
Covering Linear Programming with Violations

Feng Qiu, Shabbir Ahmed, Santanu S. Dey and Laurence A. Wolsey

May 8, 2012

Abstract

We consider a class of linear programs involving a set of covering constraints of which at most k are
allowed to be violated. We show that this covering linear program with violation is strongly NP-hard. In
order to improve the performance of mixed-integer programming (MIP) based schemes for these problems,
we introduce and analyze a coefficient strengthening scheme, adapt and analyze an existing cutting plane
technique, and present a branching technique. Through computational experiments, we empirically verify
that these techniques are significantly effective in improving solution times over the CPLEX MIP solver.
In particular, we observe that the proposed schemes can cut down solution times from as much as six
days to under four hours in some instances.

1 Introduction

A point belongs to the feasible region of a linear program (LP) if it satisfies all the linear constraints defining
the LP. However, when certain problems are being modeled, the feasibility requirement is soft. That is, a
point is considered feasible even if it violates no more than a specified number of the constraints defining the
problem. Such a linear program is called a k-violation linear program (KVLP) [19]:

min c>x

s.t. a>i x ≥ bi i = 1, ...,m, (1)

at most k of the m constraints can be violated,

x ∈ Rn+.

The feasible region of a KVLP is the union of
(
m
k

)
polyhedral sets, each of which are defined by the intersection

of some subset of (m − k) inequalities from the m inequalities in (1). In general, such a feasible region is
nonconvex and KVLP is a strongly NP-hard optimization problem [1]. Much of the existing work on this
class of problems focuses on polynomial time algorithms for low dimensional problems (i.e. n is fixed and
small) (cf. [5] for a survey).

This paper addresses KVLPs where the linear system (1) consists of covering type linear inequalities,
i.e., ai and bi are non-negative for all i. We call such a problem a covering-type k-violation linear program
(CKVLP). CKVLPs, which are an important subclass of KVLPs, have many applications.

As a concrete example, consider a probabilistically-constrained portfolio optimization problem [16] to
determine a minimum cost distribution of a unit investment among n assets with uncertain returns, requiring
the overall return to be at least r with a probability of 1 − ε, where ε ∈ (0, 1) is a prespecified risk level. A
formulation of this problem is

min c>x

s.t. e>x = 1

P{ã>x ≥ r} ≥ 1− ε (2)

x ∈ Rn+,
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where ã is the random return vector for n assets following some known distribution, P{A} denotes the
probability of the random event A, and c is the cost vector. A common approach to dealing with the
probabilistic constraint in (2) is the sample average approximation method [12] where the distribution of ã
is approximated by an empirical distribution corresponding to an i.i.d sample of return vectors {ai}mi=1. The
approximated problem then reads as follows:

min c>x

s.t. e>x = 1

a>i x ≥ r i = 1, ...,m, (3)

at most k of the m constraints can be violated,

x ∈ Rn+,

where k = bmεc. Since the return is non-negative and only nonnegative investments are allowed, (3) is an
example of CKVLP with an additional equality constraint. In Section 6, we discuss a similar application
of CKVLP in an optimal vaccine allocation under probabilistic constraints [18]. Additional applications of
CKVLP arise in intensity modulated radiation therapy (IMRT) planning [20] and signal broadcasting coverage
design [17].

A CKVLP can be modeled as a mixed integer program (MIP) in a straight-forward manner. First, note
that if bi = 0 for any i ∈ {1, . . . ,m}, then the corresponding inequality is redundant since then the inequality
is implied by the non-negativity constraints on the x variables. Thus, we assume henceforth that bi > 0 for
all i ∈ {1, . . . ,m} and so they can be scaled to 1. Then, an MIP formulation of CKVLP is

min c>x

s.t. a>i x+ zi ≥ 1 i = 1, ...,m, (4)
m∑
i=1

zi ≤ k

x ∈ Rn+, zi ∈ {0, 1} i = 1, ...,m,

where we have introduced the binary variables zi taking the value 1 if the i-th constraint is violated. For
large scale CKVLPs, the above MIP formulation performs very poorly. The goal of this paper is to study
a number of enhancement schemes to improve the computational performance of MIP-based approaches for
solving CKVLPs.

We begin by studying the theoretical complexity of CKVLPs and illustrating the difficulty of solving
realistic instances directly by the CPLEX MIP solver (Section 2) as well. Next, in order to improve the
performance of standard solvers on the MIP model (4) of CKVLPs, we introduce and analyze a coefficient
strengthening scheme (Section 3), adapt and analyze an existing cutting plane technique (Section 4), and
present a branching technique (Section 5). Through computational experiments on the probabilistic portfolio
optimization problem (3) and an optimal vaccination allocation problem, we empirically verify that these
techniques are extremely effective in improving solution times (Section 6). In particular, we observe that
the proposed schemes can cut down solution times from as much as six days to under four hours in some
instances.

We close this section by pointing out that all three enhancement schemes studied here are applicable when
there are additional side constraints in the MIP (4). This follows since these schemes attempt to tighten the
LP relaxation of (4), which is a valid relaxation even when additional side constraints are present.

2 Difficulty of Solving CKVLP

2.1 Computational Complexity

General KVLP has been shown to be NP-complete [1]. However, to the best of our knowledge, the complexity
of CKVLP, a sub-class of KVLP, has not been addressed. In a recent paper [20], Tunçel et al. showed that
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a packing version KVLP is weakly NP-hard (the linear inequalities in KVLP are packing inequalities) by
reduction from the partition problem. This result can be modified to show the NP-hardness of CKVLP. In
this paper we provide a direct proof that CKVLP is strongly NP-hard.

By complementing the binary variables z in (4), we have the following equivalent formulation of CKVLP:

min c>x
s.t. Ax ≥ z

e>z ≥ p
x ∈ Rn+
z ∈ {0, 1}m,

(5)

where A = [a>1 , ..., a
>
m] ∈ Qm×n+ , c ∈ Qn+, p = m − k, e is the column vector with each entry equal to 1, and

Q is the set of rationals.
To prove that CKVLP (5) is NP-hard, we first verify that the following intermediate decision problem is

NP-complete.

Intermediate CKVLP Feasibility Problem: Given η ∈ Q, A ∈ Qm×n+ and c ∈ Qn, does there exist
a solution (x, z) ∈ Rn+ × {0, 1}m to the following system?

c>x− e>z ≤ η
Ax ≥ z.

(6)

Lemma 1. The Intermediate CKVLP Feasibility Problem (6) is strongly NP-complete.

Proof. Since (6) is a decision version of a mixed integer linear program, it is in NP. In order to show that
determining the feasibility of (6) is strongly NP-complete, we polynomially reduce an arbitrary instance of
the strongly NP-complete vertex cover problem [8] to an instance of (6). An instance of the vertex cover
problem is defined as follows:

Vertex Cover : Given a graph G = (V,E) and q ∈ N, does there exist S ⊆ V such that (i) |S| ≤ q
and (ii) S is a vertex cover, that is for all (i, j) ∈ E, either i ∈ S or j ∈ S?

Given an instance of the vertex cover problem, we construct an instance of (6) by setting m := |V | + E|,

n := |V |, η := q − |E|, c := 2e, A :=

[
H
I

]
, where H is the node-arc incidence matrix of G and I is a

|V | × |V | identity matrix. The resulting instance of (6) is then:

2
∑
j∈V

xj −
∑
j∈V

zj −
∑

(i,j)∈E

yij ≤ q − |E| (7)

xi + xj ≥ yij ∀ (i, j) ∈ E (8)

xi ≥ zi ∀ i ∈ V (9)

x ∈ R|V |+ (10)

z ∈ {0, 1}|V | (11)

y ∈ {0, 1}|E|. (12)

Note that the size of (7)-(12) is polynomial in the encoding length of G and q. We complete the proof by
showing that a vertex cover instance has an answer yes if and only if the associated system (7)-(12) has a
solution.

(⇒) Let S be a vertex cover for G such that |S| ≤ q. Then, consider a solution (x̃, ỹ, z̃) ∈ R|V |+ × {0, 1}|E| ×
{0, 1}|V | defined as:

x̃j = z̃j =

{
1 ∀ j ∈ S
0 ∀ j ∈ V \ S,

ỹi,j = 1 ∀ (i, j) ∈ E.
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The solution (x̃, ỹ, z̃) satisfies (9)-(12) by construction, and since S is a vertex cover it also satisfies (8).
Finally, 2

∑
j∈V x̃j −

∑
j∈V z̃j −

∑
(i,j)∈E ỹij = |S| − |E| ≤ q − |E|. Thus the system (7)-(12) has a solution.

