Equivalently, M(P ∩ {cx ≥ d+ 1})∩ {(c+ τa)x ≥ d+ 1 + τb} = ∅ which
implies

M(P ∩ {cx ≥ d+ 1}) ∩ (P ∩ {(c+ τa)x ≥ d+ 1 + τb}) = ∅. (5)

Since P ⊆ F≤, we obtain that

P ∩ {(c+ τa)x ≥ d+ 1 + τb} ⊆ P ∩ {cx ≥ d+ 1}. (6)

Now using (6), (5) and inclusion preservation of M it follows M(P ∩{(c+ τa)x ≥ d+ 1 + τb}) = ∅.
Thus (c+ τa)x ≤ d+ τb is a valid inequality for ∂M(P ). Moreover note that since x̂ ∈ P ∩ F , we
have that ax̂ = b. Therefore, (c+ τa)x̂ = cx̂+ τb > d+ τb, where the last inequality follows from
the fact that cx̂ > d.

3 Strength and comparisons of V-closures.
In this section, we compare various regular closures and their V-counterparts with each other. We
first formally define possible relations between admissible closures and the notation we use.

Definition 3.1. Let L,M be almost admissible. Then

1. L refines M, if for all polytopes P we have L(P ) ⊆M(P ). We write: L ⊆M. It is indicated
by empty arrow heads in Figure 1.

2. L strictly refines M, if L refines M and there exists a polytope P such that L(P ) ( M(P ).
We write: L ( M. It is indicated by a filled arrow heads in Figure 1.

3. L is incompatible with M, if there exist polytopes P,Q such that M(P ) 6⊆ L(P ) and M(Q) 6⊆
L(Q). We write: L ⊥M. It is indicated with an arrow with circle head and tail in Figure 1.

In each of the above definitions, if either one of L or M is defined only for polytopes P ⊆ [0, 1]n,
then we confine the comparison to this class of polytopes.

We establish the relations depicted in Figure 1 in the rest of the section.

3.1 Strength of ∂M for arbitrary admissible cutting-plane procedures M

In order to show that ∂M refines M, we require the following technical lemma. The proof will be
included in the full version of the paper; see [8] for a similar result. We use the notation σP (·) to
refer to the support function of a set P , i.e., σP (c) = sup{cx | x ∈ P}.

Lemma 3.2. Let P,Q ⊆ Rn be compact convex sets. If σP (c) ≤ σQ(c) for all c ∈ Zn, then P ⊆ Q.
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Theorem 3.3. Let M be admissible. Then ∂M ⊆M.

Proof. Let P be a polytope. Since M(P ) ⊆ P and ∂M(P ) ⊆ P , both M(P ) and ∂M(P ) are
bounded. Moreover since M(P ) is closed by definition, and ∂M(P ) is defined as the intersection
of halfspaces (thus closed sets), we obtain that M(P ) and ∂M(P ) are both compact convex sets.
Thus, by Lemma 3.2, it is sufficient to compare the support vectors of M(P ) and ∂M(P ) consisting
only of integer vectors. Let σM(P )(c) = d for c ∈ Zn. We verify that σ∂M(P )(c) ≤ bdc. Observe
that, M(P ∩ {cx ≥ bdc+ 1}) ⊆M(P ) ∩ {cx ≥ bdc+ 1}, where the inclusion follows from inclusion
preservation of M. However note that since cx ≤ d is a valid inequality for M(P ), we obtain that
M(P )∩{cx ≥ bdc+ 1} = ∅. Thus, M(P ∩{cx ≥ bdc+ 1}) = ∅ and so cx ≤ bdc is a valid inequality
for ∂M(P ). Equivalently we have σ∂M(P )(c) ≤ bdc, completing the proof.

Under some mild conditions it can be verified that for M being admissible, we always have
∂M ( M; we defer this discussion to the full version of the paper. Note that Example 1 is an
illustration of this fact for the case of GC,SC,N,No, N+. We next show that even if M is chosen
arbitrarily, ∂M is at least as strong as the GC closure and the N0 closure.

Theorem 3.4. Let M be admissible. Then ∂M ⊆ GC and ∂M ⊆ N0 (the latter holding for
polytopes P ⊆ [0, 1]n).

