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Abstract

The stability region of a solution is the polyhedral set of objective coefficients for which the solution
is optimal. It provides valuable information for sensitivity analysis and re-optimization. An exact
description of it may require an exponential number of inequalities. We develop polyhedral inner
and outer approximations of linear size.
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1. Introduction

Suppose we have an NP-hard optimization problem with some binary variables and a linear
objective function for these variables. In addition to finding an optimal solution, we would like to
know how much the objective vector can change while maintaining the optimality of the solution.
This stability information is useful, for example, when solving problems with perturbed objective
functions rapidly.

We consider the optimization problem

z∗ = max c∗x+ h(y)
s.t. (x, y) ∈ X (P (c∗))

x ∈ {0, 1}n,

where c∗x =
∑

i∈N c
∗
ixi, N = {1, . . . , n} and h : projy(X) → R. We do not give specific require-

ments on h and X, but we assume that an optimal solution (x∗, y∗) exists and can be computed.
We are interested in the stability of (x∗, y∗) with respect to variations of the cost vector c∗. By
possibly complementing variables, we assume without loss of generality that x∗ = 0, so the optimal
value of P (c∗) is z∗ = h(y∗).

Definition 1.1. The stability region [10] of (x∗, y∗) is the region C ⊆ Rn s.t. c ∈ C if and only if
(x∗, y∗) is optimal for P (c). That is, C = {c ∈ Rn : c(x− x∗) ≤ h(y∗)− h(y),∀ (x, y) ∈ X}.

A familiar example of a stability region comes from linear optimization. In a linear program,
the stability region of a solution is the cone generated by the set of constraints that are binding at
the solution.
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Stability analysis is related to sensitivity analysis, and some previous related work exists in
this field. Whereas our approach studies a general optimization model with binary variables, other
authors have focused on specific problems, such as shortest paths and maximum capacity paths
[8], assignment problems [6], minimum spanning trees and shortest path trees [11], and knapsacks
[4]. In addition, right-hand side vector sensitivity in integer and mixed-integer linear programs is
studied in [2, 5, 9].

Remark 1.1. Let (x̂, ŷ) be feasible for P (c∗), with objective value ẑ = c∗x̂ + h(ŷ) ≤ z∗. Suppose
ĉ ∈ Rn satisfies ĉx̂ > z∗ − ẑ + c∗x̂. Then ĉ 6∈ C.

Remark 1.2. Let x̂ ∈ {0, 1}n, and define υ(x̂) = max(x̂,y)∈X h(y), with υ(x̂) = −∞ if no y satisfies
(x̂, y) ∈ X. Then C = {c ∈ Rn : cx ≤ h(y∗)− υ(x), ∀ x ∈ {0, 1}n}.

Remark 1.2 implies that C is a polyhedron possibly defined by an exponential number of in-
equalities. Perhaps because of the relative difficulty involved in working with exponentially many
inequalities, stability regions do not appear in the literature (to our knowledge) as often as an
associated concept, the stability radius. The stability radius of (x∗, y∗) with respect to P (c∗) is
defined as

ρ∗ = sup{ρ : (x∗, y∗) is optimal for P (c),∀ c : ‖c− c∗‖∞ ≤ ρ},

where ‖d‖∞ = maxi∈N{|di|}. Within stability analysis, much attention has been devoted to com-
puting or approximating ρ∗, and to the complexity of such a task [3, 10]. However, the ‖·‖∞-ball
associated with ρ∗ may drastically underapproximate C. (Consider, for example, the case when
P (c∗) has an alternative optimal solution that differs from (x∗, y∗) in one binary variable.) We
choose instead to approximate C using polyhedra defined by polynomially many inequalities. The
next two definitions further explain this approximation.

Definition 1.2. Let C be the stability region of (x∗, y∗). An outer approximation of C is a region
C+ ⊆ Rn satisfying C+ ⊇ C. An inner approximation of C is a region C− ⊆ Rn satisfying C− ⊆ C.

Let (x̂, ŷ) be feasible for P (c∗). By Remark 1.1, the set {c ∈ Rn : cx̂ ≤ z∗ − h(ŷ)} is an
outer approximation of C. The set {c ∈ Rn : c ≤ c∗} is a trivial inner approximation of C. The
following are two simple but important consequences of Definition 1.2 that help us obtain small
outer approximations and large inner approximations.