(⇐) Now assume that the system (7)-(12) has a solution. Note that an arbitrary feasible solution to (7)-
(12) may have fractional x components that cannot be directly converted to a vertex cover for G. We
show that there exists a feasible solution of (7)-(12) with integral values of x and y = e whenever (7)-
(12) is feasible. Towards this end, we first present some properties of feasible solutions to (7)-(12). Given

(x, y, z) ∈ R|V |+ × {0, 1}|E| × {0, 1}|V |, which satisfies (8)-(12), let

f(x, y, z) := 2
∑
j∈V

xj −
∑
j∈V

zj −
∑

(i,j)∈E

yij ,

i.e., if (x, y, z) is feasible for (7)-(12), then f(x, y, z) ≤ q − |E|.

Claim a. Given (x1, y1, z1) satisfying (8)-(12), there exists (x2, y2, z2) satisfying (8)-(12) such that y2 = e
i.e. a vector of ones, and f(x2, y2, z2) ≤ f(x1, y1, z1).

Proof of Claim a. Suppose there exists (̃i, j̃) ∈ E such that y1
ĩj̃

= 0. Construct (x3, y3, z3) as follows:

x3j =

{
1 j = ĩ

x1j j ∈ V \ {̃i} ,

z3j =

{
1 j = ĩ

z1j j ∈ V \ {̃i} ,

y3ij =

{
1 (i, j) = (̃i, j̃)

y1ij (i, j) ∈ E \ {(̃i, j̃)}.

It is easy to see that (x3, y3, z3) satisfies (8)-(12). We observe that f(x1, y1, z1)− f(x3, y3, z3) = (2x1
ĩ
− z1

ĩ
−

y1
ĩ,j̃

) − (2 × 1 − 1 − 1) = x1
ĩ

+ (x1
ĩ
− z1

ĩ
) ≥ 0, where the last inequality holds due to the fact that (x1, y1, z1)

satisfies (9). By repeating the above construction at most |E| times we arrive at a solution (x2, y2, z2) satis-
fying the claim. ♦

We now restrict our attention to feasible solutions of (7)-(12) with the vector y fixed to e. Next, we show
that a feasible solution with integral x components exists.

Claim b. Given (x1, e, z1) satisfying (8)-(12), there exists a solution (x2, e, z2) satisfying (8)-(12) such that
x2 ∈ {0, 1}|V | and f(x2, e, z2) ≤ f(x1, e, z1).

Proof of Claim b. If x1 ∈ {0, 1}|V |, then there is nothing to verify. If there exists j such that x1j > 1, then

we can set x1j = 1. The resulting solution still satisfies (8)-(12), and the value of the function f reduces.

Therefore, the non-trivial case is when there exists j̃ such that x1
j̃
∈ (0, 1). In this case, we construct a solution

(x3, e, z3) as follows. Examine the set of neighboring vertices N(j̃) of the vertex j̃. If x1
ĩ

+ x1
j̃
> y1

ĩj̃
= 1 for

all ĩ ∈ N(j̃) then we may reduce the value of x1
j̃

by a sufficiently small positive value so that (x1, e, z1) still

satisfies (8)-(12) and the value of f(x1, e, z1) reduces. Therefore, we may assume that there exists a vertex
ĩ ∈ N(j̃) such that x1

ĩ
+ x1

j̃
= 1. Without loss of generality, we may assume that 1 > x1

j̃
≥ 1

2 (otherwise we
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can swap ĩ and j̃), which also implies that z1
j̃

= 0. Next, we construct (x3, e, z3) as follows:

x3j =

{
1 j = j̃

x1j j ∈ V \ {j̃} ,

z3j =

{
1 j = j̃

z1j j ∈ V \ {j̃} .

It is easy to see that (x3, e, z3) with x3
j̃
∈ {0, 1} as constructed above satisfies (8)-(12). Furthermore

f(x1, e, z1) − f(x3, e, z3) = 2x1
j̃
− (2 − 1) = 2x1

j̃
− 1 ≥ 0. By repeating the above construction at most

|V | times, we obtain the required (x2, e, z2) satisfying the claim. ♦

From the claims a and b, it is clear that there exists a feasible solution of the form (x, y, z) with (i) y = e
and (ii) x ∈ {0, 1}|V |. If xj = 1 and zj = 0 for some j, then we can set zj = 1, and the resulting solution
is still feasible for (7)-(12). Therefore, we may assume that the feasible solution also satisfies xj = zj for all
j ∈ V . We select any such feasible solution and let S = {j : xj = 1}. Clearly, S is a vertex cover for G since
y = e. Notice that f(x, y, z) = 2|S| − |S| − |E| ≤ q − |E| or equivalently |S| ≤ q.

Theorem 1. CKVLP is strongly NP-hard.

Proof. To verify that (5) is NP-hard, we show that if there exists a polynomial time algorithm for solving
(5), then there is a polynomial time algorithm for deciding the feasibility of (6). This completes the proof,
since by Lemma 1, we have that deciding the feasibility of (6) is NP-complete.

Let v(p) denote the optimal value of (5) as a function of p ∈ {0, . . . ,m}. Consider the following algorithm
for deciding the feasibility of (6):

1. Given A ∈ Zm×n+ , c ∈ Zn, and η ∈ Z, compute v(p) for all p ∈ {0, . . . ,m}, using the polynomial-time
algorithm for solving (5).

2. Compute η∗ := min
0≤p≤m

{v(p)− p}. If η∗ ≤ η, return “yes,” (i.e. (6) is feasible); otherwise return “no.”

Notice that the above algorithm is a polynomial time algorithm in the size of the encoding of (6). It remains
to verify the validity of the above algorithm.

Suppose η∗ ≤ η and p∗ ∈ argmin{v(p) − p}. Consider an optimal solution (x∗, z∗) to (5) corresponding
to p = p∗. Since η ≥ η∗ = v(p∗)− p∗ ≥ v(p∗)− e>z∗ = c>x∗ − e>z∗, the instance of (6) is feasible.

Suppose η∗ > η. Assume by contradiction that the instance of (6) is feasible and let (x∗, z∗) be a feasible
point. Let p∗ =

∑m
j=1 z

∗
j . Then, observe that (x∗, z∗) is feasible to (5) corresponding to p = p∗. Thus,

η∗ ≤ v(p∗)− p∗ ≤ c>x∗ − p∗ ≤ η, a contradiction.

2.2 Performance of a standard MIP solver on CKVLP instances

Given the significant advancements made in MIP solution technology, many instances of NP-hard problems
are not necessarily difficult to solve in practice. To assess the practical computational difficulty of CKVLP,
we next report on the performance of CPLEX, a state-of-the-art MIP solver, on randomly generated instances
of the MIP (4).

We consider instances with n = 20, m = 200 and k ∈ {15, 20}. The data is generated as follows:

1. “Dense Data”: Each left-hand-side coefficient aij is generated uniformly between 0.8 and 1.5, and then
the coefficients are divided by 1.1. The cost vector is a vector of ones.

2. “Sparse Data”: This uses the same input data as in “Dense Data”, except that half of the left-hand-side
coefficients are randomly set to zero.
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3. “Random Objective”: These instances have the same constraint coefficients as in “Dense Data”, but
with random integer cost coefficients between 1 and 100.

For each of the six combinations of two values of k and three data classes, we considered 10 instances with a
total for 60 instances. The computations are run on Intel Xeon 2.27 GHz dual core Linux server installed with
4 Gb RAM. The model is implemented with the callable libraries and solved by the MIP solver in CPLEX
12.1 with default settings.

The average results over ten instances in each size-data combination are presented in Table 1. The ‘Gap’
column in the table reports the root node LP relaxation gap closed by CPLEX cuts. That is, the value(
zLP+Cuts−zLP

z∗−zLP

)
× 100, where zLP+Cuts, zLP , and z∗ are the objective function values of the LP relaxation

with CPLEX cuts at the root node, of just the LP relaxation, and of the MIP, respectively. The ‘Nodes’ and
the ‘Time’ columns report the number of branch-and-bound tree nodes generated and the time in seconds
needed to solve the instances to optimality, respectively.

