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Abstract

As the modern transmission control and relay technologies evolve, transmission line
switching has become an important option in power system operators’ toolkits to re-
duce operational cost and improve system reliability. Most recent research has relied
on the DC approximation of the power flow model in the optimal transmission switch-
ing problem. However, it is known that DC approximation may lead to inaccurate
flow solutions and also overlook stability issues. In this paper, we focus on the opti-
mal transmission switching problem with the full AC power flow model, abbreviated
as AC OTS. We propose a new exact formulation for AC OTS and its mixed-integer
second-order conic programming (MISOCP) relaxation. We improve this relaxation
via several types of strong valid inequalities inspired by the recent development for the
closely related AC Optimal Power Flow (AC OPF) problem [21]. We also propose a
practical algorithm to obtain high quality feasible solutions for the AC OTS problem.
Extensive computational experiments show that the proposed formulation and algo-
rithms efficiently solve IEEE standard and congested instances and lead to significant

cost benefits with provably tight bounds.

1 Introduction

Transmission switching, as an emerging operational scheme, has gained considerable atten-
tion in both industry and academia in the recent years [28, 11, 13, 19, 14]. Switching on
and off transmission lines, therefore, changing the network topology in the real-time opera-

tion, may bring several benefits that the traditional economic dispatch cannot offer, such as
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reducing the total operational cost, mitigating transmission congestion, and clearing contin-
gencies.

Previous literature on OTS mainly relies on the DC approximation of the power flow
model to avoid the mathematical complexity induced by the non-convexity of AC power
flow equations (see e.g. [28, 11, 29, 30]). This DC version of the OTS problem can be
modeled as a mixed-integer linear program (MILP), which is a computationally challenging
problem and several heuristic method are proposed [4, 12, 33]. In a recent work [22], the
authors propose a new formulation and a class of valid inequalities to exactly solve the MILP
problem. However, even if this problem can be solved quickly, it has been recognized that
the optimal topology obtained by solving DC transmission switching is not guaranteed to be
AC feasible, also it may over-estimate cost improvements and overlook stability issues [15].

The AC optimal transmission switching problem (AC OTS) is much less explored. In [15],
a convex relaxation of AC OTS is proposed based on trigonometric outer-approximation. The
problem is formulated as a mixed integer nonlinear program (MINLP) and solved using the
solver BONMIN to obtain upper bounds. In [31], a new ranking heuristic is proposed based
on the economic dispatch solutions and the corresponding dual variables. In [5], DC OTS is
solved first and then a heuristic correction mechanism is utilized to restore AC feasibility of
the solutions. In this paper, we aim to push the control scheme for transmission switching
closer to the real-world power system operation by proposing a new exact formulation and
an efficient algorithm for the AC OTS problem.

Our study starts from the recent advances in a related fundamental problem in power sys-
tem analysis, namely the AC Optimal Power Flow (AC OPF') problem, which minimizes the
generation cost to satisfy load and various physical contraints represented in the AC power
flow constraints, while the power network topology is kept unchanged. It is demonstrated by
several authors that convex relaxations, especially semidefinite programming (SDP) relax-
ations, of the AC OPF problem provide tight lower bounds on standard IEEE test instances
[3, 23, 25, 26]. However, the computational burden of solving large-scale SDP relaxations is
still unwieldy. To solve for large-scale systems, one may need to turn to computationally less
demanding alternatives such as quadratic convex [9, 15, 8] or linear programming relaxations
6].

In a recent work [21], we proposed several strong second-order cone programming (SOCP)
relaxations for AC OPF, which produce extremely high quality feasible AC solutions (not
dominated by the SDP relaxations) in a time that is an order of magnitude faster than
solving the SDP relaxations. In this paper, we extend these new techniques to the more
challenging AC OTS problem. In particular, we first formulate the AC OTS problem as
an MINLP problem. Then, we propose an MISOCP relaxation, which relaxes the non-



convex AC power flow constraints to a set of convex quadratic constraints, represented in
the form of SOCP constraints. The paper then provides several techniques to strengthen
this MISOCP relaxation by adding several types of valid inequalities. Some of these valid
inequalities have demonstrated to have excellent performance for the AC OPF in [21], and
some others are specifically developed for the AC OTS problem. Finally, we also propose
practical algorithms that utilize the solutions from the MISOCP relaxation to obtain high
quality feasible solutions for the AC OTS problem.

The rest of the paper is organized as follows: In Section 2 we formally define AC OPF
and present two exact formulations. In Section 3, we present AC OTS as an MINLP problem
and discuss its MISOCP relaxation. Then, we propose several valid inequalities in Section
4 and develop a practical algorithm to solve AC OTS in Section 5. We present the results
of our extensive computational experiments in Section 6. Finally, some concluding remarks

are given in Section 7.

