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Abstract

The majority of First Order methods for large-scale convex-concave saddle point problems and
variational inequalities with monotone operators are proximal algorithms which at every iteration
need to minimize over problem’s domain X the sum of a linear form and a strongly convex func-
tion. To make such an algorithm practical, X should be proximal-friendly – admit a strongly convex
function with easy to minimize linear perturbations. As a byproduct, X admits a computationally
cheap Linear Minimization Oracle (LMO) capable to minimize overX linear forms. There are, how-
ever, important situations where a cheap LMO indeed is available, but X is not proximal-friendly,
which motivates search for algorithms based solely on LMO’s. For smooth convex minimization,
there exists a classical LMO-based algorithm – Conditional Gradient. In contrast, known to us
LMO-based techniques [2, 14] for other problems with convex structure (nonsmooth convex min-
imization, convex-concave saddle point problems, even as simple as bilinear ones, and variational
inequalities with monotone operators, even as simple as affine) are quite recent and utilize common
approach based on Fenchel-type representations of the associated objectives/vector fields. The goal
of this paper is to develop an alternative (and seemingly much simpler) LMO-based decomposition

techniques for bilinear saddle point problems and for variational inequalities with affine monotone
operators.

1 Introduction

This paper is a follow-up to our paper [14] and, same as its predecessor, is motivated by the desire to
develop first order algorithms for solving convex-concave saddle point problem (or variational inequal-
ity with monotone operator) on a convex domain X represented by Linear Minimization Oracle (LMO)
capable to minimize over X, at a reasonably low cost, any linear function. “LMO-representability” of
a convex domain X is an essentially weaker assumption than “proximal friendliness” of X (possibility
to minimize over X, at a reasonably low cost, any linear perturbation of a properly selected strongly
convex function) underlying the vast majority of known first order algorithms. There are important
applications giving rise to LMO-represented domains which are not proximal friendly, most notably
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• nuclear norm balls arising in low rank matrix recovery and in Semidefinite optimization; here
LMO reduces to approximating the leading pair of singular vectors of a matrix, while all known
proximal algorithms require much costly computationally full singular value decomposition,

• total variation balls arising in image reconstruction; here LMO reduces to solving a specific flow
problem [11], while a proximal algorithm needs to solve a much more computationally demanding
linearly constrained convex quadratic program,

• some combinatorial polytopes

The needs of there applications inspire the current burst of activity in developing LMO-based opti-
mization techniques. In its major part, this activity was focused on Smooth (or Lasso-type smooth
regularized) Convex Minimization over LMO-represented domains, where the classical Conditional
Gradient algorithm of Frank & Wolfe [5] and its modifications are applicable (see, e.g., [3, 4, 6, 7,
10, 11, 12, 13, 16] and references therein). LMO-based techniques for large-scale Nonsmooth Convex
Minimization (NCM), convex-concave Saddle Point problems (SP), even bilinear ones, and Variational
Inequalities (VI) with monotone operators, even affine ones, where no classical optimization methods
work, have been developed only recently; to the best of our knowledge, related literature reduces to [2]
(NCM) and [14] (SP, VI), where a specific approach, based on Fenchel-type representations of convex
functions and monotone operators, was developed. The goal of this paper is to develop an alternative
to [14] decomposition-based approach to solving convex-concave SP’s and monotone VI’s on LMO-
represented domains. In the sequel, we focus on bilinear SP’s and on VI’s with affine operators – the
cases which, on one hand, are of primary importance in numerous applications, and, on the other hand,
are the cases where our decomposition approach is easy to implement and where this approach seems
to be more flexible and much simpler than the machinery of Fenchel-type representations developed
in [14].

The rest of this paper is organized as follows. In section 2 we present our decomposition-based
approach for bilinear SP problems, while section 3 deals with decomposition of VI’s with affine mono-
tone operators; in both cases, our emphasis is on utilizing the approach to handle problems on LMO-
represented domains. We demonstrate also (section 3.6) that in the context of VI’s with monotone
operators on LMO-represented domains, our current approach covers the one developed in [14].
Proofs missing in the main body of the paper are relegated to Appendix.

2 Decomposition of Convex-Concave Saddle Point Problems

2.1 Situation

Let Xi ⊂ Ei, Yi ⊂ Fi, i = 1, 2, be convex compact sets in Euclidean spaces, let

X ⊂ X1 ×X2, Y ⊂ Y1 × Y2, E = E1 × E2, F = F1 × F2, Z = X × Y,G = E × F,

with convex compact X and Y such that the projections of X onto Ei are the sets Xi, and projections
of Y onto Fi are the sets Yi, i = 1, 2. For x1 ∈ X1, we set X2[x1] = {x2 : [x1;x2] ∈ X} ⊂ X2, and for
y1 ∈ Y1 we set Y2[y1] = {y2 : [y1; y2] ∈ Y } ⊂ Y2. Similarly,

X1[x2] = {x1 : [x1;x2] ∈ X}, x2 ∈ X2, and Y1[y2] = {y2 : [y1; y2] ∈ Y }, y2 ∈ Y2.