Sketch of proof. The proof of ∂M ⊆ GC is similar to the proof of Theorem 3.3 and we skip it here
due to lack of space. Now let P be a polytope with P ⊆ [0, 1]n. For proving ∂M(P ) ⊆ N0(P ), recall
that N0 =

⋂
i∈[n] Pi with Pi := conv ((P ∩ {xi = 0}) ∪ (P ∩ {xi = 1})). Therefore let cx ≤ d with

c ∈ Zn and d ∈ Z be valid for Pi with i ∈ [n] arbitrary. In particular, cx ≤ d is valid for P ∩{xi = l}
with l ∈ {0, 1}. Thus we can conclude that P ∩{cx ≥ d+ 1}∩{xi = l} = ∅ for i ∈ {0, 1}. Therefore
xi > 0 and xi < 1 are valid for P ∩ {cx ≥ d+ 1} and so by Property 4 of Definition 2.1, xi ≤ 0
and xi ≥ 1 are valid M(P ∩ {cx ≥ d+ 1}). We obtain M(P ∩ {cx ≥ d+ 1}) = ∅ and thus cx ≤ d
is valid for ∂M(P ).

GC
SC

pM

pGC pSC

N0

N

pN0

N+

pN
pN+

M

Figure 1: Direct and V-operators and their relations. pL in the figure represents ∂L and M is an
arbitrarily weak admissible system.

3.2 Comparing M and ∂M for M being GC, SC, N0, N, or N+

We will now compare various closures and their associated verification schemes. Due to space
limitations many statements are without proof; they will be included in the full-length version of
the paper. Our first result shows that the verification scheme of the Gomory-Chvátal procedure is
at least as strong as split cuts.

Theorem 3.5. ∂GC ⊆ SC.
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Proof. Consider cx ≤ d being valid for P ∩ {πx ≤ π0} and P ∩ {πx ≥ π0 + 1} with c, π ∈ Zn

and d, π0 ∈ Z. Clearly, cx ≤ d is valid for SC(P ) and it suffices to consider inequalities cx ≤ d
with this property; all others are dominated by positive combinations of these. Therefore consider
P ∩ {cx ≥ d+ 1}. By cx ≤ d being valid for the disjunction πx ≤ π0 and πx ≥ π0 + 1 we obtain
that P ∩{cx ≥ d+ 1}∩{πx ≤ π0} = ∅ and P ∩{cx ≥ d+ 1}∩{πx ≥ π0 + 1} = ∅. This implies that
P∩{cx ≥ d+ 1} ⊆ {πx > π0} and similarly P∩{cx ≥ d+ 1} ⊆ {πx < π0 + 1}. We thus obtain that
πx ≥ π0 +1 and πx ≤ π0 are valid for GC(P ∩{cx ≥ d+ 1}). It follows GC(P ∩{cx ≥ d+ 1}) = ∅.
Thus cx ≤ d is valid for ∂GC(P ).

Next we compare V-schemes of two closures that are comparable. It is easy to see that switching
to the verification schemes preserves inclusion:

Lemma 3.6. Let L,M be admissible such that L ⊆M. Then ∂L ⊆ ∂M.

In order to prove strict refinement or incompatibility between V-closures the following lemma
is helpful. It establishes when strict refinement carries over to the V-schemes.

Proposition 3.7. Let L,M be admissible. If P ⊆ [0, 1]n is a polytope with PI = ∅ such that
M(P ) = ∅ and L(P ) 6= ∅, then ∂L does not refine ∂M.

Sketch of proof. Let G ⊆ [0, 1]n be a polytope. For l ∈ {0, 1}, by Gxn+1=l we denote the polytope
S ⊆ [0, 1]n+1 such that S ∩ {xn+1 = l} ∼= G and S does not contain any other points. We can
think of S arising from G by padding the coordinates of the vertices with l to the right. Consider

the auxiliary polytope Q given as Q := conv
(
Pxn+1=1 ∪ [0, 1]nxn+1=0

)
. We next state a claim

without proving it due to lack of space: The inequality xn+1 ≤ 0 is valid for ∂L(Q) if and only if
L(Q∩{xn+1 ≥ 1}) = ∅ (and similarly for M). Observe that Q∩{xn+1 ≥ 1} ∼= P and by assumption,
we have M(P ) = ∅ but L(P ) 6= ∅ and therefore ∂M(Q) 6⊇ ∂L(Q).