2 AC Optimal Power Flow

Consider a power network N' = (B, £), where B and L respectively denote the set of buses
and transmission lines. Generation units are connected to a subset of buses, denoted as
G C B. The aim of the AC optimal power flow (OPF) problem is to satisfy demand at all
buses with the minimum total production costs of generators such that the solution obeys
the physical laws (e.g., Ohm’s and Kirchoff’s Law) and other operational restrictions (e.g.,
transmission line flow limit constraints).

Let Y e CIBIXIBl denote the nodal admittance matrix, which has components Y, =
Gij +1B;; for each line (4, ) € £, and G = gii — Z#i Gij, Bii = by — Z#i B, where g;;
(resp. by) is the shunt conductance (resp. susceptance) at bus i € B and i = /—1. Let
vl q? (resp. pe,q?) be the real and reactive power output of the generator (resp. load) at
bus i. The complex voltage V; at bus ¢ can be expressed either in the rectangular form as
Vi = ¢; +if; or in the polar form as V; = [Vi|(cos@; + isin6;), where |Vj| = /€2 + f7 is
the voltage magnitude and 6; is the phase angle. Real and reactive power on line (i, j) are

denoted by p;; and g¢;;, respectively and computed as follows:

pij = —Gii(el + f2) + Gij(eie; + fif;) — Bi(eifs — ei fi)

1
gij = Bij(e; + f7) — Bij(eiej + [if;) — Gij(eif; — e;f:). 8

With the above notation, the AC OPF problem is given in the so-called rectangular



formulation as follows:

min Z Ci(p?) (2a)

e

st p! = pl = galel + 1)+ D vy ieB (2b)

JEN(7)
ng - q;i bzz 6 + f Z qU 7 € B (2C)
JE6(4)

V2P<el 4 2LV ieB (2d)
Py + a4 < (S5)? (i,7) € L (2e)
Pt < pf < pi i€g (2f)
qmln < qlg < qmax /LE g7 (Qg)
(1).

The objective function C;(p?) is typically linear or convex quadratic in the real power output
p? of generator i. Constraints (2b) and (2c) correspond to the conservation of active and
reactive power flows at each bus, respectively. Here, §(i) denotes the set of neighbor buses of
bus i. Constraint (2d) restricts voltage magnitude at each bus. Constraint (2e) puts an upper
bound on the apparent power on each line. Finally, constraints (2f) and (2g), respectively,
limit the active and reactive power output of each generator to respect its physical capability.

Note that the rectangular formulation (2) is a non-convex quadratic optimization prob-
lem. However, we note that all the nonlinearity and non-convexity comes from one of
the following three forms: (1) e + fZ = |Vi|?, (2) eie; + fifi = |Vi||V;| cos(6; — 6;), (3)
e fj — fie; = —|Vi||V;| sin(6; — 6;). We define new variables ¢;;, ¢;; and s;; for each bus ¢ and
each transmission line (4, ) to capture the non-convexity. In particular, we define for each
i€ Band (i,j) € L,

Ci =€+ [ cyi=eei+ fifi,  sio=eifj —efs. (3)
Now, we introduce an alternative formulation of the OPF problem as follows:

min Z Ci(p?) (4a)

1€G
S't' pf g’L’LC’L’L + Z pl] Z E B (4b)
J€(i)
- qZ —bjicii + Z ij 1€B (4c)
JEO(7)



pij = —Gijci + Gijeiy — Bijsij (4,5) € £ (4d)

¢ij = DBijci — Bijcij — Gijsij (i,7) € L (4e)
V<o <V ieB (4f)
Cij = Cji, Sij = —Sji (i,J) € L (4g)
C?j + S?j = GiiCjj (1,7) € L (4h)
0, — 0, = atan2(s;;, ¢;;) (i,5) € L, (4i
(2¢)-(2g).

A variant of this formulation without (4i) was previously proposed in [10] and [16] for radial

networks (also see [20]) while it was later adapted to general networks in [17, 18].

3 AC Optimal Transmission Switching

AC Optimal Transmission Switching (AC OTS) is a variant of the AC OPF problem in which
transmission lines are allowed to be switched on and off to reduce the total cost of dispatch.
AC OTS can be formulated as an optimization problem, which aims to find a topology with
the least cost while achieving feasible AC power flow solutions. In this section, we first
formulate AC OTS as an MINLP and then, propose an MISOCP relaxation to obtain lower
bounds. We will use OTS (resp. OPF) to denote AC OTS (resp. AC OPF) for brevity,

unless stated otherwise.

3.1 MINLP Formulation

Mathematical programming formulation of OTS can be posed with the same variables as
used in OPF with the addition of a set of binary variables, denoted by z;;, for each line.
The variable z;; takes the value one if the corresponding line (7, j) is switched on, and zero
otherwise. Then, OTS is formulated as the following MINLP problem:

min 3 C;(p?) (50)

1€G

s.t. pi; = (=Glijcii + Gijeij — Bijsij)xi; (1,5) € L (5b)
Gij = (Bijcii — Bijcij — Gijsig)i (i,j) € £ (5¢)
(c?j + S?j — iiCj;)Tij =0 (1,7) € L (5d)
(0; — 6; — atan2(s;;, ¢;j))xi; =0 (i,j) € L (5e)
x;; € {0,1} (i,5) € L, (5f)



(2¢)-(2g), (4b)-(4c), (41)-(4g)-

Here, constraints (5b) and (5c) guarantee that real and reactive flow on every line takes the
associated values if the line is switched on and zero otherwise. Similarly, cone constraint
(5d) and angle constraint (5e) are active only when the corresponding binary variable takes

the value one.