Proposition 1.3.

i) If C+
1 , C

+
2 are outer approximations, C+

1 ∩ C
+
2 is an outer approximation.

ii) If C−1 , C
−
2 are inner approximations, conv(C−1 ∪ C

−
2 ) is an inner approximation.

The rest of the paper proceeds as follows. Section 2 explains how to approximate the stability
region by solving problems related to P (c∗). Section 3 expresses the results of the previous section
as an algorithm. Section 4 evaluates the quality of the approximations via some computational
experiments.
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2. Approximating the Stability Region

In this section, we show how to obtain inner and outer approximations of C by solving n
problems {Pj : j ∈ N}, where each Pj is given by

zj = max c∗x+ h(y)
s.t. (x, y) ∈ X (Pj)

x ∈ {0, 1}n

xj = 1.

Throughout this section, we assume without loss of generality that all problems Pj are feasible. If
Pj is infeasible for some j ∈ N , then every feasible solution to P (c∗) has xj = 0. Thus, cj cannot
in any way affect optimality, and we can ignore it. Accordingly, we assume that we have solved
the problems Pj for every j ∈ N , and determined optimal solutions (xj , yj) with corresponding
objective values zj . An important question is whether solving the problems Pj is necessary to
obtain the zj values, or if a more efficient method exists. This is especially pertinent if P (c∗) is
NP-hard, because each Pj is then NP-hard as well. However, Van Hoesel and Wagelmans [12] have
shown that if P (c∗) is NP-hard, then finding zj is also NP-hard.

The following observation follows directly from Remark 1.1 and Proposition 1.3.

Proposition 2.1. The set C+ =
{
c ∈ Rn : cxj ≤ z∗ − zj + c∗xj , ∀ j ∈ N

}
is an outer approxima-

tion of C.

Let γj = z∗ − zj + c∗j . Observe that the outer approximation C+ of Proposition 2.1 satisfies

{c ∈ C+ : c ≥ c∗} ⊆ {c ∈ Rn : c∗j ≤ cj ≤ γj , ∀ j ∈ N}.

In other words, in the direction c ≥ c∗, the stability region C of (x∗, y∗) is contained in a box
defined by the values γj .

To determine an inner approximation, we make use of the next result.

Proposition 2.2. Let c̃j = (c∗1, . . . , c
∗
j−1, γj , c

∗
j+1, . . . , c

∗
n). Then c̃j ∈ C, ∀ j ∈ N .

Proof. Observe that the objective value of (x∗, y∗) in P (c̃j) is c̃jx∗ + h(y∗) = z∗. Let (x̂, ŷ) be
feasible for P (c̃j). If x̂j = 0, then c̃j x̂+ h(ŷ) = c∗x̂+ h(ŷ) = ẑ ≤ z∗ by assumption. If x̂j = 1, then
c̃j x̂+h(ŷ) = c∗x̂+h(ŷ)− zj + z∗ = ẑ− zj + z∗ ≤ z∗, where the last inequality follows because (x̂, ŷ)
is feasible for Pj . �

Theorem 2.3. Suppose we order the x variables so that z∗ ≥ z1 ≥ z2 ≥ · · · ≥ zn holds. Then

C− =

{
c ≥ c∗ :

j∑
i=1

ci ≤ γj +
j−1∑
i=1

c∗i , ∀ j ∈ N

}

is an inner approximation of C.

Proof. For any x ∈ {0, 1}n, we do not know the exact value of the right-hand side in the inequality
cx ≤ h(y∗)−υ(x). However, Proposition 2.2 states that the points {c̃j}j∈N lie in the stability region
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of (x∗, y∗). Therefore, the halfspace defined by each inequality should contain these n points. Thus,
the set

C̃− =

{
c ∈ Rn :

∑
i∈I

ci ≤ max

{∑
i∈I

c̃ji : j ∈ N

}
,∀ ∅ 6= I ⊆ N

}
is an inner approximation of C. Now let ∅ 6= I ⊆ N . We must prove that the inequality corre-
sponding to I in C̃− is dominated by the inequalities defining C−, ∀ c ≥ c∗.
Claim. Let t ∈ N be the smallest index satisfying I ⊆ {1, . . . , t}. Then t satisfies

max

{∑
i∈I

c̃ji : j ∈ N

}
=
∑
i∈I

c̃ti.