Using the above proposition, we verify the various relationships depicted in Figure 1. In the fol-
lowing lemmata, polytopes are presented that help establish the strict inclusion via Proposition 3.7.

Lemma 3.8. ∂N0 ⊥ ∂GC via the two polytopes P1 := conv
(
[0, 1]3 ∩ {x1 + x2 + x3 = 3/2}

)
⊆

[0, 1]3 and P2 := conv
({

(14 ,
1
4 , 0), (14 ,

1
4 , 1), (12 , 0,

1
2), (12 , 1,

1
2), (0, 12 ,

1
2), (1, 12 ,

1
2)
})
⊆ [0, 1]3.

The proof of the next lemma uses Proposition 3.7 and a result from [7].

Lemma 3.9. ∂N0 ⊥ SC via P1 := A3 ⊆ [0, 1]3 and P2 := conv
(
[0, 1]3 ∩ {x1 + x2 + x3 = 3/2}

)
.

Using Proposition 3.7 and a modified version of an example presented in [16] we can show.

Lemma 3.10. ∂N ( ∂N0.

The remaining relations in Figure 1 follow from Proposition 3.7 or Example 1.

4 Rank of valid inequalities with respect to V-closures.
In this section, we establish several bounds on the rank of ∂M primarily for the case of polytopes
P ⊆ [0, 1]n. Given a natural number k, we use the notation Mk(P ) to be denote that kth closure
of P with respect to M.

Theorem 4.1 (Upper bound in [0, 1]n). Let M be admissible and P ⊆ [0, 1]n be a polytope. Then
rk∂M(P ) ≤ n.
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Proof. As ∂M ⊆ N0 and rkN0(P ) ≤ n the result follows.

Note that in general the property of M being admissible, does not guarantee that the upper
bound on rank is n. For example, the GC closure can have a rank strictly higher than n (cf.
[12, 20]).

In quest for lower bounds on the rank of 0/1 polytopes, we note that among polytopes P ⊆ [0, 1]n

that have PI = ∅, the polytope An has maximal rank (of n) for many admissible systems [18]. We
will now establish that ∂M is not unrealistically strong by showing that it is subject to similar
limitations. Recall that we do not require short verification (property (7.)) for ∂(M) which is the
basis for the lower bound in [19, Corollary 23] for admissible systems. We will show that the lower
bound for ∂M is inherited from the original operator M. Let

F k
n := {x ∈ {0, 1/2, 1}n | exactly k entries equal to 1/2} ,

and let Ak
n := conv

(
F k
n

)
be the convex hull of F k

n ; observe that A1
n = An as defined in (3). With

F being a face of [0, 1]n let I(F ) denote the index set of those coordinate that are fixed by F .

Lemma 4.2. Let M be admissible and let ` ∈ N such that Ak+`
n ⊆ M(Ak

n) for all n, k ∈ N with
k + ` ≤ n. If n ≥ k + 2`+ 1, then Ak+2`+1

n ⊆ ∂M(Ak
n).

Proof. Let P := Ak
n and let cx ≤ d with c ∈ Zn and d ∈ Z be valid for ∂M(P ). Without loss of

generality we assume M(P ∩ {cx ≥ d+ 1}) = ∅, i.e., cx ≤ d is one of the defining inequalities. We
claim that

Ak
k+`
∼= Ak

n ∩ F 6⊆ P ∩ {cx ≥ d+ 1} (7)

for all (k+`)-dimensional faces F of [0, 1]n. Assume by contradiction that Ak
n∩F ⊆ P∩{cx ≥ d+ 1}.

As Ak+`
k+` ⊆M(Ak

k+`) by assumption we obtain ∅ 6= Ak+`
k+` ⊆M(Ak

k+`) ⊆M(P ∩ {cx ≥ d+ 1} which
contradicts the validity of cx ≤ d over ∂M(P ). Without loss of generality we can further assume
that c ≥ 0 and ci ≥ cj whenever i ≤ j by applying coordinate flips and permutations.