3.2 MISOCP Relaxation

Now, we propose an MISOCP relaxation of OTS (5). For notational convenience, let ¢;; = V2
and ¢; = VZQ Here, we extend the definition of variables ¢;; and s;;, which now take the
values as before when the corresponding line is switched on and zero otherwise. We also
denote lower and upper bounds of ¢;; (resp. si;) as ¢;; (vesp. s;;
respectively, when the line is switched on. Next, we define new variables ¢}, := ¢;;x;;. Using

) and ¢; (resp. Si;),
this notation, we present an MISOCP relaxation as follows:

min Z Ci(p)) (6a)

1€G

st py = —Gycl + Gijcij — Bysy; (1,7) € £ (6b)
Gij = Bycl — Bijeiy — Gisyg (1,5) € £ (6c)
CijTij < Cij < Cijj (4,7) € £ (6d)
8i;Tij < Sij < Sy (1,j) € L (6e)
iy < o < T (1,7) € £ (6f)
ci — Cii(1 —xy5) < C’Zz (4,7) € L (62)
o < i — (1 — i) (i,5) € £ (6h)
C?j + ng < szczj (4,7) € L, (61)

(2¢)-(2g), (4b)-(4c), (41)-(4g), (5).

Here, constraints (6b) and (6¢) again guarantee that flow variables takes the correct value
when the line is switched on and zero otherwise, due to constraints (6d)-(6f). On the other
hand, (6g)-(6h) restrict that ¢/, takes value ¢; when line in switched on. We note that
constraints (6f)-(6h) are precisely the McCormicks envelopes [24] applied to ¢, = cjij.
Finally, (6i) is the SOCP relaxation of (5d).

We note that the non-convex constraint (5e) is dropped altogether to obtain the MISOCP
relaxation (6). In the next section, we propose three ways to incorporate the constraint (5e)
back into the MISOCP relaxation.



4 Valid Inequalities

In this section, we propose three methods to strengthen the MISOCP relaxation (6). They
are based on the strengthening methods we recently proposed for the SOCP relaxation of
the AC OPF problem in [21], which are combined with integer programming techniques.
In Section 4.1, we construct a polyhedral envelope for the arctangent constraint (5e) in 3-
dimension. In Section 4.2, we propose a disjunctive cut generation scheme that separates a
given SOCP solution from the SDP cones. In Section 4.3, we propose another disjunctive
cut generation scheme that separates a given SOCP solution from the McCormick relaxation
of a newly-proposed cycle based formulation of the OPF problem. Finally, in Section 4.4, we
propose variable bounding techniques that provide tight variable bounds, which is essential

for the success of the proposed approach.

4.1 Arctangent Envelopes

First, we propose a convex outer-approximation of the angle condition (5e) to the MISOCP
relaxation. Our construction uses four linear inequalities to approximate the convex envelope

for the following set defined by the arctangent constraint (5e) for each line (i, j) € L,
AT = {(c, s5,0) € R® : § = arctan (Z) ,(c,8) € B} , (7)

where we denote § = 6; — 6; and drop (¢,7) indices for brevity and define the box B :=
[c,¢] x [s,5]. We also assume ¢ > 0. The four corners of the box correspond to four points

in the (¢, s,0) space:

2! = (¢, 5,arctan (5/c)), 2° = (¢, 5,arctan (3/¢)),

3 — — 4 (8)
z° = (¢,s,arctan (s/¢)), 2" = (c,s,arctan (s/c)).

Let us first focus on the upper envelopes. Proposition 4.1 is adapted from [21] to the

case of OTS:

Proposition 4.1. Let 6 = v, + ajc + f1s and 0 = 5 + ase + Pas be the planes passing

2

through points {21, 2%, 23}, and {21, 23, 21}, respectively. Then, for k = 1,2, we have

Ye + are + Brs + (27 — ;) (1 — x) > arctan <§) (9)
c

for all (¢, s) € B with v, = vk + Ay, where

A7y, = max {arctan (f) — (i + are + ﬁks)} : (10)
(¢,8)EB C

7



The nonconvex optimization problem (10) can be solved by enumerating all possible
Karush-Kuhn-Tucker (KKT) points. A similar argument can be used to construct lower

envelopes as well. See [21] for details.