Proof of claim. Let s ∈ N . If s > t, we have∑
i∈I

c̃si =
∑
i∈I

c∗i ≤ z∗ − zt︸ ︷︷ ︸
≥0

+
∑
i∈I

c∗i =
∑
i∈I

c̃ti.

Similarly, if s ≤ t, we get∑
i∈I

c̃si ≤ z∗ − zs︸︷︷︸
≥zt

+
∑
i∈I

c∗i ≤ z∗ − zt +
∑
i∈I

c∗i =
∑
i∈I

c̃ti. �

We now apply the claim to the following inequality, which is included in the definition of C−:

t∑
i=1

ci ≤ γt +
t−1∑
i=1

c∗i = z∗ − zt +
t∑
i=1

c∗i .

Rearranging terms yields∑
i∈I

ci ≤ z∗ − zt +
∑
i∈I

c∗i +
∑

i∈{1,...,t}\I

(c∗i − ci)︸ ︷︷ ︸
≤0

≤ z∗ − zt +
∑
i∈I

c∗i = max

{∑
i∈I

c̃ji : j ∈ N

}
. �

Corollary 2.4. The set {c+ d : c ∈ C−, d ≤ 0} is an inner approximation of C.

Proof. Note that if (x∗, y∗) (with x∗ = 0) is optimal for P (c∗), then the set {c ∈ Rn : c ≤ c∗} is a
trivial inner approximation of C. Using Proposition 1.3, we apply this observation to C−. �

These last two results motivate a natural algorithm for determining an inner approximation.
Solve each of the problems Pj in turn, sort them by objective value, and compute the inner ap-
proximation as indicated in Theorem 2.3. As we shall see in the next section, this procedure can
be modified slightly to potentially reduce the number of solves.
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Algorithm 1 Binary Solution Cover

Require: An optimization problem P (c∗) with optimal solution (x∗, y∗) satisfying x∗ = 0.

Set (x0, y0)← (x∗, y∗), z0 ← z∗, I ← N , I∞ ← ∅.
Add cut D ≡ (

∑
i∈I xi ≥ 1) to P (c∗).

for k = 1, . . . , n do
Resolve the modified P (c∗); get new optimal solution (xk, yk) and objective value c∗xk+h(yk) =
zk.
if P (c∗) is infeasible then

Set I∞ ← I.
Return k and exit.

end if
Set I+

k ← {i ∈ N : xki = 1}, I−k ← I ∩ I+
k .

Set I ← I \ I−k ; modify cut D accordingly.
end for

3. The Algorithm

Algorithm 1 begins with a problem of the form P (c∗) and an optimal solution (x∗, y∗) with
x∗ = 0. It then adds a cut

∑
i∈N xi ≥ 1, forcing at least one of the x variables to one. After

resolving, it determines which of the x variables switched, removes their coefficients from the cut,
and repeats. The end result is a list of solutions, ordered by objective value, which covers all
possible x variables. (Variables not covered by any solution on the list are those fixed to zero in
any feasible solution.) For future reference, we formally define the relevant information gathered
during the execution of Algorithm 1 as follows. The solution in the k-th iteration is denoted by
(xk, yk) and has objective function value zk. The set I+

k ⊆ N indicates which x-variables have value
one in (xk, yk). The set I−k ⊆ I

+
k indicates which of these variables have value one for the first time.

An outer approximation is easily obtained applying Remark 1.1 to each solution (xk, yk). To
determine an inner approximation, we must first establish a preliminary fact.

Proposition 3.1. Let i ∈ I−k , for some k. Then (xk, yk) is optimal for Pi.

Proof. Suppose not, and let (x̂, ŷ) be optimal for Pi with ẑ > zk. At the beginning of iteration k,
we have i ∈ I, implying that no solution so far has covered i. But then, since (x̂, ŷ) is feasible for Pi,
we have x̂i = 1. Furthermore, since i ∈ I, we also have

∑
i∈I x̂i ≥ 1. This means (x̂, ŷ) is feasible

for the modified P (c∗) in the current iteration, contradicting the optimality of (xk, yk). �

Note that (xk, yk) is not necessarily optimal for Pj , for j ∈ I+
k \I

−
k . We now combine Proposition

3.1 with Theorem 2.3 to construct our inner approximation.