Dense Data Sparse Data Random Objective
k Gap Nodes Time Gap Nodes Time Gap Nodes Time
15 2% 3,537,864 2,454 7% 158,039 83 17% 1,777 1
20 2% 43,296,679 25,948 6% 1,769,574 917 21% 6,227 2

Table 1: Performance of CPLEX on CKVLP

Following are some observations based on the above computations.

1. The effect of k: Setting k to a larger value results in a substantial increase in time and memory
consumption (measured in the number of nodes in the branch-and-bound tree), as seen by a ten-
fold increase for the first two types of instances. This phenomenon can perhaps be explained by the
combinatorial nature of CKVLP, which is to choose the linear program with the best objective value
among

(
m
k

)
linear programs. When k increases to bm2 c, the number of possible linear programs increases

rapidly.

2. The effect of sparsity: The coefficient matrix density, measured by the number of non-zeros, can make
instances significantly harder to solve, as seen by a 20-time increase in nodes and 30-time increase
in time when the density increases from 50% to 100%. The dense coefficients not only make the LP
relaxation hard to solve, but also make it hard for CPLEX to find effective cuts, e.g., CPLEX default
cuts close only 2% of the LP relaxation gap in the “Dense Data” instances, whereas 6-7% of the gap is
closed in the “Sparse Data” instances.

3. The effect of objective function: The objective function coefficients play a crucial role in determining
the computational difficulty, as demonstrated by the contrast between “Dense Data” and “Random
Objective”. The instances with random objective coefficients can be solved in seconds; however, the
instances with the same constraints but uniform objective coefficients in “Dense Data” take hours to
solve. When the cost coefficients and the constraint coefficients are set up in a way so that the objective
values of linear programs formed by different choices of linear constraints are close, the branch-and-
bound procedure generates a great number of nodes, of which the LPs are similar in terms of bounds,
and the MIP solver spends an enormous amount of time on proving optimality.

In the rest of the paper, we focus on variants of the most difficult class of the above instances, that is,
instances that are very similar in type to “Dense Data,” and attempt to tighten the root node lower bound
and reduce the size of the search tree.
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3 Iterative Coefficient Strengthening

In this section, we propose and analyze a scheme for strengthening the coefficients of the binary variables in
the MIP formulation (4) of CKVLP. Let X denote the set of feasible x solutions of (4), i.e.

X := {x ∈ Rn+ : ∃z ∈ {0, 1}m s.t. a>i x+ zi ≥ 1 ∀ i = 1, ...,m and

m∑
i=1

zi ≤ k}. (13)

Definition 1. A vector ` ∈ Rm is called a valid bound vector if `i ≤ min{a>i x : x ∈ X} for all i = 1, . . . ,m.

Given a valid bound vector `, let

X(`) := {x ∈ Rn+ : ∃z ∈ [0, 1]m s.t. a>i x+ (1− `i)zi ≥ 1 ∀ i = 1, ...,m and

m∑
i=1

zi ≤ k}.

Proposition 2. (i) If ` is a valid bound vector then X(`) ⊇ X. (ii) The bound vector ` = 0 is valid. (iii)
For valid bounds `1 and `2, if `2 ≥ `1 then X(`1) ⊇ X(`2).

Proof. (i) If x ∈ X then there exists z ∈ {0, 1}m such that a>i x ≥ max{1 − zi, `i} for all i = 1, . . . ,m and∑m
i=1 zi ≤ k. Since max{1− zi, `i} = 1− (1− `i)zi when zi ∈ {0, 1}, it follows that a>i x+ (1− `i)zi ≥ 1 and

x ∈ X(`). (ii) Since a>x ≥ 0 for all x ∈ Rn+, we obtain that ` = 0 is a valid bound vector. (iii) If x ∈ X(`2)
then there exists z ∈ [0, 1]m such that a>i x ≥ 1− (1− `2i )zi for all i = 1, . . . ,m and

∑m
i=1 zi ≤ k. Since zi ≥ 0

this implies that a>i x ≥ 1− (1− `1i )zi, hence x ∈ X(`1).

Note that X(0) is the projection, on to the x variables, of the LP relaxation of the MIP formulation (4).
Proposition 2 suggests that we can strengthen this LP relaxation by iteratively tightening the bound vector
` and hence the coefficients of the binary variables in (4), starting from ` = 0. Algorithm 1 describes such
a coefficient strengthening procedure. Note that procedure requires solving m feasible linear programs with
bounded objectives in each iteration.

Algorithm 1 Iterative Coefficient Strengthening

Input : A threshold parameter ε > 0 and the data (m,n, k, aij) describing X

Output : A valid bound vector ˆ̀∈ Rm+

∆← 2ε, t← 1, `t ← 0
while ∆ > ε do

for i = 1, ...,m do
`t+1
i = min{a>i x : x ∈ X(`t)}

end for
∆← ||`t+1 − `t||∞
t← t+ 1

end while
ˆ̀← `t

Proposition 3. Let {`t} be the sequence of bound vectors produced in Algorithm 1. We have (i) `t+1 ≥ `t

and (ii) `t is a valid bound vector for all t. Accordingly, Algorithm 1 terminates finitely returning a valid

bound vector ˆ̀.

Proof. We proceed by induction on t. For the base case t = 1 we have `1 = 0, then (ii) holds from part (ii)
of Proposition 2. Moreover `2i = min{a>i x : x ∈ X(0)} ≥ 0 for all i, hence (i) holds. Suppose now that (i)
and (ii) hold for some t > 1. By definition `t+1

i = min{a>i x : x ∈ X(`t)} for all i = 1, . . . ,m. Thus, for
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each i = 1, . . . ,m, `t+1
i ≤ a>i x for all x ∈ X(`t) and hence for all x ∈ X since X ⊆ X(`t) from the validity

of `t. Thus `t+1 is a valid bound vector and (ii) holds for all t. By our induction hypothesis `t+1 ≥ `t thus
X(`t+1) ⊆ X(`t) by part (iii) of Proposition 2. Thus `t+2

i = min{a>i x : x ∈ X(`t+1)} ≥ min{a>i x : x ∈
X(`t)} = `t+1

i for all i = 1, . . . ,m, and so (i) holds for all t. Finally note that, for any t, X(`t) ⊇ X from
part (i) of Proposition 2, thus `ti = min{a>i x : x ∈ X(`t)} ≤ min{a>i x : x ∈ X} =: ¯̀∗

i , where ¯̀∗
i is a

well defined finite value, for all i = 1, . . . ,m. Thus, for each i = 1, . . . ,m, {`ti} is a bounded nondecreasing
sequence, and hence convergent. It follows that for any ε > 0 there exists a sufficiently large value of t such
that ||`t+1 − `t||∞ ≤ ε ensuring finite termination of the algorithm.

Next we analyze the strength of the LP relaxation of (4) using tightened coefficients derived using Algo-
rithm 1. Given a cost vector c, let

v∗ = min{c>x : x ∈ X} and zL(`) = min{c>x : x ∈ X(`)}, (14)

be the optimal value of the MIP (4) and the optimal value of the LP relaxation corresponding to bound
vector `, respectively. Note that these values are finite as long as c ≥ 0. Recall that vL(0) is the natural
LP relaxation bound for (4), and the coefficient tightening scheme in Algorithm 1 is aimed to improve this
bound. In the following we analyze this improvement as a function of the instance data. For simplicity of
the analysis we assume that cj > 0 and aij > 0 for all i and j. Let

ρ = min
i=1,...,m

min
j=1,...,n

{
aij

(1/m)
∑m
i′=1 ai′j

}
. (15)

Note that ρ is a measure of the variability of the constraint coefficient data and ρ ∈ (0, 1]. Let {`t} be
the sequence of bound vectors produced by the scheme in Algorithm 1 with a threshold of ε = 0. From
Proposition 3 we know that this sequence is convergent. Let

`∗ = lim
t→∞

`t. (16)

Recall that m is the number of constraints in (4) and k is maximum number of constraints allowed to be
violated.

Lemma 2. Assuming aij > 0 for all i = 1, . . . ,m and j = 1, . . . , n,

`∗i ≥
m− k
m− ρk

ρ ∀ i = 1, . . . ,m,

where ρ and `∗ are as defined in (15) and (16), respectively.