4.2 SDP Disjunction

In the second method to strengthen the MISOCP relaxation (6), we propose a cutting plane
approach to separate a given SOCP relaxation solution from the feasible region of the SDP
relaxation of cycles. To start with, let us consider a cycle with the set of lines C' and the set
of buses Be. Let v € R be a vector of bus voltages defined as v = [e; f] such that v; = e;
fori € B and vy = f; for i’ = i+ |C|. Observe that if we have a set of ¢, s variables satisfying
the definitions in (3) and a matrix variable W = vv?, then the following linear relationship

holds between ¢, s,z and W,

cij = Wij + Wirjr )z, (1,7) e C (11a)
sij = (Wiyr = Wiw )i (i,j) € C (11b)
i = Wi + Wi i€ Be (11c)
CijTij < Cij < Cijlij (i,7) e C (11d)
8;i%ij < Sij < Sijlij (i,7) € C (11e)
Cii < Cii < Cig i € Be (11f)
;= ey (1,7) e C (11g)
zi; € {0,1} (i,j) € C (11h)
W= 0. (11i)

Let us define S := {(¢,s,z) : IW : (11)}. Clearly, any feasible solution to the OTS formu-
lation (5) must also satisfy (11). Therefore, any valid inequality for S is also valid for the
formulation (5).

Note that S is a mixed-integer set. Ideally, one would be interested in finding conv(S) to
generate strong valid inequalities. However, this is a quite computationally challenging task,
no easier than solving the original MINLP. Instead, we outer-approximate conv(S) and obtain
cutting planes by utilizing a simple disjunction for a cycle C: Either every line is active,
that is 3, oz = [C], or at least one line is disconnected, that is 3, o2y < |C] — 1.
Below, we approximate these two disjunctions.

Disjunction 1: In the first disjunction, we have x;; = 1 for all (¢, j) € C. Let us consider



the following constraints

cij = Wij + Wy (4,j) € C (12a)
sij = Wigr — Wi (1,7) € C (12D)
i = (i,j) e C (12)
Ty =1 (i,5) € C, (12d)

and define Sy := {(c, s, x) : AW : (12), (11c) — (11f), (11i)}.
Disjunction 0: In the second disjunction, x;; = 0 for some (7, j) € C. Let us consider the

following constraints

(i,7) (13a)

(2, 7) (13b)

i — Gi(1 — ay5) < ¢ (1,7) e C (13c¢)
(4, 7) (13d)

(2, 7) (13e)

)

2 2 K}
cij sy < e

Ci%ij < ¢l < T
sz < i — (1 — ) 13d
0 S Tij S 1 13e
> a<lol -1, (13f
(i,5)eC
and define Sy := {(c, s, z) : (13), (11d)-(11f)}.

We note that both &; and Sy are conic representable. In particular, these bounded sets
are respectively semidefinite and second-order cone representable. Therefore, conv(S; U Sp)
is also conic representable (see Appendix A on how to obtain a representation as an extended
formulation), and by construction, contains S.

Now, suppose a point (c¢*, s*, 2*) is given. We want to decide whether this point belongs
to conv(S; USy) or otherwise, find a separating hyperplane. Given that we have an extended

semidefinite representation for conv(S; U &p), we can solve an SDP separation problem to

achieve this. See Appendix B.

4.3 McCormick Disjunction

The last method to strengthen the MISOCP relaxation (6) is based on a new cycle-based
OPF formulation we propose in [21]. The key observation is as follows: instead of satisfying
the angle condition (5e) for each (4, j) € L, it is equivalent to guarantee that angle differences

sum up to 0 modulo 27 over every cycle C' in the power network if all the lines of the cycle



C' are switched on, i.e.

Z 0;; — 2mk) H x;; =0, for some k € Z, (14)
(i,5)eC (i,5)eC

where 0;; :=0; — 0;.

Next, we consider

[cos Z 0i;) — 1] H z;; =0 (15a)

(i,5)eC (i,5)€C
Cij = Ciicjj COS Qijxij (2, j) < C (15b)
Sij = Ciicjj sin Hijxij (Z,]) € C, (15C)

(11d) — (11h).

Here, (15a) is equivalent to (14) and (15b)-(15¢) follow from the definition of ¢, s variables.
Let us define M := {(¢,s,z) : 30 : (15),(11d) — (11h)}. Again, observe that any feasible
solution to the OTS formulation (5) must also satisfy (15). Therefore, any valid inequality
for M is also valid for the formulation (5).

We again follow a similar procedure to the previous section and consider two disjunctions
for a cycle C.

Disjunction 1: In the first disjunction, we have z;; = 1 for all (7, j) € C. Note that (15a)

reduces to

Now, we can expand the cosine appropriately and replace cos(6;;)'s and sin(6;;)’s in terms of
¢, s variables following (15b)-(15¢). This transformation yields a homogeneous polynomial,
denoted by p¢, in terms of only ¢, s variables, and an equivalent constraint po = 0. However,
pe can have up to 2/°I=1 +1 monomials and each monomial of degree |C|. In [21], we propose
a method, which is used to “bilinearize” this high degree polynomial by decomposing larger
cycles into smaller ones by the addition of artificial lines and corresponding variables. We
refer the reader to [21] for details.