Let also
Φ(x = [x1;x2]; y = [y1; y2]) : X × Y → R (1)

be Lipschitz continuous convex in x ∈ X and concave in y ∈ Y functions.
We call the outlined situation a direct product one, when X = X1 ×X2 and Y = Y1 × Y2.
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2.2 Induced convex-concave function

We associate with Φ primal and dual induced functions:

φ(x1, y1) := min
x2∈X2[x1]

max
y2∈Y2[y1]

Φ(x1, x2; y1, y2) = max
y2∈Y2[y1]

min
x2∈X2[x1]

Φ(x1, x2; y1, y2) : X1 × Y1 → R,

ψ(x2, y2) := min
x1∈X1[x2]

max
y1∈Y1[y2]

Φ(x1, x2; y1, y2) = max
y1∈Y1[y2]

min
x1∈X1[x2]

Φ(x1, x2; y1, y2) : X2 × Y2 → R.

(the equalities are due to the convexity-concavity and continuity of Φ and convexity and compactness
of Xi[·] and Yi[·]).

Recall that a Lipschitz continuous convex-concave function θ(u, v) : U × V → R with convex
compact U, V gives rise to the primal and dual problems

Opt(P [θ, U, V ]) = min
u∈U

[
θ(u) := max

v∈V
θ(u, v)

]

Opt(D[θ, U, V ]) = max
v∈V

[
θ(v) := min

u∈U
θ(u, v)

]

with equal optimal values:

SadVal(θ, U, V ) := Opt(P [θ, U, V )] = Opt(D[θ, U, V ]),

same as gives rise to saddle point residual

ǫsad([u, v]|θ, U, V ) = θ(u)− θ(v) =
[
θ(u)−Opt(P [θ, U, V ])

]
+ [Opt(D[θ, U, V ])− θ(v)] .

Lemma 1. φ and ψ are convex-concave on their domains, are lower (upper) semicontinuous in their
“convex” (“concave”) arguments, and are Lipschitz continuous in the direct product case. Besides
this, it holds

SadVal(φ,X1, Y1) = SadVal(Φ,X, Y ) = SadVal(ψ,X2, Y2), (2)

and whenever x̄ = [x̄1; x̄2] ∈ X and ȳ = [ȳ1; ȳ2] ∈ Y , one has

ǫsad([x̄1; ȳ1]|φ,X1, Y1) ≤ ǫsad([x̄; ȳ]|Φ,X, Y ), ǫsad([x̄2; ȳ2]|ψ,X2, Y2) ≤ ǫsad([x̄; ȳ]|Φ,X, Y ). (3)

The strategy for solving SP problems we intend to develop is as follows:

1. We represent the SP problem of interest as the dual SP problem

min
x2∈X2

max
y2∈Y2

ψ(x2, y2) (D)

induced by master SP problem

min
[x1;x2]∈X

max
[y1;y2]∈Y

Φ(x1, x2; y1, y2) (M)

The master SP problem is built in such a way that the associated primal SP problem

min
x1∈X1

max
y1∈Y1

φ(x1, y1) (P )

admits First Order oracle and can be solved by a traditional First Order method (e.g., a proximal
one).
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2. We solve (P ) to a desired accuracy by First Order algorithm producing accuracy certificates [15]
and use these certificates to recover approximate solution of required accuracy to the problem
of interest.

We shall see that the outlined strategy (originating from [1]1) can be easily implemented when the
problem of interest is a bilinear SP on the direct product of two LMO-represented domains.

2.3 Regular sub- and supergradients

Implementing the outlined strategy requires some “agreement” between the first order information of
the master and the induced SP’s, and this is the issue we address now.

Given x̄1 ∈ X1, ȳ1 ∈ Y1, let x̄2 ∈ X2[x̄1], ȳ2 ∈ Y2[ȳ1] form a saddle point of the function
Φ(x̄1, x2; ȳ1, y2) (min in x2 ∈ X2[x̄1], max in y2 ∈ Y2[ȳ1]); in this situation, we say that (x̄ =
[x̄1; x̄2], ȳ = [ȳ1; ȳ2]) belongs to the saddle point frontier of Φ, let this frontier be denoted by S.
Let now z̄ = (x̄ = [x̄1; x̄2], ȳ = [ȳ1; ȳ2]) ∈ S, so that the function Φ(x̄1, x2; ȳ1, ȳ2) attains its minimum
over x2 ∈ X2[x̄1] at x̄2, and the function Φ(x̄1, x̄2; ȳ1, y2) attains its maximum over y2 ∈ Y2[ȳ1] at ȳ2.
Consider a subgradient G of Φ(·; ȳ1, ȳ2) taken at x̄ along X: G ∈ ∂xΦ(x̄; ȳ). We say that G is a regular

subgradient of Φ at z̄, if for some g ∈ E1 it holds

∀x = [x1;x2] ∈ X : 〈G,x − x̄〉 ≥ 〈g, x1 − x̄1〉;

every g satisfying this relation is called compatible with G. Similarly, we say that a supergradient H
of Φ(x̄; ·), taken at ȳ along Y , is a regular supergradient of Φ at z̄, if for some h ∈ F1 it holds

∀y = [y1; y2] ∈ Y : 〈H, y − ȳ〉 ≤ 〈h, y1 − ȳ1〉,

and every h satisfying this relation will be called compatible with H.