Proof. Let {ut} be a sequence of m dimensional vectors defined by the following recursion:

u1i = 0 and ut+1
i = ρ(1− (1− uti)k/m) ∀ i = 1, . . . ,m, ∀ t ≥ 1. (17)

First, we claim that
`t ≥ ut ≥ 0 ∀ t ≥ 1. (18)

We prove this claim by induction on t. Note that (18) holds for t = 1 since `1i = u1i = 0 for all i = 1, . . . ,m.
Suppose now that (18) holds for some t > 1. Since uti ≥ 0 and 0 < k/m ≤ 1 we have that (1− (1−uti)k/m) =
(1−k/m)+utik/m ≥ 0, and hence ut+1

i ≥ 0. Let µj =
∑m
i=1 aij/m for j = 1, . . . , n and µ be the corresponding
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n-dimensional vector. For any i = 1, . . . ,m,

`t+1
i = min{a>i x : x ∈ X(`t)} (19)

≥ min{a>i x : x ∈ X(ut)} (20)

= min{a>i x : a>i′ x+ (1− uti′)zi′ ≥ 1 ∀ i′ = 1, . . . ,m,

m∑
i′=1

zi′ ≤ k, x ∈ Rn+, z ∈ [0, 1]m} (21)

≥ min{a>i x : µ>x ≥ 1− (1− uti)k/m, x ∈ Rn+} (22)

= (1− (1− uti)k/m)( min
j=1,...,n

{aij/µj}) (23)

≥ ρ(1− (1− uti)k/m) (24)

= ut+1
i , (25)

where (20) follows from the induction hypothesis `t ≥ ut since X(`t) ⊆ X(ut) by Proposition 2(iii); (21)
follows from the definition of X(ut); (22) follows by aggregating the m rows of the linear program defined in
(21), noting that uti′ = uti for all i and i′, and eliminating the z variables; since (1− (1− uti)k/m) ≥ 0, (23)
follows from the optimal solution of the single constrained linear program defined in (22); (24) follows from
the definition of ρ; and (25) follows from the definition of ut+1

i . Thus (18) holds.

Next we claim that, for all i = 1, . . . ,m, {uti} is convergent and

lim
t→∞

uti =
m− k
m− ρk

ρ. (26)

Consider any i ∈ {1, . . . ,m}. We first verify that uti ≤ m−k
m−ρkρ for all t. We proceed by induction on t. By def-

inition u1t = 0 ≤ m−k
m−ρkρ. By induction hypothesis, we have that uti ≤ m−k

m−ρkρ. Now ut+1
i = ρ− ρ km + ρ kmu

t
i ≤

ρ − ρ km + ρ km

(
m−k
m−ρkρ

)
= m−k

m−ρkρ. Now we verify that the sequence {uti} is non-decreasing. Observe that

uti − ut+1 = uti −
(
ρ− ρ km + ρ kmu

t
i

)
= uti

(
1− ρ km

)
− ρ + ρ km ≤

(
m−k
m−ρkρ

) (
1− ρ km

)
− ρ + ρ km = 0. Finally

suppose by contradiction that the sequence {uti} converges to a value m−k
m−ρkρ − δ, where δ > 0. Therefore,

there exists a t such that m−k
m−ρkρ− δ > uti >

m−k
m−ρkρ− δ − ε, in which ε = δ

(
1− ρ km

)
. Since ρ km < 1, we have(

1− ρ km
)
< 1. Hence, we obtain uti−u

t+1
i <

(
m−k
m−ρkρ− δ

) (
1− ρ km

)
− ρ+ ρ km = −(δ)

(
1− ρ km

)
= −ε. Thus,

ut+1
i > uti + ε > m−k

m−ρkρ− δ which is a contradiction. Thus (26) holds.

It then follows from (18) and (26) that

`∗i ≥
m− k
m− ρk

ρ ∀ i = 1, . . . ,m.

Theorem 4. Assuming cj > 0 and aij > 0 for all i = 1, . . . ,m and j = 1, . . . ,m,

v∗ − vL(`∗)

v∗
≤ m(1− ρ)

m− ρk
. (27)
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Proof. Note that

vL(`∗) = min

{
c>x : a>i x+ (1− `∗i )zi ≥ 1 ∀ i = 1, . . . ,m,

m∑
i=1

zi ≤ k, x ∈ Rn+, z ∈ [0, 1]m

}
(28)

≥ min

{
c>x : a>i x+ (1− m− k

m− ρk
ρ)zi ≥ 1 ∀ i = 1, . . . ,m,

m∑
i=1

zi ≤ k, x ∈ Rn+, z ∈ [0, 1]m

}
(29)

≥ min

{
c>x : µ>x+ (1− m− k

m− ρk
ρ)
k

m
≥ 1 ∀ i = 1, . . . ,m, x ∈ Rn+

}
(30)

=
cĵ
µĵ

m− k
m− ρk

(31)

where

ĵ ∈ argmin

{
cj
µj

: j = 1, . . . , n

}
. (32)

In the above, (29) follows from Lemma 2; (30) follows from aggregating the rows of the LP defined in (29)
and eliminating the z variables; and (31) follows from solving the single constrained LP defined in (30).

Note that

v∗ = min

{
c>x : a>i x+ zi ≥ 1 ∀i ∈ {1, . . . ,m},

m∑
i=1

zi ≤ k, x ∈ Rn+, z ∈ {0, 1}m
}
.

Next we obtain an upper bound on v∗. For ĵ defined in (32):

1. Sort aiĵ ’s from smallest to largest.

2. Let aîĵ be the (k + 1)st smallest number.

3. Let vH =
cĵ
aîĵ

. This corresponds to the objective function value of the feasible solution xj = 0 for j 6= ĵ

and xĵ = 1
aîĵ

. Thus v∗ ≤ vH .

Now observe that

cĵ
µĵ

m− k
m− ρk

≤ vL ≤ v∗ ≤
cĵ
aîĵ

= zH . (33)

Therefore using the definition of ρ we obtain that,

v∗ − vL

v∗
≤ zH − vL

zH
≤ m(1− ρ)

m− ρk
. (34)

4 Mixing Set Inequalities

In this section, we study valid inequalities derived from a mixing set relaxation of CKVLP. A mixing set is
defined as follows:

P = {(y, z) ∈ R+ × {0, 1}n : y + hizi ≥ hi, i = 1, ..., n}, (35)
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where h1 ≥ h2 ≥ · · · ≥ hn. The mixing set was introduced by Günlük and Pochet [10], and its variants in
different contexts have also been studied in [6, 15, 7, 21, 9, 11]. The following inequalities, known as mixing
(set) inequalities, are valid for P :

y +

l∑
j=1

(htj − htj+1
)ztj ≥ ht1 ∀ T = {t1, ..., tl} ⊆ N, (36)

where ht1 > ht2 > · · · > htl and htl+1
:= 0. Furthermore, these inequalities can be separated in polynomial

time, are facet-defining for P when t1 = 1, and are sufficient to describe the convex hull of P [2, 10].
Recently, the mixing set inequalities have been applied to solve the MIP formulation of chance-constrained

problems, which has a k-violation-type substructure, i.e., a feasible solution must satisfy the constraints
corresponding to at least k out of m scenarios [13, 14]. CKVLPs can be viewed as a special case of this
substructure in which each scenario consists of only one covering linear constraint. We next describe and
analyze the mixing set inequalities for CKVLPs.

Let the set of (x, z)-solutions to the MIP (4) be denoted by XMIP, and recall from (13) that the set of x-
solutions to (4) is denoted by X. Note that X is the projection of XMIP into x-space, i.e., X = Projx(XMIP).
Following [14], we can obtain a mixing set relaxation of XMIP as follows. Given a vector α ∈ Rn+, calculate
βαi , i ∈ {1, . . . ,m} as below:

βαi := min α>x

s.t. a>i x ≥ 1, x ∈ Rn+,

where ai is the coefficient vector for the i-th constraint in the MIP (4). Assume without loss of generality
that βα1 ≥ βα2 ≥ ... ≥ βαm, and consider the following set

Y (α) := {(x, z) ∈ Rn+ × {0, 1}m : α>x+ (βαi − βαk+1)zi ≥ βαi , i = 1, ..., k}. (37)

Proposition 5. For any α ∈ Rn+, XMIP ⊆ Y (α) and X ⊆ Projx(Y (α))

Proof. Let (x̄, z̄) ∈ XMIP. Then the non-negativity constraints and integrality constraints in Y (α) are satisfied
by (x̄, z̄). Without loss of generality, we may assume that the indexes 1, ..., k in Y (α) are the first k indexes
in XMIP. It remains to verify that (x̄, z̄) satisfies the constraints α>x̄+ (βαi −βαk+1)z̄i ≥ βαi for all i = 1, ..., k.