Using the proposed decomposition scheme, we obtain a set of bilinear polynomials gx(c, s, ¢, §) =

0, k € K¢, for a given cycle C. Here, ¢, § denote the extra variables used in the construction.
Finally, we use McCormick envelopes for each bilinear constraint to linearize the system
of polynomials. For a given cycle C', consider the McCormick relaxation of the bilinear cycle

constraints, which can be written compactly as follows:

Az+ Ai+By<c (16a)

10



Ey = 0. (16b)

Here, 2 is a vector composed of the ¢, s variables, Z is a vector composed of the additional ¢, §
variables introduced in the cycle decomposition, and y is a vector of new variables defined to
linearize the bilinear terms in the cycle constraints. Constraint (16a) contains the McCormick
envelopes of the bilinear terms and bounds on the ¢, s variables, while (16b) includes the
linearized cycle equality constraints. Finally, we define the set M; := {(c,s,z) : 3(¢,3) :
(16), (11d)-(11f), (12¢)-(12d)}.

Disjunction 0: In the second disjunction, z;; = 0 for some (i, j) € C. We take M, := Sp.

We note that both M; and M, are conic representable. In particular, these bounded sets
are respectively polyhedral and second-order cone representable. Therefore, conv(M;UM,)
is also conic representable, and by construction, contains M.

Now, suppose a point (c¢*, s*, z*) is given. We want to decide whether this point belongs to
conv(M;UMy) or otherwise, find a separating hyperplane. Given that we have an extended
second-order cone representation for conv(M; U M), we can solve an SOCP separation
problem.

In our computations, we observed that stronger cuts are obtained by combining SDP and
McCormick Disjunction. In particular, we separate cutting planes from conv((S;NM;)USy)

by solving SDP separation problems.

4.4 Obtaining Variable Bounds

Note that the arctangent envelopes and the McCormick relaxations are more effective when
tight variable upper/lower bounds are available for the ¢ and s variables. Now, we explain
how we obtain good bounds for these variables, which is the key ingredient in the success of
our proposed methods.

Observe that ¢;; and s;; do not have explicit variable bounds except the implied bounds
due to (4f) and (4h) as

_Vivj < Gj, Sij < Vivj (4,7) € L.

However, these bounds may be quite loose, especially when the phase angle differences are
small, implying ¢;; =~ 1 and s;; = 0 when the corresponding line is switched on. Therefore,
one should try to improve these bounds.

We adapt the procedure proposed in [21] (which dealt only with OPF) to the case of OTS
in order to obtain variable bounds, that is, we solve a reduced version of the full MISOCP

relaxation to efficiently compute bounds. In particular, to find variable bounds for ¢;; and

11



sk for some (k,1) € L, consider the buses which can be reached from either %k or [ in at most
7 steps. Denote this set of buses as By, (r). For instance, By, (0) = {k,l}, Bu(1) = d(k)Ud(1),
etc. We also define Gy (r) = By (r) NG and Ly(r) = {(i,j) € L : 1 € B(r) or j € B(r)}.

Then, we consider the following SOCP relaxation:

P == guca + Y pij i € Bul(r) (17a)
JES(3)
@ — g = —buca+ Y a i € Br(r) (17h)
JE8(3)
pij = —Gijcl; + Gijeiy — Bijsy; (4,7) € Li(r) (17¢)
Gij = Bijcl; — Bijeyy — Gigsiy (4,7) € Lua(r) (17d)
Py +a < (S5™)* (4,7) € Lu(r) (17e)
Vi<e, <Vo i€ Byu(r+1) (17f)
pit < pf < pi i € Gulr) (17g)
g < ¢l < g™ i € Gul(r) (17h)
CijTij < Cij < CijTij (1,7) € Lii(r) (171)
8;i%ij < Sij < Sijij (1,7) € Li(1) (17))
Ci%ij < € < Tt (4,7) € Lw(r) (17k)
ci — Ci(1 — i) < ¢ (i,7) € Li(r) (171)
o < cis — (1 — wy)) (4,7) € Li(r) (17m)
Cij = Cji, Sij = —Sji (1,7) € Ly(r) (17n)
C?j + S?j < CZJZC;] (i,7) € Lu(r) (170)
0<uz;,;<1 (1,7) € Ly(r) (17p)
T = 1. (17q)

Essentially, (17) is the continuous relaxation of MISOCP relaxation applied to the part of

the power network within r steps of the buses k and [. ¢,; and s can be minimized and
maximized subject to (17) for each edge (k, ) to obtain lower and upper bounds, respectively.
These SOCPs can be solved in parallel, since they are independent of each other. It is
observed that a good tradeoff between accuracy and speed is to select r = 2[21]. Constraint
(17q) may seem to restrict the feasible region, however, the way we defined ¢y and sy
variables, they are the values for cosine and sine components when zy; = 1 (otherwise, they
are 0). Therefore, it is enough for the bounds to be valid for xy, = 1 only.