Remark 1. Let the direct product case X = X1×X2, Y = Y1×Y2 take place. If Φ(x; ȳ) is differentiable
in x at x = x̄, the partial gradient ∇xΦ(x̄; ȳ) is a regular subgradient of Φ at (x̄, ȳ), and ∂x1Φ(x̄; ȳ) is
compatible with this subgradient:

∀x = [x1;x2] ∈ X1 ×X2 :
〈∇xΦ(x̄; ȳ), x− x̄〉 = 〈∇x1Φ(x̄; ȳ), x1 − x̄1〉+ 〈∇x2Φ(x̄; ȳ), x2 − x̄2〉︸ ︷︷ ︸

≥0

≥ 〈∇x1Φ(x̄; ȳ), x1 − x̄1〉.

Similarly, if Φ(x̄; y) is differentiable in y at y = ȳ, then the partial gradient ∇yΦ(x̄; ȳ) is a regular
supergradient of Φ at (x̄, ȳ), and ∇y1Φ(x̄; ȳ) is compatible with this supergradient.

Lemma 2. In the situation of section 2.1, let z̄ = (x̄ = [x̄1; x̄2], ȳ = [ȳ1; ȳ2]) ∈ S, let G be a regular
subgradient of Φ at z̄ and let g be compatible with G. Let also H be a regular supergradient of Φ at z̄,
and h be compatible with H. Then g is a subgradient in x1, taken at (x̄1, ȳ1) along X1, of the induced
function φ, and h is a supergradient in y1, taken at (x̄1, ȳ1) along Y1, of the induced function φ:

(a) φ(x1, ȳ1) ≥ φ(x̄1; ȳ1) + 〈g, x1 − x̄1〉,
(b) φ(x̄1, y1) ≤ φ(x̄1; ȳ1) + 〈h, y1 − ȳ1〉.

for all x1 ∈ X1, y1 ∈ Y1.

1in hindsight, a special case of this strategy was used in [8, 9].
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Regular sub- and supergradient fields of induced functions. In the sequel, we say that
φ′x1

(x1, y1), φ
′
y1
(x1, y1) are regular sub- and supergradient fields of φ, if for every (x1, y1) ∈ X1 × Y1

and properly selected x̄2, ȳ2 such that the point z̄ = (x̄ = [x1; x̄2], ȳ = [y1; ȳ2]) is on the SP frontier
of Φ, φ′x1

(x1, y1), φ
′
y1
(x1, y1) are the sub- and supergradients of φ induced, via Lemma 2, by regular

sub- and supergradients of Φ at z̄. Invoking Remark 1, we arrive at the following observation:

Remark 2. If Φ is differentiable in x and in y and we are in the direct product case X = X1 ×X2,
Y = Y1×Y2, then regular sub- and supergradients of φ can be built as follows: given (x1, y1) ∈ X1×Y1,
we find x̄2, ȳ2 such that the point z̄ = (x̄ = [x1; x̄2], ȳ = [y1; ȳ2]) is on the SP frontier of Φ, and set

φ′x1
(x1, y1) = ∇x1Φ(x1, x̄2; y1, ȳ2), φ

′
y1
(x1, y1) = ∇y1Φ(x1, x̄2; y1, ȳ2). (4)

2.3.1 Existence of regular sub- and supergradients

The notion of regular subgradient deals with Φ as a function of [x1;x2] ∈ X only, the y-argument
being fixed, so that the existence/description questions related to regular subgradient deal in fact with
a Lipschitz continuous convex function on X. And of course the questions about existence/description
of regular supergradients reduce straightforwardly to those on regular subgradients. Thus, as far as
existence and description of regular sub- and supergradients is concerned, it suffices to consider the
situation where

• Ψ(x1, x2) is a Lipschitz continuous convex function on X,

• x̄1 ∈ X1, and x̄2 ∈ X2[x̄1] is a minimizer of Ψ(x̄1, x2) over x2 ∈ X2[x̄1].