Next we claim that for all (k + `)-dimensional faces F of [0, 1]n the point vF defined as

vFi :=


∈ {0, 1} according to F , for all i ∈ I(F )

0, if ci is one of the ` largest coefficients of c with i 6∈ I(F )

1/2, otherwise

(8)

for i ∈ [n] must not be contained in P ∩{cx ≥ d+ 1}, i.e., cvF < d+ 1 and so cvF ≤ d+ 1/2. Note
that vF ∈ P and observe that vF := argminx∈Fk

n∩F cx. Therefore, if vF ∈ P ∩ {cx ≥ d+ 1}, then

Ak
n ∩ F ⊆ P ∩ {cx ≥ d+ 1} which in turn contradicts (7). This claim holds in particular for those

faces F fixing coordinates to 1.
Finally, we claim that Ak+2`+1

n ⊆ P∩{cx ≤ d}. It suffices to show that cv ≤ d for all v ∈ F k+2`+1
n

and we can confine ourselves to the worst case v given by

vi :=

{
1, if i ∈ [n− (k + 2`+ 1)]

1/2, otherwise.
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Observe that cv ≥ cw holds for all w ∈ F k+2`+1
n . Let F be the (k + `)-dimensional face of [0, 1]n

obtained by fixing the first n− (k + `) coordinates to 1. Then

cv =

n−(k+2`+1)∑
i=1

ci +
1

2

n∑
i=n−(k+2`+1)+1

ci

≤
n−(k+`)∑

i=1

ci −
1

2
cn−(k+`) +

n−k∑
i=n−(k+`)+1

0 +
1

2

n∑
i=(n−k)+1

ci

= cvF − 1

2
cn−(k+`) ≤ d+

1

2
− 1

2
cn−(k+`).

In case cn−(k+`) ≥ 1 it follows that cv ≤ d. Therefore consider the case cn−(k+`) = 0. Then we have

that ci = 0 for all i ≥ n− (k + `). In this case cvF is integral and cvF < d+ 1 implies cvF ≤ d. So
cv ≤ cvF ≤ d follows which completes the proof.

Using Lemma 4.2 we can establish the following lower bound for An.

Theorem 4.3 (Lower bound for An). Let M be admissible and let ` ∈ N such that Ak+`
n ⊆M(Ak

n)

for all n, k ∈ N with k + ` ≤ n. If n ≥ k + 2`+ 1, then rk∂M(An) ≥
⌊

n−1
2`+1

⌋
.

Proof. We will show the A
1+k(2`+1)
n ⊆ (∂M)k(An) as long as n ≥ k + 2` + 1. The proof is by

induction on k. Let k = 1, then A1+2`+1
n ⊆ ∂M(A1

n) = ∂M(An) by Lemma 4.2. Therefore consider

k > 1. Now (∂M)k(An) = ∂M((∂M)k−1(An)) ⊇ ∂M(A
1+(k−1)(2`+1)
n ) ⊇ A

1+k(2`+1)
n , where the

first inclusion follows by induction and the second by Lemma 4.2 again. Thus (∂M)k(An) 6= ∅
as long as 1 + k(2` + 1) ≤ n, which is the case as long as k ≤

⌊
n−1
2`+1

⌋
and we can thus conclude

rk∂M(An) ≥
⌊

n−1
2`+1

⌋
.

For M ∈ {GC,SC, N0, N,N+} we have that ` = 1 [19] and therefore obtain the following
corollary.

Corollary 4.4. Let M ∈ {GC, N0, N,N+,SC} and n ∈ N with n ≥ 4. Then rk∂M(An) ≥
⌊
n−1
3

⌋
.

We can also derive an upper bound on the rank of An which is a consequence of [19, Lemma 5].

Lemma 4.5 (Upper bound for An). Let M be admissible and n ∈ N. Then rk∂M(An) ≤ n− 2.

5 V-cuts for well-known and structured problems.

We will first establish a useful lemma which holds for any ∂M with M being admissible. The lemma
is analogous to Lemma 1.5 in [16].

Lemma 5.1. Let M be admissible and let P ⊆ [0, 1]n be a polytope with (c, d) ∈ Zn+1
+ . If cx ≤ d is

valid for P ∩ {xi = 1} for every i ∈ [n] with ci > 0, then cx ≤ d is valid for ∂M(P ).