Bounds on an artificial edge (7, j) used in the construction of McCormick envelopes are

12



chosen as follows:

Cij = —Cij = Sij = —5;5 = Vzvj- (18)

A similar idea can be used to fix some of the binary variables as well. In particular, we

can minimize xy; over (17) after omitting (17q). If the optimal value turns out to be strictly

positive, then x;; can be fixed to one.

5 Algorithm

In this section, we propose an algorithm to solve OTS. The algorithm has two phases. The
first phase involves solving a sequence of SOCPs obtained by relaxing integrality restriction
of the binary variables in MISOCP (6), and incorporates cycle inequalities generated from
the extended SDP and McCormick relaxations in Section 4.2 and 4.3. In this phase, the
aim is to strengthen the lower bound on the MISOCP relaxation. The second phase in-
volves solving a sequence of MISOCP relaxations strengthened by cycle inequalities. The
aim in this phase is to obtain high quality feasible solutions for OTS. In particular, this is
achieved by solving OPF subproblems with fixed topologies obtained from the integral solu-
tions found during the branch-and-cut process of solving the MISOCP (6). This procedure
is repeated by “forbidding” the topologies already considered in order to obtain different
network configurations in the subsequent iterations.

Now we formally define the ingredients of the algorithm. First, let SOCP(V) be the
continuous relaxation of MISOCP (6) with a set of valid inequalities V obtained from cycle
inequalities using extended SDP and McCormick relaxations. The set V is dynamically
updated T} times. Similarly, we define MISOCP(V, F) as the MISOCP relaxation of OTS
with a set of valid cycle inequalities V and forbidden topologies F. Here, we forbid a topology

x* € F by adding the following “no-good” cut (see [2] for generalizations) to the formulation:

Yo -z + > ay>1 (19)

(i), =1 (irj):3;=0

We denote by LB, as the optimal value of MISOCP(V,F) and P; as the set of all integral
solutions found by the MIP solver at the ¢-th iteration. For instance, CPLEX offers this
option called solution pool. In a practical implementation, this part is repeated 15 times.
Let OPF(z) denote the value of a feasible solution to OPF problem (4) for the fixed
topology induced by the integral vector x. Finally, UB is the best upper bound on OTS.

Now, we present Algorithm 1.
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Algorithm 1 OTS algorithm.
Input: T3, T, €.
Phase I: Set V < 0, F < 0, UB + oc.
for r=1,...,7 do
Solve SOCP(V).
Separate cycle inequalities for each cycle in a cycle basis to obtain a set of valid inequal-
ities V;.
Update V <~V U V,.
end for
Phase II: Set ¢t < 0.
repeat
t+—t+1
Solve MISOCP(V,F) to obtain a pool of integral solutions P, and record the optimal
cost as LB;.
for all x € P, do
if OPF(z) <UB then
UB < OPF(z)
end if
end for
Update F < FUP,.
until LB, > (1 —e)UB or t > T,

Observation 5.1. If OPF(z) returns globally optimal solution for every topology x, € = 0
and Ty = oo, then Algorithm 1 converges to the optimal solution of OTS in finitely many

iterations.

Observation 5.1 follows from the fact that there are finitely many topologies and by
the hypothesis that OPF(x) can be solved globally. Although Observation 5.1 states that
Algorithm 1 can be used to solve OTS to global optimality in finitely many iterations, the
requirement of solving OPF(x) to global optimality may not be satisfied. In practice, we

can only solve OPF subproblems using local solver, in which case we have Observation 5.2.

Observation 5.2. If OPF(x) is solved by a local solution method, then we have LBy <
z* < UB upon termination of Algorithm 1, where z* is the optimal value of OTS.

6 Computational Experiments

In this section, we present the results of our extensive computational experiments on standard
IEEE instances available from MATPOWER [34] and instances from NESTA 0.3.0 archive
with congested operating conditions [7]. The code is written in the C# language with Visual

Studio 2010 as the compiler. For all experiments, we used a 64-bit computer with Intel Core
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i5 CPU 2.50GHz processor and 16 GB RAM. Time is measured in seconds. We use three

different solvers:

e MIP solver CPLEX 12.6 [1] to solve MISOCPs.
e Conic interior point solver MOSEK 7.1 [27] to solve SDP separation problems.

e Nonlinear interior point solver IPOPT [32] to find local optimal solutions to OPF(x).

We use a Gaussian elimination based approach to construct a cycle basis proposed in [22]

and use this set of cycles in the separation phase.

6.1 Methods

We report the results of three algorithmic settings:

e SOCP: MISOCP formulation (6) in Phase II without Phase I (i.e. 77 = 0).
e SOCPA: SOCP strengthened by the arctangent envelopes introduced in Section 4.1.

e SOCPA Disj: SOCPA strengthened further by dynamically generating linear valid in-
equalities obtained from separating an SOCP feasible solution from the SDP and Mec-
Cormick relaxation over cycles using a disjunctive argument 7} times. In particular, a

separation oracle is used to separate a given point from conv((S; N M) U Sp).