What we need to understand, is when a subgradient G of Ψ taken at x̄ = [x̄1; x̄2] along X and some
g satisfy the property

〈G, [x1;x2]− x̄〉 ≥ 〈g, x1 − x̄1〉 ∀x = [x1;x2] ∈ X (5)

and what can be said about the corresponding g’s. The answer is as follows:

Lemma 3. With Ψ, x̄1, x̄2 as above, G ∈ ∂Ψ(x̄) satisfies (5) if and only if

(i) G is a “certifying” subgradient of Ψ at x̄, meaning that 〈G, [0;x2 − x̄2]〉 ≥ 0 ∀x2 ∈ X2[x̄1] (the
latter relation indeed certifies that x̄2 is a minimizer of Ψ(x̄1, x2) over x2 ∈ X2[x̄1]);

(ii) g is a subgradient, taken at x̄1 along X1, of the convex function

χG(x1) = min
x2∈X2[x1]

〈G, [x1;x2]〉

It is easily seen that with Ψ, x̄ = [x̄1; x̄2] as in Lemma 3) (i.e., Ψ is convex and Lipschitz continuous
on X, x̄1 ∈ X1, and x̄2 ∈ X2[x̄1] minimizes Ψ(x̄1, x2) over x2 ∈ X2[x̄1]) a certifying subgradient G
always exists; when Ψ is differentiable at x̄, one can take G = ∇xΨ(x̄). The function χG(·), however,
not necessary admits a subgradient at x̄1; when it does admit it, every g ∈ ∂χG(x̄1) satisfies (5). In
particular,

1. [Direct Product case] When X = X1 ×X2, representing a certifying subgradient G of Ψ, taken
at [x̄1; x̄2 ∈ Argmin x2∈X2

Ψ(x̄1, x2)], as [g;h], we have

〈h, x2 − x̄2〉 ≥ 0 ∀x2 ∈ X2,

whence χG(x1) = 〈g, x1〉+ 〈h, x̄2〉, and thus g is a subgradient of χG at x̄1. In particular, in the
direct product case and when Ψ is differentiable at x̄, (5) is met by G = ∇Ψ(x̄), g = ∇x1Ψ(x̄);
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2. [Polyhedral case] WhenX is a polyhedral set, for every certifying subgradientG of Ψ the function
χG is polyhedrally representable with domain X1 and as such has a subgradient at every point
from X1;

3. [Interior case] When x̄1 is a point from the relative interior of X1, χG definitely has a subgradient
at x̄1.

2.4 Main Lemma

2.4.1 Preliminaries: execution protocols, accuracy certificates, residuals

We start with outlining some simple concepts originating from [15]. Let Y be a convex compact
set in Euclidean space L, and F (y) : Y → L be a vector field on E. A t-step execution protocol

associated with F, Y is a collection It = {yi ∈ Y, F (yi) : 1 ≤ i ≤ t}. A t-step accuracy certificate

is a t-dimensional probabilistic vector λ. Augmenting a t-step accuracy protocol by t-step accuracy
certificate gives rise to two entities:

approximate solution: yt = yt(It, λ) :=
∑t

i=1 λiyi ∈ Y ;

residual: Res(It, λt|Y ) = max
y∈Y

∑t
i=1 λi〈F (yi), yi − y〉. (6)

When Y = U ×V and F is vector field induced by convex-concave function θ(u, v) : U ×V → R, that
is, F (u, v) = [Fu(u, v);Fv(u, v)] : U × V → E × F with Fu(u, v) ∈ ∂θ(u, v), Fv(u, v) ∈ ∂v[−θ(u, v)]
(such a field always is monotone), an execution protocol associated with (F, Y ) will be called also
protocol associated with θ, U , V .

The importance of these notions in our context stems from the following simple observation [15]:

Lemma 4. Let U , V be nonempty convex compact domains in Euclidean spaces E, F , θ(u, v) :
U × V → R be a convex-concave function, and F be induced monotone vector field: F (u, v) =
[Fu(u, v);Fv(u, v)] : U × V → E × F with Fu(u, v) ∈ ∂uθ(u, v), Fv(u, v) ∈ ∂v[−θ(u, v)]. For a t-
step execution protocol It = {yi = [ui; vi] ∈ Y := U × V, Fi = [Fu(ui, vi);Fv(ui, vi)], 1 ≤ i ≤ t}
associated with θ, U, V , and t-step accuracy certificate λ, it holds

ǫsad(y
t(It, λ)|θ, U, V ) ≤ Res(It, λ|U × V ). (7)

Indeed, for [u; v] ∈ U × V we have

Res(It, λ|U × V ) ≥ ∑t
i=1 λi〈Fi, yi − [u; v]〉 = ∑t

i=1 λi[〈Fu(ui, vi), ui − u〉︸ ︷︷ ︸
≥θ(ui,vi)−θ(u,vi)

−〈Fv(ui, vi), vi − v〉︸ ︷︷ ︸
≤θ(ui,vi)−θ(ui,v)

]

[inequalities are due to the origin of F and convexity-concavity of θ]

≥ ∑t
i=1 λi[θ(ui, v)− θ(u, vi)] ≥ θ(ut, v) − θ(u, vt),

where the concluding ≥ is due to convexity-concavity of θ. The resulting inequality holds true for all
[u; v] ∈ U × V , and (7) follows.