Proof. Clearly, cx ≤ d is valid for PI ; if x ∈ P ∩ Zn non-zero, then there exists an i ∈ [n] with
xi = 1, otherwise cx ≤ d is trivially satisfied. We claim that cx ≤ d is valid for ∂M. Let
Q := P ∩ {cx ≥ d+ 1} and observe that Q ∩ {xi = 1} = ∅ for any i ∈ [n] with ci > 0. Therefore
by coordinating rounding M(Q) ⊆

⋂
i∈[n]:ci>0 {xi = 0}. By definition of Q we also have that

M(Q) ⊆ {cx ≥ d+ 1}. Since c ≥ 0 and d ≥ 0 it follows that M(Q) = ∅ and the claim follows.
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5.1 Monotone polytopes

The following theorem is a direct consequence of Lemma 5.1 and follows in a similar fashion as
Lemma 2.7 in [5] or Lemma 2.14 in [16].

Theorem 5.2. Let M be admissible. Further, let P ⊆ [0, 1]n be a polytope and (c, d) ∈ Zn+1
+ such

that cx ≤ d is valid for P ∩ F whenever F is an (n − k)-dimensional face of [0, 1]n obtained by
fixing coordinates to 1. Then cx ≤ d is valid (∂M)k(P ).

We call a polytope P ⊆ [0, 1]n monotone if x ∈ P , y ∈ [0, 1]n, and y ≤ x (coordinate-wise)
implies y ∈ P . We can derive the following corollary from Theorem 5.2 which is the analog to
Lemma 2.7 in [5].

Corollary 5.3. Let M be admissible and let P ⊆ [0, 1]n be a monotone polytope with maxx∈PI
ex =

k. Then rk∂M(P ) ≤ k + 1.

Proof. Observe that since P is monotone, so is PI and thus PI possesses an inequality description
P = {x ∈ [0, 1]n | Ax ≤ b} with A ∈ Zm×n

+ and b ∈ Zn
+ for some m ∈ N. Therefore it suffices to

consider inequalities cx ≤ d valid for PI with c, d ≥ 0. As maxx∈PI
ex = k and P is monotone, we

claim that P ∩ F = ∅ whenever F is an n − (k + 1) dimensional face of [0, 1]n obtained by fixing
k+1 coordinates to 1. Assume by contradiction that x ∈ P ∩F 6= ∅. As P ∩F is monotone, setting
all fractional entries of x to 0 is contained in PI ∩ F which is a contradiction to maxx∈PI

ex = k.
Therefore cx ≤ d is valid for all P ∩F with F being an n− (k+ 1) dimensional face of [0, 1]n obtain
by fixing k + 1 coordinates to 1. The result follows now with Theorem 5.2.

5.2 Stable set polytope

Given a graph G := (V,E), the fractional stable set polytope of G is given by FSTAB(G) :=
{x ∈ [0, 1]n | xu + xv ≤ 1 ∀(u, v) ∈ E}.

Theorem 5.4. Clique Inequalities, odd hole inequalities, odd anti-hole inequalities, and odd wheel
inequalities are valid for ∂M(FSTAB(G)) with M being an admissible operator.

Sketch of proof. We illustrate the proof for the case of clique inequalities. The other cases are
similar. Let H(U,E) be an induced clique. Then the clique inequality is

∑
u∈U xu ≤ 1. Now for

every vertex v in U fixing xv = 1, the system P 0 = {x ∈ [0, 1]|U | | xu +xv ≤ 1 ∀(u, v) ∈ E}, implies
that xu = 0 for u 6= v. Thus, the clique inequality is valid for P 0 ∩ {x | xv = 1} ∀v ∈ V . Now by
Lemma 5.1 the result follows.