Theorem 3.2. Suppose Algorithm 1 is run on problem P (c∗), terminating after ` ≤ n steps. Let
(xk, yk), zk, I+

k , I
−
k , ∀k = 1, . . . , ` and I∞ be obtained from the algorithm. Then

C− =

c ≥ c∗ :
∑

i∈I−1 ∪···∪I
−
k

ci ≤ z∗ − zk +
∑

i∈I−1 ∪···∪I
−
k

c∗i , ∀ k = 1, . . . , `


is an inner approximation of C.
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We can also apply Corollary 2.4 to get an inner approximation that is not restricted to values
greater than or equal to c∗.

It is important to note that the stability region C depends only on (x∗, y∗) and h(y), and not on
c∗. However, the inner approximation we calculate using Algorithm 1 does depend on c∗, because
c∗ appears in the right-hand side of each inequality and also because different starting costs may
determine different solutions in the algorithm when we add the inequality

∑
i∈I xi ≥ 1. So any

c∗ ∈ C can be used in Algorithm 1 to obtain a possibly different inner approximation.
An interesting question is whether we can obtain additional information by running the algo-

rithm on a bigger variable set. Specifically, let M ⊆ N and suppose we are interested in the stability
region with respect to the binary variables only in the index set M . Proposition 3.3 essentially
states that applying the algorithm to the larger set N does not yield better results.

Proposition 3.3. Suppose a run of Algorithm 1 on N produces the solution list {(xk, yk)}k=1,...,`

and the inner approximation C−N . Let J−k = I−k ∩M,∀ k = 1, . . . , `. Then the list {xk, yk}k:J−k 6=∅
is a list of solutions satisfying the conditions of Algorithm 1 for M , and the corresponding inner
approximation C−M satisfies

C−M × {ci = c∗i , ∀ i ∈ N \M} = C−N ∩ {c ∈ Rn : ci = c∗i , ∀ i ∈ N \M}.

Proof. For the first part, note that the list {xk, yk}k:J−k 6=∅ is simply a restriction of the original
list to the variables indexed by M . Since it was generated by Algorithm 1, the list is ordered by
objective function value, and each solution (xk, yk) is optimal for Pj , ∀ j ∈ J−k .

For the second part, we have

C−N ∩ {c : ci = c∗i , ∀ i ∈ N \M}

=

c ≥ c∗ :
∑

i∈J−1 ∪···∪J
−
k

ci ≤ z∗ − zk +
∑

i∈J−1 ∪···∪J
−
k

c∗i , ∀ k = 1, . . . , `; ci = c∗i , ∀ i ∈ N \M


=

c ≥ c∗ :
∑

i∈J−1 ∪···∪J
−
k

ci ≤ z∗ − zk +
∑

i∈J−1 ∪···∪J
−
k

c∗i , ∀ k with J−k 6= ∅; ci = c∗i , ∀ i ∈ N \M

 ,

where the last set equality follows because the inequalities defined for k with J−k = ∅ are dominated
by previous inequalities, since the zi values are non-decreasing. Restricting this last set to the cost
coefficients indexed by M yields C−M . �

Proposition 3.3 does not guarantee that running Algorithm 1 on N and then restricting C−N
to obtain an inner approximation for M would yield the same approximation as running the al-
gorithm directly on M . The result assumes a particular list of solutions is used to construct both
approximations, but it is possible to obtain a different list for each approximation.

4. Computational Results

We next address the quality of approximation of the inner and outer regions C−, C+ generated
by Algorithm 1. For any c ∈ C+ \ C−, we are unable to determine the optimality of (x∗, y∗) for
P (c) without re-optimizing. Ideally, we would like to estimate the volume of this uncertainty region
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C+ \ C−, and perhaps compare it to the volume of C− and C+. However, even for problems with
modest dimension we cannot efficiently estimate this volume. And although volume computation
and general integration by sophisticated random walk techniques is an active area of research [7, 13],
no practical volume computation algorithm has yet been developed.

In light of these computational difficulties, we have developed a “shooting” experiment to give
some idea of the relative sizes of C−, C+ and C+ \C−. Starting from the original objective vector
c∗, we generate a random direction d by uniformly sampling each component from [0, 1]. We then
compute the quantities

λ− = max
λ

{
c∗ + λ

d

‖d‖
∈ C−

}
λ+ = max

λ

{
c∗ + λ

d

‖d‖
∈ C+

}
,

and use the values to compare the relative sizes of C− and C+ in the direction d.
We performed the shooting experiment on the problem instances contained in MIPLIB 3.0 [1].