2.4.2 Main Lemma

Proposition 1. In the situation and notation of sections 2.1 – 2.3, let φ be the primal convex-concave
function induced by Φ, and let

It = {[x1,i; y1,i] ∈ X1 × Y1, [αi := φ′x1
(x1,i, y1,i);βi := −φ′y1(x1,i, y1,i)] : 1 ≤ i ≤ t}

6



be an execution protocol associated with φ, X1, Y1, where φ
′
x1
, φ′y1 are regular sub- and supergradient

fields associated with Φ, φ. Due to the origin of φ, φ′x1
, φ′y1, there exist x2,i ∈ X2[x1,i], Gi ∈ E,

y2,i ∈ Y2[y1,i], and Hi ∈ F such that

(a) Gi ∈ ∂xΦ(xi := [x1,i;x2,i], yi := [y1,i; y2,i]),
(b) Hi ∈ ∂y [−Φ(xi := [x1,i;x2,i], yi := [y1,i; y2,i])] ,
(c) 〈Gi, x− [x1,i;x2,i]〉 ≥ 〈φ′x1

(x1,i, y1,i), x1 − x1,i〉∀x = [x1;x2] ∈ X,
(d) 〈Hi, y − [y1,i; y2,i]〉 ≥ 〈−φ′y1(x1,i, y1,i), y1 − y1,i〉∀y = [y1; y2] ∈ Y,

(8)

implying that

Jt = {zi = [xi = [x1,i;x2,i]; yi = [y1,i; y2,i]], Fi = [Gi;Hi] : 1 ≤ i ≤ t}
is an execution protocol associated with Φ, X, Y . For every accuracy certificate λ it holds

Res(Jt, λ|X × Y ) ≤ Res(It, λ|X1 × Y1). (9)

As a result, given an accuracy certificate λ and setting

[xt; yt] = [[xt1;x
t
2]; [y

t
1; y

t
2]] =

t∑

i=1

λi [[x1,i;x2,i]; [y1,i; y2,i]] ,

we ensure that
ǫsad([x

t; yt]|Φ,X, Y ) ≤ Res(It, λ|X1 × Y1), (10)

whence also, by Lemma 1,

ǫsad([x
t
1; y

t
1]|φ,X1, Y1) ≤ Res(It, λ|X1 × Y1),

ǫsad([x
t
2; y

t
2]|ψ,X2, Y2) ≤ Res(It, λ|X1 × Y1),

(11)

where ψ is the dual function induced by Φ.

Proof. Let z := [[u1;u2]; [v1; v2]] ∈ X × Y . Then

∑t
i=1 λi〈Fi, zi − z〉 = ∑t

i=1 λi

[
〈Gi, [x1,i;x2,i]− [u1;u2]〉︸ ︷︷ ︸
≤〈φ′

x1
(x1,i,y1,i),x1,i−u1〉 by (8.c)

+ 〈Hi, [y1,i; y2,i]− [v1; v2]〉︸ ︷︷ ︸
≤〈−φ′

y1
(x1,i,y1,i),y1,i−v1〉 by (8.d)

]

≤ ∑t
i=1 λi

[
〈αi, x1,i − u1〉+ 〈βi, y1,i − v1〉

]
≤ Res(It, λ|X1 × Y1),

and (9) follows. �

2.5 Application: Solving bilinear Saddle Point problems on domains represented
by Linear Minimization Oracles

2.5.1 Situation

Let W be a nonempty convex compact set in RN , Z be a nonempty convex compact set in RM , and
let ψ : W × Z → R be bilinear convex-concave function:

ψ(w, z) = 〈w, p〉+ 〈z, q〉 + 〈z, Sw〉. (12)

Our goal is to solve the convex-concave SP problem

min
w∈W

max
z∈Z

ψ(w, z) (13)

given by ψ, W , Z.
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2.5.2 Simple observation

Let U ⊂ Rn, V ⊂ Rm be convex compact sets, and let D ∈ Rm×N , A ∈ Rn×M , R ∈ Rm×n. Consider
bilinear (and thus convex-concave) function

Φ(u,w; v, z) = 〈w, p +DT v〉+ 〈z, q +ATu〉 − 〈v,Ru〉 : [U ×W ]× [V × Z] → R (14)

(the “convex” argument is (u,w), the “concave” one is (v, z)) and a pair of functions

ū(w, z) : W × Z → U,
v̄(w, z) :W × Z → V

and let us make the following assumption:

(!) We have
∀(w, z) ∈W × Z : Dw = Rū(w, z)
∀(w, z) ∈W × Z : Az = RT v̄(w, z)

(15)

Assuming (!), for all (w, z) ∈W × Z, denoting ū = ū(w, z), v̄ = v̄(w, z), we have

(a) 〈w,DT v̄〉 = 〈Dw, v̄〉 = 〈Rū, v̄〉
(b) 〈z,AT ū〉 = 〈Az, ū〉 = 〈ū, RT v̄〉 = 〈Rū, v̄〉
⇒
(c) ∇uΦ(ū, w; v̄, z) = Az −RT v̄ = 0
(d) ∇vΦ(ū, w; v̄, z) = Dw −Rū = 0
⇒
(e) ψ̄(w, z) := minu∈U maxv∈V Φ(u,w; v, z) = Φ(ū(w, z), w; v̄(w, z), z)

= 〈w, p〉 + 〈z, q〉 + 〈Dw, v̄(w, z)〉 [by (a), (b)]

(16)

We have proved

Lemma 5. In the case of (!), assuming that

〈Dw, v̄(w, z)〉 = 〈z, Sw〉 ∀w ∈W, z ∈ Z, (17)

ψ is the dual convex-concave function induced by Φ and the domains U ×W , V × Z.