The following four performance measures are used to assess the accuracy and the efficiency

of the proposed methods:

e “%OG” is the percentage optimality gap proven by our algorithm calculated as 100 x
(1 — LB,/UB). Here, LB is the lower bound proven, which may be strictly smaller

than LB, due to optimality gap tolerance and time limit.

e “%CB” is the percentage cost benefit obtained by line switching calculated as 100 x
(1-UB/OPF(e)), where e is the vector of ones so that OPF(e) corresponds to the
OPF solution with the initial topology.

o “F#oft” is the number of lines switched off in the topology which gives UB.

e “TT” is the total time in seconds, including preprocessing (bound tightening), solution
of T7 = 5 rounds of SOCPs to improve lower bound and separation problems to generate
cutting planes (in the case of SOCPA Disj), solution of T, rounds of MISOCPs and
several calls to local solver IPOPT with given topologies. MISOCPs are solved under
720 seconds time limit so that 5 iterations take about 1 hour (optimality gap for integer

programs is 0.01%). Preprocessing and separation subproblems are parallelized.
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We choose parameter T = 5 and pre-terminate Algorithm 1 if 0.1% optimality gap is proven.

6.2 Results

The results of our computational experiments are presented in Tables 1 and 2 for standard
IEEE and NESTA instances, respectively. We considered instances up to 300-bus since
Phase II of the Algorithm 1 does not scale up well for larger instances. Let us start with the
former: TEEE instances are a relatively easy set since transmission line limits are generally
not binding. Therefore, cost benefits obtained by switching are also limited. The largest
cost reduction is obtained for case30Q) with 2.24%. Among the three methods, the most
successful one is SOCPA _Disj, on average proving 0.05% optimality gap and providing 0.31%
cost savings. In terms of computational time, SOCP is the fastest, however, its performance
is not as good as the other two. Quite interestingly, SOCPA_Disj is faster than SOCPA, on
average, for this set of instances. In terms of comparison with other methods, unfortunately,
there is limited literature for this purpose. In [15], nine of these instances (except for cases
9Q and 30Q) are considered and a quadratic convex (QC) relaxation based approach is
used. On average, their approach proves 0.14% optimality gap, which is worse than any
of our methods over the same nine instances. The only instance QC approach is better is
118ieee with 0.11% optimality gap, while it is worse than our methods for case300 with a
0.47% optimality gap.

Table 1: Results summary for standard IEEE Instances.

SOCP SOCPA SOCPA Dis;j

case | BOG  %CB #off TT(s) | XOG  %CB #off TT(s) | XOG %CB #off  TT(s)
6ww 0.16 0.48 2 1.29 0.02 0.48 2 0.67 0.01 0.48 2 1.28
9 0.00 0.00 0 0.26 0.00 0.00 0 0.22 0.00 0.00 0 0.55
9Q 0.04 0.00 0 0.42 0.04 0.00 0 0.33 0.04 0.00 0 0.97
14 0.08  0.00 0 0.66 0.09  0.00 0 0.70 0.01 0.00 1 1.81
ieee30 0.05  0.00 1 1.95 0.05  0.00 0 1.67 0.02  0.00 1 3.84
30 0.07  0.52 1 4.60 0.06  0.52 2 5.01 0.03 0.51 2 9.39
30Q 0.44 2.05 2 24.43 0.43 2.03 ) 25.80 0.13 2.24 ) 44.16
39 0.03 0.00 0 2.53 0.01 0.02 1 3.17 0.01 0.02 1 4.48
57 0.07  0.02 4 6.18 0.07  0.02 4 8.72 0.08 0.01 1 13.59
118 0.19  0.08 4 3065.64 0.15 0.12 10 2553.59 0.17  0.08 16 3174.01
300 0.16  0.02 9 2318.89 0.15 0.03 12 3624.12 0.10  0.05 15 2803.31
Avg. 0.12 0.29 2.1 493.35 | 0.10 0.29 3.3 565.82 | 0.05 0.31 4.0 550.67

Now let us consider NESTA instances with congested operating conditions. This set is
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particularly suited for line switching as more stringent transmission line limits are imposed.
In fact, large cost improvements are observed for some test cases. For instance, about
45% and 39% cost reductions are possible for cases 30fsr and 118ieee, respectively. Other
instances with sizable cost reductions include cases 6ww and 30as. SOCPA _Disj is again the
most successful method if we look at averages of optimality gap (1.16%) and cost savings
(6.21%). It certifies that the best topology is within 1.17% of the optimal for all the cases
except for 118ieece and 189edin. In terms of computational time, SOCP is again the fastest,
however, its performance is significantly worse than the other two. We also note that SOCPA
improves quite a bit over SOCP in terms of optimality and cost benefits with 70% increase
in computational time. SOCPA_Disj takes about only 10% more time than SOCPA. As we go
from SOCP to SOCPA _Disj, problems get more complicated and sometimes, MISOCPs are
not solved to optimality within time limit. Consequently, for cases 189edin and 300ieee, the

optimality gaps proven and cost benefits obtained by SOCPA_Disj can be slightly worse.