(i) For i such that z̄i=1: We require to verify that α>x̄ ≥ βαk+1. Since (x̄, z̄) ∈ XMIP, there exists some

u ∈ {1, . . . , k + 1} such that a>u x̄ ≥ 1. Moreover as βαu = min{α>x : x ∈ Rn+, a>u x ≥ 1}, we obtain that
α>x̄ ≥ βαu ≥ βαk+1, where the last inequality is due to the fact that u ≤ k + 1.

(ii) For i such that z̄i=0: We require to verify that α>x̄ ≥ βαi . Since (x̄, z̄) ∈ XMIP, we obtain that a>i x̄ ≥ 1.
Moreover as βαi = min{α>x : x ∈ Rn+, a>i x ≥ 1}, we have that α>x̄ ≥ βαi .

Therefore, (x̄, z̄) ∈ Y (α) and XMIP ⊆ Y (α). The result X ⊆ Projx(Y (α)) follows from the fact that
X = Projx(XMIP).

The set Y (α) is a valid relaxation of XMIP and it is in the form of a mixing set. This can be noted by
considering y := (α>x− βαk+1) as a nonnegative continuous variable to obtain the mixing system

y + (βαi − βαk+1)zi ≥ βαi − βαk+1 ∀ i = 1, . . . , k.

Thus, we have the complete description of conv(Y(α)) using the inequalities (36), which are also valid for
XMIP, i.e., conv(XMIP) ⊆ conv(Y(α)). Let us call

⋂
α∈Rn

+
conv(Y(α)) the mixing closure. Clearly, the mixing

closure is a valid relaxation of conv(XMIP). Let vMIX be the optimal objective value of optimizing over the
mixing closure, and v∗ be the optimal objective value of the MIP (4). Then, the best root node gap that can
be potentially achieved by the mixing inequality procedure is bounded by (v∗ − vMIX)/v∗. To study this gap
quantitatively, e.g., deriving a bound for (v∗ − vMIX)/v∗, we analyze the projection of the mixing closure on
the x-space, i.e., Projx(

⋂
α∈Rn

+
conv(Y(α))) in the following subsections.

11



4.1 The mixing closure

Note that

conv(X) = Projx(conv(XMIP))) ⊆ Projx(
⋂
α∈Rn

+

conv(Y (α))) (38)

⊆
⋂
α∈Rn

+

Projx(conv(Y (α))) =
⋂
α∈Rn

+

conv(Projx(Y (α))).

Thus, minimizing over
⋂
α∈Rn

+
conv(Projx(Y (α))) yields a lower bound for vMIX.

Proposition 6. Projx(Y (α)) = {x ∈ Rn+ : α>x ≥ βαk+1}.

Proof. ⊆: Let x̄ ∈ Projx(Y (α)), then there exists z̄ ∈ {0, 1}k such that α>x̄+(βαi −βαk+1)z̄i ≥ βαi , i = 1, ..., k.

Thus α>x̄ ≥ βαi (1− z̄i) + βαk+1z̄i ≥ βαk+1 since βαi ≥ βαk+1 and z̄i ∈ [0, 1].

⊇: Let x̄ ∈ {x ∈ Rn+ : α>x ≥ βαk+1}, set z̄i = 1, i = 1, ..., k, then (x̄, z̄) ∈ Y (α) and x̄ ∈ Projx(Y (α)).

Since Projx(Y (α)) is a half space in the non-negative orthant and hence convex, the convex hull operator in⋂
α∈Rn

+
conv(Projx(Y (α))) is unnecessary.

Proposition 7.⋂
α∈Rn

+

conv(Projx(Y (α))) =
⋂
α∈Rn

+

Projx(Y (α)) =
⋂
α∈Rn

+

{x ∈ Rn+ : α>x ≥ βαk+1}.

Proposition 7 and (38) indicate that the projection of the mixing closure onto the x-space is contained in the
closure constituted by infinitely many half spaces. To study this closure, we give a formal definition as below:

Definition 2 (Basic Mixing Closure). The Basic Mixing Closure is defined as

M :=
⋂
α∈Rn

{x ∈ Rn+ : α>x ≥ βα}, (39)

where βα := βαk+1.

We call α>x ≥ βα a basic mixing inequality corresponding to α. In order to understand the basic mixing
closure, we describe another class of inequalities.

Definition 3 (Simple Disjunctive Cuts and Closure).

1. Select a subset S of k+1 constraints. Since at least one of these constraints must be satisfied, we obtain
the simple disjunction:

(a>i1x ≥ 1, x ∈ Rn+) ∨ (a>i2x ≥ 1, x ∈ Rn+) ∨ · · · ∨ (a>ik+1
x ≥ 1, x ∈ Rn+), (40)

where S = {i1, . . . ik+1}.

2. Define aS ∈ Rn as

(aS)j = maxi∈S{aij} ∀j = 1, ..., n.

The convex hull of (40) is

(aS)>x ≥ 1, x ∈ Rn+,

and we call (aS)>x ≥ 1 a simple disjunctive cut.
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We define the simple disjunctive closure as

D :=
⋂

S⊆{1,...,m},|S|=k+1

{x ∈ Rn+ : (aS)>x ≥ 1}. (41)

Proposition 8. D =M

Proof. D ⊆ M: For any given α, without loss of generality, let β1 ≥ . . . βk ≥ βk+1 ≥ · · · ≥ βm. Then
βα = βk+1. Since α>x ≥ βi is a valid inequality for the set {a>i x ≥ 1, x ∈ Rn+} ∀i = 1, ..., k + 1, α>x ≥ βα
is a valid inequality for the convex hull of the set

(a>1 x ≥ 1, x ∈ Rn+) ∨ (a>2 x ≥ 1, x ∈ Rn+) ∨ · · · ∨ (a>k+1x ≥ 1, x ∈ Rn+),

or equivalently α>x ≥ βα is dominated by the inequality (aS)>x ≥ 1.
M⊆ D: Let S ⊆ {1, . . . ,m} such that |S| = k + 1. We set α = αS . Then for any i ∈ {1, . . . ,m},

βi = min (aS)>x

s.t. (ai)
>x ≥ 1, x ∈ Rn+.

Since aij ≤ (aS)j , we obtain that βi = min1≤j≤n
(aS)j
aij

≥ 1. Therefore, βaS ≥ 1. Hence, the basic mixing

inequality is

(aS)>x ≥ β(aS)

which dominates the inequality (aS)>x ≥ 1.

Because m and k are finite numbers, the number of simple disjunctive cuts is also finite, the following result
is immediate:

Corollary 9. M is polyhedral.

4.2 Bound Quality

Using the equivalence of D and M, and the fact that D has an explicit form and simple structure, we derive
a lower bound for vMIX by studying D. We then provide a bound on the best possible gap achievable by the
addition of all possible mixing inequalities, i.e., (v∗ − vMIX)/v∗.

Proposition 10. Suppose c > 0 and aij > 0 for all i, j. Let a = minij{aij} and a = maxij{aij}. Let v∗ be
the optimal objective value over X and vM be the optimal value over the basic mixing closure, then

0 ≤ v∗ − vMIX

v∗
≤ v∗ − vM

v∗
≤ a− a

a
.

Proof. Let c = minj{cj}. Note that v∗ ≤ min{c>x : a>i x ≥ 1∀ i = 1, . . . ,m, x ∈ Rn+} ≤ min{c>x : (e>x) ≥
1/a, x ∈ Rn+} = c/a. By the equivalence of D and M, we obtain that vM = min{c>x : (aS)>x ≥ 1 ∀S ⊆
{1, ...,m}, |S| = k+1, x ∈ Rn+} ≥ min{c>x : a(e>x) ≥ 1, x ∈ Rn+} = c/a. Thus, (v∗−vM )/v∗ = 1−vM/v∗ ≤
1− (c/a)/(c/a) = (a− a)/a.