Note that there are easy ways to ensure (!) and (17).

Example 1. Here m = M , n = N , and D = AT = R = S. Assuming U ⊃ W , V ⊃ Z and setting
ū(w, z) = w, v̄(w, z) = z, we ensure (!) and (17).

Example 2. Let S = ATD with A ∈ RK×M , D ∈ RK×N . Setting m = n = K, R = IK ,
ū(w, z) = Dw, v̄(w, z) = Az and assuming that U ⊃ DW , V ⊃ AZ, we again ensure (!) and (17).
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2.5.3 Implications

Assume that (!) and (17) take place. Denoting u = x1, v = y1, w = x2, z = y2 and setting X1 = U ,
X2 = W , Y1 = V , Y2 = Z, X = X1 ×X2 = U ×W , Y = Y1 × Y2 = V × Z, we find ourselves in the
direct product case of the situation of section 2.1, and Lemma 5 says that the bilinear SP problem of
interest (12), (13) is the dual SP problem associated with the bilinear master SP problem

min
[u;w]∈U×W

max
[v;z]∈V×Z

[
Φ(u,w; v, z) = 〈w, p +DT v〉+ 〈z, q +ATu〉 − 〈Ru, v〉

]
(18)

Since Φ is linear in [u; v], the primal SP problem associated with (18) is

min
u≡x1∈U=X1

max
v≡y1∈V=Y1

[
φ(u, v) = min

w∈W
〈w, p +DT v〉+max

z∈Z
〈v, q +ATu〉 − 〈Ru, v〉

]
.

Assuming that W , Z allow for cheap Linear Minimization Oracles and defining w∗(·), z∗(·) according
to

w∗(ξ) ∈ Argmin
w∈W

〈w, ξ〉, z∗(η) ∈ Argmin
z∈Z

〈z, η〉,

we have

φ(u, v) = 〈w(p +DTv), p +DT v〉+ 〈z(−q −ATu), q +ATu〉 − 〈Ru, v〉,
φ′u(u, v) := Az∗(−q −ATu)−RT v ∈ ∂wφ(u, v),
φ′v(u, v) := Dw∗(p+DT v)−Ru ∈ −∂v[−φ(u, v)],

(19)

that is, first order information on the primal SP problem

min
u∈U

max
v∈V

φ(u, v), (20)

is available. Note that since we are in the direct product case, φ′u and φ′v are regular sub- and
supergradient fields associated with Φ, φ.

Now let It = {[ui; vi] ∈ U × V, [γi := φ′u(ui, vi); δi := −φ′v(ui, vi)] : 1 ≤ i ≤ t} be an execution
protocol generated by a First Order algorithm as applied to the primal SP problem (20), and let

wi = w∗(p+DT vi), zi = z∗(−q −ATui),
αi = ∇wΦ(ui, wi; vi, zi) = p+DT vi,
βi = −∇zΦ(ui, wi; vi, zi) = −q −Aui,

so that

Jt =

{
[[ui;wi]; [vi; zi]], [ [αi; γi]︸ ︷︷ ︸

∇[u;w]Φ(ui, wi; vi, zi)

; [βi; δi]︸ ︷︷ ︸
−∇[v;z]Φ(ui, wi; vi, zi)

] : 1 ≤ i ≤ t

}

is an execution protocol associated with the SP problem (18). By Proposition 1, for any accuracy
certificate λ it holds

Res(Jt, λ|U ×W × V × Z) ≤ Res(It, λ|U × V ) (21)

whence, setting

[[ut;wt]; [vt; zt]] =

t∑

i=1

λi[[ui;wi]; [vi; zi]] (22)
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and invoking Lemma 4 with Φ in the role of θ,

ǫsad([[u
t;wt]; [vt; zt]]|Φ,X1 ×X2︸ ︷︷ ︸

U×W

, Y1 × Y2︸ ︷︷ ︸
V×Z

) ≤ Res(It, λ|U × V ) (23)

whence, by Lemma 1,
ǫsad([w

t; zt]|ψ,W,Z) ≤ Res(It, λ|U × V ). (24)

The bottom line is that

With (!), (17) in force, applying to the primal SP problem (20) First Order algorithm B
with accuracy certificates, we get, as a byproduct, feasible solutions to the SP problem of

interest (13) of the ǫsad-inaccuracy ≤ Res(It, λ|U × V ).