Table 2: Results summary for NESTA Instances from Congested Operating Conditions.

SOCP SOCPA SOCPA Dis;j

case %0G  %CB  #off TT(s) | %OG %CB #off TT(s) | XOG %CB #off  TT(s)
3lmbd 3.30  0.00 0 0.14 2.00 0.00 0 0.14 1.17  0.00 0 0.30
4gs 0.65 0.00 0 0.11 0.16  0.00 0 0.13 0.00  0.00 0 0.27
S5pjm 0.18 0.27 1 0.61 0.01 0.27 1 0.41 0.02 0.27 1 0.89
6ww 6.06 7.74 1 1.23 1.34 7.74 1 1.64 1.05 7.74 1 1.97
9wsce 0.00  0.00 0 0.19 0.00 0.00 0 0.20 0.00  0.00 0 0.30
14ieee 1.02 0.33 1 2.86 0.89 0.45 2 3.48 0.41 0.45 2 4.49
29edin 0.43 0.00 2 12.79 024 0.18 13 299.82 0.33  0.08 21 181.74
30as 1.81 3.13 2 14.82 0.35 3.30 ) 19.52 0.34 3.30 5 24.93
30fsr 3.24  44.20 2 9.72 0.05 44.98 2 4.76 0.03 44.98 3 6.97
30ieee 0.54 0.46 1 12.28 0.40 0.48 2 10.61 0.15 0.48 2 13.37
39epri 1.92 1.10 1 11.56 0.80 1.41 2 13.20 0.70 1.52 2 12.65
STieee 0.12  0.10 3 41.48 0.12  0.10 2 58.97 0.09 0.10 3 29.86
118iecee | 41.67  4.33 3 225,57 | 21.51 27.98 30 3838.62 7.50 39.09 21  3856.76
162ieee 0.57  1.05 9 3675.75 0.63 1.00 15 3861.29 0.60 1.00 15 3855.50
189edin 5.31 1.10 3 540.02 4.81 0.13 2 2194.80 5.58  0.00 0 3634.02
300ieee 1.00 0.10 12 3655.10 0.65 0.37 21 3640.14 0.61 0.35 21 3651.95
Avg. 4.24 3.99 2.6 512.76 | 2.12 5.52 6.1 871.73 1.16 6.21 6.1 954.75

Finally, we note that that optimality gaps can be explained by two non-convexities: 1)

integrality, 2) power flow equations. For instance, in case 3lmbd, the optimality gap can only
be explained by the non-convexity of power flow equation since all the relevant topologies

are considered. Similarly, at least some portion of the relatively large optimality gaps for
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cases 118ieece and 189edin may be attributed to non-convexity of power flow equations.
Consequently, any future improvements on strengthening the convex relaxations of OPF

problem can be useful in closing more gaps in OTS as well.

7 Conclusions

In this paper, we proposed a systematic approach to solve the AC OTS problem. In particu-
lar, we presented an alternative formulation for OTS and constructed a MISOCP relaxation.
We improved the strength of this relaxation by the addition of arctangent envelopes and
cutting planes obtained using disjunctive techniques. The use of these disjunctive cuts help
in closing gap significantly. Our experiments on standard and congested instances suggest
that the proposed methods are effective in obtaining strong lower bounds and producing
provably good feasible solutions.

We remind the reader that AC OTS is a challenging problem since it embodies two types
of non-convexities due to AC power flow constraints and integrality of variables. We hope
that the methodology developed in this paper can eventually be further improved to solve
AC OTS problem in real life operations.

A Convex Hull of Union of Two Conic Representable Sets
Let S; and S5 be two bounded, conic representable sets
S;={x:3': Aix+ Bu' =k, b} i=1,2.

Here, K;’s are regular (closed, convex, pointed with non-empty interior) cones. Then, a conic

representation for conv(S; U Ss) is given as follows:
:c:x1+a:2, )\1+)\2: 1, )\1,)\2 > 0

B Separation from an Extended Conic Representable Set

Let S be a conic representable set S = {x : Ju : Ax + Bu = b}. Here, K is a regular cone.
Suppose we want to decide if a given point x* belongs to S and find a separating hyperplane
a'xz > Bifz* ¢ S. This problem can be formulated as max, g {5 —a'z*:alx>pBVr e S},
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where the constraint can be further dualized as

Z* = maX{ﬁ_@Tx* :bTIU/ Z 57AT:U/:&7BT/II’:0’
7#

a75

pe K —e<a<e —-1<p<1},

where K* is the dual cone of K. If Z* < 0, then z* € S, otherwise, the optimal «, 8 from

the above program gives the desired separating hyperplane. For details, please see [21].
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