The above result implies that the relaxations D and equivalently M can be tight when the variation of
the constraint coefficients is small. However, the separation of the most violated simple disjunctive cut from
D is NP-complete. Consider an arbitrary x∗ ∈ Rn+ that we want to separate. Let M := {i ∈ {1, . . . ,m} :
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a>i x
∗ < 1}. Clearly, |M | > k, because otherwise, x∗ belongs to the feasible region of the k-violation problem

X and therefore belongs to D. When |M | ≥ k + 1, we solve the following separation problem:

η = min

n∑
j=1

πjx
∗
j − 1

s.t. πj + aijwi ≥ aij j = 1, ..., n; ∀i ∈M∑
i∈M

wi = |M | − (k + 1)

πj ≥ 0 ∀j ∈ {1, . . . , n}
wi ∈ {0, 1} ∀i ∈M,

where πj is the cut coefficient for variable xj and wi is a binary variable taking value 0 whenever the i-th row
is considered in the disjunction (40). The inequality

∑n
j=1 πjxj ≥ 1 separates x∗ from D if and only if η < 0.

This separation problem is NP-hard [13]. Notice that although the mixing closure is contained in D and sepa-
ration over D is NP-complete, we do not know the complexity of the separation over Projx(

⋂
α conv(Y (α))).

5 Branching Scheme

As demonstrated in Table 1, the branch and bound search tree could be enormously large even for a small-
sized instance of the MIP (4). Part of the reason for the excessive number of nodes is the overlap in the
search tree. Without loss of generality, we assume that zj is the binary variable to branch on at the root
node. The left branch with zj fixed at zero consists of the following set

BL := {(x, z) :
∑
i 6=j

zi ≤ k, a>j x ≥ 1, (x, z) ∈ Xj
MIP},

where Xj
MIP represents the set XMIP with the constraint a>j x+ zj ≥ 1 dropped and the variable zj removed

from the formulation. The right branch with zj fixed at one consists of the following set

BR := {(x, z) :
∑
i 6=j

zi ≤ k − 1, a>j x ≥ 0, (x, z) ∈ Xj
MIP},

which is the union of the following two sets:

BR≥ := {(x, z) :
∑
i6=j

zi ≤ k − 1, a>j x ≥ 1, (x, z) ∈ Xj
MIP}

and
BR≤ := {(x, z) :

∑
i 6=j

zi ≤ k − 1, a>j x ≤ 1, (x, z) ∈ Xj
MIP}.

Note that BR≥ is in fact a restriction of BL and hence a overlap between the left and right branches. Re-

exploring BR≥ in the right branch is a redundancy which could also hinder the infeasibility-based pruning:

When BR≤ is infeasible but BR≥ is feasible, the overall right branch will be treated as a feasible node that,

otherwise, would have been pruned. We can safely take BR≥ out of the right branch and the remaining search
tree will still cover the whole solution space. This logic applies to any node with a zi fixed at one.
One way to remove the overlap from the search tree is to introduce extra constraints and use a big-M
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formulation to model the dichotomy of zis:

min c>x

a>i x+ zi ≥ 1 i = 1, ...,m

a>i x+Mzi ≤ 1 +M i = 1, ...,m
m∑
i=1

zi ≤ k

x ∈ Rn+, zi ∈ {0, 1} ∀i = 1, ...,m.

With this big-M formulation, however, the number of constraints doubles, and an appropriate large number
M is not obvious. Instead, we remove the overlap during the branch-and-bound process as follows: whenever
a branching variable zi is fixed at one, we reverse the sign of a>i x ≥ 1 and add it as a local cut to this node.
The addition of these local cuts keeps the search tree compact and could improve infeasibility-based node
pruning. Another example exploring similar infeasiblity-based pruning can be found in [4].

6 Computational Experiments

In this section, we examine the potential impact of the proposed MIP approaches in solving two classes of
problems with the CKVLP structure, i.e. MIPs of the form of (4). We implement the algorithms using
CPLEX callable libraries (version 12.1), run the programs on Intel Xeon 2.27 GHz dual core Linux servers
installed with 4 Gb RAM, and compare the performance against the CPLEX MIP solver with default settings.

6.1 Implementation Details

The implementation of the coefficient strengthening technique (described in Section 3) straightforwardly
follows Algorithm 1. Notice that, we could obtain a tighter `t by enforcing integrality constraints on some
binary variables in X(`t), but the series of minimization problems in Algorithm 1 would become more time-
consuming. We keep X(`t) in Algorithm 1 as the set in Definition 1. The threshold parameter ∆ is chosen
to be 0.001.

In the implementation of the mixing set inequality procedure (described in Section 4), we add cuts only
at the root nodes of search trees. We first solve the root node LP relaxation and obtain an optimal solution
(x̄, z̄). Next we select the vector α from the following two sets:

• those constraint vectors ai’s for which a>i x̄ < 1; and

• the cost vector c, if all ais have been used as α.

Then we build a mixing set Y (α) as described in Section 4. Other than the most violated mixing inequality
from (36), we also add violated inequalities (36) with |T | = 2 and t1 = 1 to the root-node LP relaxation
and solve it. The choice of these inequalities is based on recommendations in [14]. We iterate this process
until one of the following stopping criteria is reached: (1) no cut with a violation of more than 0.00001 is
identified, (2) the solution time exceeds 10,000 seconds, or (3) the cut generation procedure has run for 1000
iterations. To obtain the most violated mixing inequality, we implemented the separation algorithm in [2].
At the end of the cut generation phase, we keep only the tight cuts in the final model that is passed on to
the branch-and-bound phase.

In the implementation of the branching rule, we add a>i x ≤ 1 as a local cut to the nodes in which zi is
fixed at one.
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6.2 Probabilistic Portfolio Optimization

The first class of instances we test are from the probabilistically-constrained portfolio optimization model (2)
introduced in Section 1. This problem can be approximated by the sample approximation approach as in (3)
and reformulated as the following MIP [16]:

min c>x

s.t. e>x = 1

a>i x+ rzi ≥ r, ∀i = 1, ...,m
m∑
i=1

zi ≤ k,

x ∈ Rn+, zi ∈ {0, 1} ∀i = 1, ..., n.

where ai is the i-th sample drawn from the distribution of ãi and k = bm× εc. The k-violation substructure
in this formulation enforces that the number of sampled scenarios in which the overall return is not achieved
must not exceed bm× εc. Hence, k

m , the frequency, approximates the risk level ε. The constraint e>x = 1 is
the budget constraint obtained by scaling the investment levels to a unit budget. We also considered instances
where there is no budget constraint.

Each component of ai is drawn from an independent uniform distribution between 0.8 and 1.5, which, in
this context, represents the range between a 20% loss on one’s investment and a 50% profit. The required
return r is chosen to be 1.1, and ε is set at 0.05, indicating a ten percent average return with a probability of
95%. We set n = 20, m = 200, and k = 15, allowing, at most, 15 of 200 linear inequalities to be violated. The
cost coefficients in the model with a budget constraint take on integer values uniformly distributed between
1 and 100. For the model without the budget constraint, we use the vector with all components equal to one
as the cost vector, since the instances with this particular cost vector are especially difficult to solve. We
select ten randomly generated instances for each model that can be solved by CPLEX within ten hours, and
compare the proposed methods against CPLEX with default settings.

Tables 2 and 3 present the computational results for the model with a budget constraint and the model
without a budget constraint, respectively. The first column gives the instance number. The second and third
columns give the branch-and-bound (B&B) time (in seconds) and nodes of the CPLEX MIP solver (CPX).
Columns 4-6 give the root node gap closed by the cuts generated by CPX, the coefficient strengthening (CS),
and the mixing set inequalities (MIX), respectively. Finally, columns 7-9 and 10-12 compare the percentage
improvements of the three schemes: the branching rule (BR), CS, and MIX, over the CPLEX MIP solver on
branch-and-bound time and nodes, respectively. The percentage improvement in time for BR is computed as
100 × (Time(CPX) - Time(BR))/Time(CPX), where Time(CPX) is the branch-and-bound time for default
CPLEX and Time(BR) is the branch-and-bound time using the proposed branching rule. The percentage
improvements for the other two schemes, and the nodes saved are computed analogously.