Note also that when the constructions from Examples 1,2 are used, there is a significant freedom in
selecting the domain U×V of the primal problem (U , V should be convex compact sets “large enough”
to ensure the inclusions mentioned in Examples), so that there is no difficulty to enforce U , V to be
proximal friendly. As a result, we can take as B a proximal First Order method, for example, Non-
Euclidean Restricted Memory Level algorithm with certificates (cf. [2]) or Mirror Descent (cf. [14]).
The efficiency estimates of these algorithms as given in [2, 14] imply that the resulting procedure
for solving the SP of interest (12), (13) admits non-asymptotic O(1/

√
t) rate of convergence, with

explicitly computable factors hidden in O(·). The resulting complexity bound is completely similar to
the one achievable with the machinery of Fenchel-type representations [2, 14].

We are about co consider a special case where the O(1/
√
t) complexity admits a significant im-

provement.

2.6 Matrix Game case

Let S ∈ RM×N be represented as
S = ATD

with A ∈ RK×M and D ∈ RK×N . Let also W = ∆N = {w ∈ RN
+ :

∑
iwi = 1}, Z = ∆M . Our goal is

to solve matrix game
min
w∈W

max
z∈Z

[ψ(w, z) = 〈z, Sw〉 = 〈Az,Dw〉] . (25)

Let U , V be convex compact sets such that

V ⊃ AZ, U ⊃ DW, (26)

and let us set
Φ(u,w; v, z) = 〈u,Az〉 + 〈v,Dw〉 − 〈u, v〉
ū := ū(w, z) = Dw
v̄ := v̄(w, z) = Az

implying that

∇uΦ(ū, w; v̄, z) = Az − v̄ = 0,
∇vΦ(ū, w; v̄, z) = Dw − ū = 0,

Φ(ū, w; v̄, z) = 〈ū, Az〉 + 〈v̄, Dw〉 − 〈ū, v̄〉 = 〈Dw,Az〉 + 〈Az,Dw〉 − 〈Dw,Az〉
= 〈z,ATDw〉 = ψ(w, z).

10



It is immediately seen that the function ψ from (25) is nothing but the dual convex-concave function
associated with Φ (cf. Example 2), while the primal function is

φ(u, v) = Max(ATu) +Min(DT v)− 〈u, v〉; (27)

here Min(p) and Max(p) stand for the smallest and the largest entries in vector p. Applying the
strategy outlined in section 2.2, we can solve the problem of interest (25) applying to the primal SP
problem

min
u∈U

max
v∈V

[
φ(u, v) = Min(DT v) +Max(ATu)− 〈u, v〉

]
(28)

an algorithm with accuracy certificates and using the machinery outlined in previous sections to
convert the resulting execution protocols and certificates into approximate solutions to the problem
of interest (25).

We intend to consider a special case when the outlined approach allows to reduce a huge, but
well organized, matrix game (25) to a small SP problem (28) – so small that it can be solved to high
accuracy by something like Ellipsoid method. This is the case when the matrices A, D in (25) are
well organized.

2.6.1 The case of well organized matrices A, D

Given an K×L matrix B, we call B well organized if, given x ∈ RK , it is easy to identify the columns
B[x], B[x] of B making the maximal, resp. the minimal, inner product with x.

When matrices A, D in (25) are well organized, the first order information for the cost function
φ in the primal SP problem (28) is easy to get. Besides, all we need from the convex compact sets
U , V participating in (28) is to be large enough to ensure that U ⊃ DW and V ⊃ AZ, which allows
to make U and V simple, e.g., Euclidean balls. Finally, when the design dimension 2K of (28) is
small, we have at our disposal a multitude of linearly converging, with the converging ratio depending
solely on K, methods for solving (28), including the Ellipsoid algorithm with certificates presented in
[15]. We are about to demonstrate that the outlined situation indeed takes place in some meaningful
applications.

2.6.2 Example: Knapsack generated matrices

2 Assume that we are given knapsack data, namely,

• positive integer horizon m,

• nonnegative integer bounds p̄s, 1 ≤ s ≤ m,

• positive integer costs hs, 1 ≤ s ≤ m, and positive integer budget H, and

• output functions fs(·) : {0, 1, ..., p̄s} → Rrs , 1 ≤ s ≤ m.

Given the outlined data, consider the set P of all integer vectors p = [p1; ...; pm] ∈ Rm satisfying the
following restrictions:

0 ≤ ps ≤ ps, 1 ≤ s ≤ m [range restriction]∑m
s=1 hsps ≤ H [budget restriction]

2The construction to follow can be easily extended from “knapsack generated” matrices to more general “Dynamic
Programming generated” ones, see section A.4 in Appendix.
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and the matrix B of the size K × Card(P), K =
∑m

s=1 rs, defined as follows: the columns of B are
indexed by vectors p = [p1; ...; ps] ∈ P, and the column indexed by p is the vector

Bp = [f1(p1); ...; fm(pm)].

Note that assuming m, ps, rs moderate, matrix B is well organized – given x ∈ RK , it is easy to find
B[x] and B[x] by Dynamic Programming.