5.3 The traveling salesman problem

So far we have seen that transitioning from a general cutting-plane procedure M to its V-scheme
∂M can result in a significantly lower rank for valid inequalities, potentially making them accessible
in a small number of rounds. However, there are also examples where this is not the case. We will
now show that the rank of (the relaxation of) the traveling salesman polytope remains high, even
when using V-schemes of strong operators such as SC or N+. For n ∈ N, let G = (V,E) be the
complete graph on n vertices and Hn ⊆ [0, 1]n be the polytope given by (see [5] for more details)

x(δ({v}) = 2 ∀ v ∈ V
x(δ(W )) ≥ 2 ∀ ∅ (W ( V

xe ∈ [0, 1] ∀e ∈ E.
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Note that the (ambient) dimension of Hn is Θ(n2). We obtain the following statement which
is the analog to [5, Theorem 4.1]. A similar result for the admissible systems M in general can be
found in full-length version of [19].

Theorem 5.5. Let M ∈ {GC, N0, N,N+,SC}. For n ∈ N and Hn as defined above we have
rk∂M(Hn) ∈ Θ(n). In particular rk∂M(Hn) ∈ Θ(

√
dim(P )).

Sketch of proof. As shown in [3] or [5, Theorem 4.1] Hn contains a copy of Abn/8c. The lower bound
follows with Corollary 4.4 and the upper bound with Corollary 5.3 as shown in [5].

The same result can be shown to hold for the asymmetric TSP problem (see [3] and[5]).

5.4 General polytopes in R2

The GC rank of valid inequalities for polytopes in R2 can be arbitrarily high; see example in [17].
However, ∂GC is significantly stronger and all valid inequalities for polytopes in R2 have a ∂GC
rank of 1.

Theorem 5.6. Let P be a polytope in R2. Then ∂GC(P ) = PI .

Sketch of proof. The proof is divided into various cases based on the dimension of PI . Due to space
limitations we only present the proof for the case when dim(PI) = 2. We will illustrate that every
facet-defining inequality can be obtained using the ∂GC operator. In this case, every facet-defining
inequality cx ≤ d satisfies at least two integer points belonging to PI . Let Q := P ∩{x ∈ R2 | cx ≥
d}. Then observe that: (i) Q is a lattice-free polytope; (ii) exactly one side of Q contains multiple
integer points. This is the side of Q given by the inequality cx ≥ d. Other sides of Q contain no
integer point. Let T be a maximal lattice-free convex set containing Q. By (ii), cx ≥ d defines a face
of T that contains two or more integer points. Therefore T is a type 1 or type 2 maximal lattice-free
triangle; see [11]. Since T is a triangle of type 1 or type 2, it is contained in two sets of the form
{π10 ≤ π1x ≤ π10 + 1} and {π20 ≤ π2x ≤ π20 + 1} where π1, π2 ∈ Z2 and π10, π

2
0 ∈ Z; see [9]. Moreover,

π1 = c and π10 = d. Therefore Q∩{cx ≥ d+1} ⊆ T∩{cx ≥ d+1} ⊆ {π20 ≤ π2x ≤ π20+1}. Moreover,
since the integer points belonging to the boundary of Q satisfy the condition cx = d, we obtain that
integer points that satisfy cx ≥ d + 1 and lie on the boundary of the set {π20 ≤ π2x ≤ π20 + 1} do
not belong to Q. Now by using convexity of Q and the location of integer points in P ∩ {cx = d},
we can verify that Q ∩ {cx ≥ d+ 1} lies in the interior of the set {π20 ≤ π2x ≤ π20 + 1}. Therefore
GC(Q ∩ {cx ≥ d + 1}) = ∅. However, since Q ∩ {cx ≥ d + 1} = P ∩ {cx ≥ d + 1}, we can obtain
the facet-defining inequality cx ≤ d using the ∂GC operator applied to P .

6 Concluding remarks

In this paper, we consider a new paradigm for generating cutting-planes. Rather than computing
a cutting-plane we suppose that the cutting-plane is given, either by a deliberate construction or
guessed in some other way and then we verify its validity using a regular cutting-plane procedure.
We have shown that cutting-planes obtained via the verification scheme can be very strong, signif-
icantly exceeding the capabilities of the regular cutting-plane procedure. This superior strength is
illustrated, for example, in Theorem 3.3, Theorem 3.5, Figure 1, Theorem 4.1, Lemma 4.5, Theo-
rem 5.2, Theorem 5.4, Theorem 5.5 and Theorem 5.6. On the other hand, we also show that the
verification scheme is not unrealistically strong, as illustrated by Theorem 4.3 and Theorem 5.5.
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