The reported solution times are only for the branch-and-bound phase of the overall procedure. The mixing
set cutting plane algorithm spends 20 to 30 seconds on root node until no more cuts can be separated. The
time spent on coefficient strengthening, which amounts to solving a series of linear programming problems, is
under 20 seconds. The local cuts added in the branching scheme can be obtained instantly by simply reversing
the sign of the corresponding constraint. Since the preprocessing times in these instances are negligible in
comparison with the branch-and-bound times, we do not include them in the solution time.
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Table 2: Percentage Improvements Over CPLEX (Portfolio Optimization with Budget Constraint)
Instance CPX Default Root Gap Closed B&B Time Saved B&B Nodes Saved
Number B&B time B&B nodes CPX CS MIX BR CS MIX BR CS MIX

1 11,094 13,640,260 19% 24% 25% 91% 89% 60% 89% 85% 62%
2 968 1,657,606 19% 23% 24% 75% 82% 51% 70% 79% 54%
3 223 505,037 36% 36% 41% 77% 86% 25% 77% 86% 36%
4 19,830 25,651,409 7% 10% 13% 90% 91% 79% 88% 89% 80%
5 400 786,701 29% 31% 33% 70% 69% -4% 66% 62% -3%
6 5,044 9,786,835 14% 19% 22% 68% 82% 27% 66% 80% 37%
7 10,923 14,365,495 29% 33% 35% 82% 88% 26% 80% 85% 35%
8 1,822 3,177,889 12% 18% 21% 87% 90% 20% 86% 88% 35%
9 2,115 3,454,682 17% 24% 28% 71% 69% -17% 66% 65% -2%
10 13,017 10,526,548 15% 18% 21% 75% 88% 11% 79% 76% -15%

Average 6,544 8,355,246 20% 24% 26% 79% 83% 28% 77% 80% 32%

Table 3: Percentage Improvements Over CPLEX (Portfolio Optimization Without Budget Constraint)
Instance CPX Default Root Gap Closed B&B Time Saved B&B Node Saved
Number B&B Time B&B Nodes CPX CS MIX BR CS MIX BR CS MIX

1 11,903 23,786,322 2% 64% 57% -15% 85% -176% 22% 91% 85%
2 14,584 24,366,521 4% 66% 61% 29% 95% 65% 38% 95% 89%
3 8,730 17,586,672 2% 64% 58% 14% 92% -181% 19% 93% 88%
4 5,516 10,898,121 5% 64% 59% 7% 90% 51% 19% 91% 83%
5 12,462 18,021,273 4% 66% 62% 19% 95% 65% 19% 94% 89%
6 21,475 30,948,921 2% 64% 58% 58% 92% 65% 46% 93% 84%
7 6,928 14,634,688 2% 64% 60% -27% 86% 44% 17% 88% 80%
8 15,547 20,957,656 2% 65% 61% 42% 93% 68% 33% 94% 89%
9 34,512 68,752,624 2% 64% 55% 41% 89% 63% 50% 94% 84%
10 5,314 9,376,843 2% 65% 60% -2% 94% 69% 14% 94% 88%

Average 13,697 23,932,964 3% 65% 59% 17% 91% 13% 28% 93% 86%

From Tables 2 and 3 we observe that the mixing set inequalities and coefficient strengthening have compa-
rable performance in terms of closing root node gaps. They both close more gap than the CPLEX default cuts,
especially in the model without a budget constraint. However, in the branch-and-bound process afterwards,
the mixing set inequalities cannot take full advantage of the tighter lower bounds to reduce overall time and
nodes. In fact, in four of the 20 instances, the mixing set inequalities even worsen the performance. The
reason lies in the difficulty of selecting effective cuts to keep in the model throughout the branch-and-bound
process. In our experiment, we also try to employ the CPLEX cut pool to dynamically manage all the cuts
generated at root nodes, but we have not been successful in identifying the most useful cuts.

The coefficient strengthening technique closes gap amounts similar to those closed by the mixing inequal-
ities, but the improvement in the overall branch-and-bound process is significantly larger than for the mixing
inequalities. The coefficient strengthening is able to cut down the time and nodes by an average of over 80%.
This achievement can be attributed to the fact that the coefficient strengthening tightens the lower bound
without introducing any extra variables or constraints at the root node.

The branching rule performs remarkably better in the model with the budget constraint, over 70% savings
on nodes and time versus less than 30% savings in the model without the budget constraint. This sizable
difference can be explained by the presence of the budget constraint. The budget constraint, as one type
of side constraint, greatly reduces the feasible region of the node problems. Consequently, the feasibility of
the node problems that have budget constraints is more sensitive to the addition of local cuts obtained by
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reversing the signs of the corresponding covering inequalities. Therefore, adding the local cuts to the models
with budget constraints is more likely to lead to infeasible node problems, triggering the infeasibility-based
node pruning more frequently.

6.3 Optimal Vaccination Allocation

The second class of test instances is the optimal vaccination allocation problem under uncertainty addressed
in [18]. In this application, a scarce vaccine is allocated to households in a community to prevent an epidemic
from breaking out by restricting the post-vaccination reproductive number to be strictly less than one. The
sample average approximation approach to this problem yields a MIP formulation which has a CKVLP
structure, plus some side constraints of form

∑
i∈S xi = 1, where S is some subset of the index set of the

decision variables. A full description of the model is provided in the Appendix. We use the same test instances
of this problem as in [18]. These instances have 302 continuous variables and m binary variables (see Column
1 in Table 4). The risk level ε is set to 0.05, and the value of k can be determined accordingly by k = bm× εc.

Table 4 compares the performance of three schemes against the performance of the CPLEX MIP solver.
The first two columns describe the sizes of the instances. The next three columns provide the root node gaps
closed by the cuts generated by the CPLEX MIP solver, the coefficient strengthening procedure, and the mix-
ing inequalities, respectively. Columns 6-7 present the time (in seconds) spent on coefficient strengthening and
generating mixing inequalities at the root node, respectively. Columns 8-11 and columns 12-15 compare the
time (in seconds) and the number of nodes in the branch-and-bound phase by the CPLEX MIP solver and the
three proposed schemes, respectively. Table 5 summarizes the percentage improvements of the three schemes
over the CPLEX MIP solver with default settings. The percentage improvements in total time (root node
time + branch-and-bound time) for CS is computed as 100 × (Time(CPX) - Time(CS))/Time(CPX), where
Time(CPX) is the total time for default CPLEX and Time(CS) is the total time using coefficient strength-
ening. The percentage improvements in the branch-and-bound time (excluding the coefficient strengthening
time) and the nodes saved are computed analogously. The percentage improvements for MIX and BR are
computed similarly.

Table 5: Percentage Improvements Over CPLEX (Optimal Vaccination Allocation Problem)
Size B&B Node Saved B&B Time Saved Total Time Saved

m k CS MIX BR CS MIX BR CS MIX BR
250 12 43% 17% 40% 100% 100% 50% -5033% -7669% 50%

88% 81% 80% 100% 100% 33% -3220% -5237% 33%
92% 95% 92% 100% 100% 60% -2186% -3257% 60%
99% 96% 95% 100% 100% 78% -1037% -1836% 78%
78% 84% 78% 100% 100% 50% -5191% -7379% 50%

500 25 96% 88% 86% 90% 86% 69% -1083% -4142% 69%
95% 87% 92% 91% 78% 78% -701% -2637% 78%
96% 93% 84% 93% 82% 61% -1808% -6459% 61%
91% 91% 82% 91% 82% 50% -2251% -7785% 50%

100% 100% 98% 98% 96% 82% -913% -3833% 82%
750 37 100% 99% 97% 99% 99% 96% -24% -590% 96%

78% 72% -82% 75% 74% -159% -2506% -14788% -159%
95% 91% 84% 89% 83% 57% -1418% -8252% 57%
97% 96% 83% 97% 93% 63% -380% -3399% 63%
95% 94% 89% 94% 86% 73% -764% -6194% 73%

1000 50 100% 99% 99% 100% 99% 97% 54% -58% 97%
97% 96% 96% 98% 96% 87% 12% -180% 87%
99% 96% 96% 99% 96% 92% 30% -127% 92%
91% 46% 67% 93% 61% 47% -827% -2800% 47%
88% 59% 54% 88% 55% 7% -1498% -5689% 7%

2000 100 99% 78% 97% 99% 78% 92% 93% 72% 92%
99% 59% 99% 99% 52% 96% 97% 49% 96%

100% 87% 100% 99% 85% 98% 96% 81% 98%
98% 85% 99% 99% 82% 96% 91% 74% 96%

100% 30% 100% 100% 14% 98% 98% 12% 98%
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Table 4: Computational Results (Optimal Vaccination Allocation Problem)
Size Root Gap Closed Root Node Time B&B Time B&B Nodes

m k CPX CS MIX CS MIX CPX CS MIX BR CPX CS MIX BR
250 12 62% 95% 95% 103 155 2 0 0 1 81 46 67 49

61% 93% 92% 100 160 3 0 0 2 673 81 129 134
64% 93% 93% 114 168 5 0 0 2 1,096 83 52 91
58% 92% 90% 102 174 9 0 0 2 3,054 39 112 149
55% 94% 94% 106 150 2 0 0 1 153 33 24 33