For a given instance, we considered as x variables all binary variables that satisfied the following
conditions:

• The variable is not fixed to its optimal value in all feasible solutions. In terms of Algorithm
1, this means the variable does not belong to the set I∞.

• There is no alternate optimal solution with the variable set to its complement. That is, we
have z∗ > zj .

We refer to such binary variables as “active.” If a particular MIPLIB instance did not have any
active binary variables, we discarded it. We also skipped problems with more than 5,000 binary
variables and problems which did not solve to optimality within one hour of CPU time. All
computational experiments were carried out on a system with two 2.4 GHz Xeon processors and
2 GB RAM, and using CPLEX 11.1 (with default settings) as the optimization engine. For each
instance, we generated 100,000 direction vectors d.

Table 1 contains average results for our experiments. For each instance, we report the total
number of decision variables (# vars), the total number of binary variables (# bin), the number
of active binary variables (# active), the Euclidean norm of the cost vector corresponding to the
active variables (‖c∗‖), the average λ− and λ+ values, and their ratio. For example, for problem
lseu, 85 of 89 decision variables are active. In the directions tested, C− occupies 87% of the volume
of C+, but both regions allow only for a relatively small change in c∗, since ‖c∗‖ is significantly
larger than λ− and λ+.

As Table 1 indicates, the estimated volume ratio of C− and C+ varies significantly from one
instance to the next. On one end, Algorithm 1 delivers a fairly tight approximation for problems
dcmulti (92%), enigma (95%), and lseu (87%), to name a few. In fact, Algorithm 1 even delivers
the exact stability region for p0033. On the other, the volume ratio is very small on instances such
as p2756 (7%), vpm1 (3%) and vpm2 (14%). This discrepancy is certainly in part due to differences
in the number of active binary variables (14 in enigma and 2,391 in p2756,) since volume differences
tend to grow as dimension grows. However, part of this discrepancy is also instance dependent, as
some problems with similar numbers of active variables have very different ratios.

Overall, the experimental results indicate that the volume of C+ \ C− is significant for some
instances. Therefore, we next address the cause of this discrepancy: Are we under-approximating
C− or over-approximating C+? To answer this question, we performed the following additional
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experiment. For each of the first 1000 random directions d that yield λ− < λ+, we construct a new
cost vector

c± = c∗ +
λ− + λ+

2
d

‖d‖
∈ C+ \ C−,

and re-optimize the problem with this new objective. We then count the number of times the
original optimal solution (x∗, y∗) remains optimal for the new cost vector c±. The next column in
Table 1 (OIO, for “original is optimal”) reports these counts for all instances except p0033, which
did not have any directions along which λ− < λ+. With the exception of dsbmip, rentacar and
rgn, the original solution is optimal most of the time, with most instances recording counts above
800 and many getting 1000. These results indicate that the uncertainty region C+ \ C− is caused
primarily by an excessive under-approximation of C−. They also suggest that (x∗, y∗) is likely to
remain optimal inside C+, even when this fact cannot be guaranteed.

The last experiment also suggests an additional option to explore when (x∗, y∗) is not optimal
for the new objective. Algorithm 1 generates a list of solutions that in some sense “surrounds” the
original. Therefore, if (x∗, y∗) is not optimal for an objective, one of the solutions from the list may
in fact be optimal instead. To test this hypothesis, we designed a final set of experiments. For the
first 1000 random directions d with λ− < λ+, define c± as before and also define

c+ = c∗ +
λ− + 3λ+

2
d

‖d‖
∈ Rn \ C+.

Note that just as c± is guaranteed to be in C+ \ C−, c+ is guaranteed to be in Rn \ C+, and the
distance along d from c+ to C+ equals the distance from c± to C−. We re-optimize the problem
with both of these new objectives, and count the number of times the best solution from the list
is optimal for each objective. In addition, when none of the solutions is optimal, we calculate the
relative gap between the best solution in the list and the new optimal value. The final four columns
of Table 1 summarize the results, reporting both the number of times the best solution is optimal
(BIO) and the average relative difference in objective values (ROD) for non-optimal cases, defined
as |optimal−best|

|optimal| .
With the exception of bell3a and vpm1, the solution list yields good solutions for the new

objective vectors c± and c+. For c+, even when none of the solutions is optimal, on average the
relative gap is below 2% and significantly below for many instances. Thus, the solutions generated
by Algorithm 1 provide an excellent warm start for re-solves, and they can also be used as high-
quality heuristic solutions when re-optimization is not possible.
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