500 25 52% 91% 89% 493 1,776 42 4 6 13 7,082 286 820 995
50% 93% 90% 507 1,738 64 6 14 14 20,166 1,004 2,600 1,551
55% 91% 90% 532 1,832 28 2 5 11 5,329 218 390 839
54% 90% 90% 515 1,731 22 2 4 11 3,907 347 359 694
48% 94% 92% 506 1,964 50 1 2 9 18,822 38 26 458

750 37 30% 91% 90% 1,656 9,230 1,340 7 16 59 206,179 463 1,648 5,276
44% 91% 91% 1,574 9,066 61 15 16 158 7,124 1,554 1,989 12,944
49% 93% 92% 1,522 8,418 101 11 17 43 16,857 804 1,436 2,729
45% 91% 90% 1,106 8,101 232 8 16 87 40,393 1,057 1,497 6,692
42% 91% 90% 1,116 8,164 130 8 18 35 23,886 1,198 1,332 2,658

1000 50 26% 90% 89% 2,928 10,162 6,449 30 35 182 829,738 3,142 4,773 6,351
32% 91% 89% 3,107 10,056 3,636 86 143 482 433,591 11,998 16,333 15,915
29% 92% 90% 3,157 10,144 4,546 28 166 376 348,976 2,552 13,239 15,253
38% 91% 88% 3,218 10,012 350 25 137 185 28,423 2,424 15,406 9,278
33% 91% 88% 2,791 10,109 176 21 79 163 15,241 1,821 6,310 7,065

2000 100 16% 88% 84% 10,684 10,804 166,074 843 36,096 13,992 9,978,113 57,601 2,237,052 294,053
15% 89% 85% 10,259 11,084 386,246 2,740 185,168 15,960 24,523,780 191,138 10,109,370 316,629
14% 89% 86% 10,570 11,276 324,023 1,779 49,923 6,305 24,463,163 116,273 3,297,139 114,177
15% 89% 85% 11,082 11,091 141,172 2,023 24,990 5,129 9,032,616 138,575 1,350,094 89,084
15% 89% 84% 11,257 11,448 574,819 1,889 493,400 10,795 39,500,399 128,181 27,842,365 184,543

The results in Table 4 and 5 show the effectiveness of the coefficient strengthening technique in both
closing root node gaps and reducing nodes and time of the branch-and-bound phase. We observe that the
performance of the coefficient strengthening algorithm is significantly more consistent than the other two
methods and exhibits a certain stability. For example when m = 1000, the branch-and-bound time saved
by the branching scheme ranges from 7.4% to 97.2%; the branch-and-bound time saved by the mixing set
inequalities ranges from 55.1% to 99.5%; in contrast, the coefficient strengthening algorithm varies only
from 88.1% to 99.5%. This consistent behavior is also observed for the probabilistic portfolio optimization
instances in Tables 2 and 3. The branching scheme has a comparable impact on reducing the search tree size
to the coefficient strengthening in the vaccination instances, especially for the difficult ones with m = 2000.
Since this model consists of equalities as side constraints, the local cuts added by the branching rule cause
infeasibility in the node problems frequently, therefore, effectively reducing the search tree size.

The performance improvement in the branch-and-bound phase comes at the expense of computational
effort in coefficient strengthening and separation of mixing inequalities at the root node. Unlike the portfolio
optimization instances, this effort is quite significant for the vaccination instances (see columns 6-7 in Table
4). Each iteration of the coefficient strengthening requires solving m linear programs – for the instances with
m = 1000 and m = 2000, several thousand linear programs need to be solved. Similarly, in generating the
mixing set inequalities, m linear programs need to be solved in order to form one mixing set for a given α,
and there are m possible choices for α. Accordingly, the cut generation time increases in the order of m2.
Comparing column 8 in Table 4 and column 9 in Table 5, we observe that significant effort on coefficient
strengthening is not justifiable for instances that CPLEX can solve in under 1500 seconds. For example,
for the instances with m = 1000, the coefficient strengthening technique takes around 3000 seconds. Recall
that we impose a time limit of 10000 seconds, so for these instances coefficient strengthening is run till no
coefficients can be further tightened. Considering the fact that CPLEX takes only one to two hours to solve
these instances, running the strengthening procedure to termination is not economical. Similarly, we observe
(by comparing column 8 in Table 4 and column 10 in Table 5) that the effort on mixing inequalities is not
justified for instances with m < 2000 that CPLEX can solve within 6500 seconds. On the overall solution
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time, the branching rule has a more consistent performance since it requires no additional effort at the root
node. For the larger size instances with m = 2000, it is worth spending about three hours on strengthening
to reduce the branch-and-bound time from days to minutes. The CPLEX MIP solver takes one to six days to
solve these instances to optimality, whereas the coefficient strengthening reduces the overall effort to under
four hours.

7 Concluding Remarks

In this paper, we study covering-type k-violation linear programs. We show that such problems are strongly
NP-hard, and study empirically the computational difficulty of MIP-based approaches for these problems.
We introduce and analyze a coefficient strengthening scheme, adapt and analyze an existing cutting plane
technique, and present a branching technique to improve the performance of MIP approaches. Computational
experiments on two classes of problems show that the proposed methods are effective in significantly reducing
running times. The coefficient strengthening is most effective for large instances and reduces the solution
time and the number of search tree nodes by 80% to 98% in these instances. The branching scheme reduces
the size of search trees by removing overlaps between branches and incurring infeasiblity-based node pruning.
It takes no effort to implement and works most effectively on the CKVLP models with side constraints. The
mixing set cuts are capable of closing a large percentage of root node gaps. However, the impact of these
cuts on the branch-and-bound process are mixed. Perhaps better performance might be achieved by a more
effective separation procedure for mixing inequalities. We have also investigated the performance of various
combinations of the three schemes, but the gains are not significant.
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Appendix

Optimal Vaccination Allocation Model of [18]

The vaccination allocation problem allocate a scarce vaccine to households in a community to prevent an
epidemic from breaking out. The epidemic will die out if the post-vaccination reproductive number is strictly
less than one. Assume a community has a set F of types of households and each type of household f ∈ F
consists of a combination of person types t ∈ T , e.g., child, adult, or elderly. A vaccination policy v ∈ V
is a delivery of vaccine to certain types of persons in a household f ∈ F . For example, a vaccination policy
could be a delivery of vaccine only to the two children in a household type that consists of two adults and
two children. The decision problem is to determine an implementation of vaccination policies for each type
of household in this community with a minimal cost which guarantees that the post-vaccination reproductive
number is strictly below one with a high probability 1− ε. We state below the probabilistically-constrained
model in [18]:
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min :
∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F

P{
∑
f∈F

∑
v∈V

afv(ω)xfv ≤ 1} ≥ 1− ε

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V,

where xfv is the decision variable representing the percentage of policy v to be implemented for household
type f , vt is the number of people of type t vaccinated in policy v, hf is the proportion of households
in the community that are of type f , and afv(ω) is the computed random parameter for impact of the
vaccination policy v for household type f , which is a function of different random numbers following some
known distributions. For more details, see [3, 18].

After m i.i.d. samples are taken from afv(ω)s, the above probabilistically-constrained problem can be
approximated by the following MIP, which has a CKVLP structure:

max :
∑
f∈F

∑
v∈V

∑
t∈T

vthfx
′
fv −

∑
f∈F

∑
v∈V

∑
t∈T

vthf

s.t.
∑
v∈V

x′fv = 1 ∀f ∈ F∑
f∈F

∑
v∈V

aifvx
′
fv + bizi ≥ bi i = 1, ...,m

m∑
i=1

zi ≤ k

0 ≤ x′fv ≤ 1 ∀f ∈ F, v ∈ V, zi ∈ {0, 1} i = 1, ..,m,

where aifv is the i-th sample of afv(ω), x′fv = 1− xfv, bi =
∑
f∈F

∑
v∈V a

i
fv − 1, and k = bε×mc.
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