Indeed, to identify B[x], x = [x1; ...;xm] ∈ Rr1 × ... × Rrm (identification of B[x] is
completely similar), it suffices to run for s = m,m−1, ...1 the backward Bellman recurrence

Us(h) = max
r∈Z

{Us+1(h− hsr) + 〈fs(r), xs〉 : 0 ≤ r ≤ ps, 0 ≤ h− hsr}
As(h) ∈ Argmax

r∈Z
{Us+1(h− hsr) + 〈fs(r), xs〉 : 0 ≤ r ≤ ps, 0 ≤ h− hsr}



 , h = 0, 1, ...,H,

with Um+1(·) ≡ 0, and then to recover one by one the entries ps in the index p ∈ P of B[x]
from the forward Bellman recurrence

H1 = H, p1 = A1(H1);
Hs+1 = Hs − hsps, ps+1 = As+1(Hs+1), 1 ≤ s < m.

2.6.3 Illustration: Attacker vs. Defender.

The “covering story” we intend to consider is as follows. Attacker and Defender are preparing for
a conflict to take place on m battlefields. A pure strategy of Attacker is a vector q = [q1; ...; qm],
where positive integer qs, 1 ≤ s ≤ m, is the number of attacking units to be created and deployed at
battlefield s; the only restrictions on q, aside of integrality, are the bounds qs ≤ qs, 1 ≤ s ≤ m, and
the budget constraint

∑m
s=1 hsAqs ≤ HA with positive integer hsA and HA. Similarly, a pure strategy

of Defender is a vector p = [p1; ...; pm], where positive integer ps is the number of defending units to
be created and deployed at battlefield s, and the only restrictions on p, aside of integrality, are the
bounds ps ≤ ps, 1 ≤ s ≤ m, and the budget constraint

∑m
s=1 hsDqs ≤ HD with positive integer hsD

and HD. The total loss of Defender (the total gain of Attacker), the pure strategies of the players
being p and q, is

Gq,p =

m∑

s=1

[Ωs]qs,ps ,

with given (qs+1)×(ps+1) matrices Ωs. Denoting by Q and P the sets of pure strategies of Attacker,
resp., Defender, and setting

Ωs =
∑rs

i=1 f
is[gis]T , f is = [f is0 ; ...; f isqs ], g

is = [gis0 ; ...; g
is
ps
], rs = Rank(Ωs), K =

∑m
s=1 rs,

Aq = [f1,1q1 ; f2,1q1 ; ...; f r1,1q1 ; f1,2q2 ; f2,2q2 ; ...; f r2,2q2 ; ...; f1,mqm ; f2,mqm ; ...; f rm,m
qm ] ∈ RK , q ∈ Q,

Dp = [g1,1p1 ; g
2,1
p1 ; ...; g

r1,1
p1 ; g1,2p2 ; g

2,2
p2 ; ...; g

r2 ,2
p2 ; ...; g1,mpm ; g2,mpm ; ...; grm ,m

pm ] ∈ RK , p ∈ P,
we end up with K ×M , M = Card(Q), knapsack-generated matrix A with columns Aq, q ∈ Q, and
K ×N , N = Card(P), knapsack-generated matrix D with columns Dp, p ∈ P, such that

G = ATD.

As a result, solving the Attacker vs. Defender game in mixed strategies reduces to solving SP problem
(25) with knapsack-generated (and thus well organized) matrices A, D and thus can be reduced to
convex-concave SP (28) of dimension K. Note that in the situation in question the design dimension
2K of (28) will, typically, be rather small (few tens or at most few hundreds), while the design
dimensions M , N of the matrix game of interest (25) can be huge.
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Numerical illustration. With the data (quite reasonable in terms of the “Attacker vs. Defender”
game)

m = 8, hsA = hsD = 1, 1 ≤ s ≤ m, HA = HD = 64 = ps = qs, 1 ≤ s ≤ m

and rank 1 matrices Ωs, 1 ≤ s ≤ m, the design dimensions of the problem of interest (25) are as huge
as

dimw = dim z = 11, 969, 016, 345

while the sizes of (28) are just
dimu = dim v = 8,

and thus (28) can be easily solved to high accuracy by the Ellipsoid method. In the numerical
experiment we are about to report3, the outlined approach allowed to solve (25) within ǫsad-inaccuracy
as small as 5.4e-5 (by factor over 7.8e4) in just 1281 steps of the Ellipsoid algorithm (537.8 sec on a
medium performance laptop) – not that bad given the huge – over 1010 – sizes of the matrix game of
interest (25)!

3 From Bilinear Saddle Point problems to Variational Inequalities
with Affine Monotone Operators

In what follows, we extend the decomposition approach (developed so far for convex-concave SP
problems) to Variational Inequalities (VI’s) with monotone operators, with the primary goal to handle
VI’s with affine monotone operators on LMO-represented domains.

3.1 Preliminaries

Recall that the (Minty’s) variational inequality VI(F, Y ) associated with a convex compact subset Y
of Euclidean space E and a vector field F : Y → E is

find y ∈ Y : 〈F (y′), y′ − y〉 ≥ 0 ∀y′ ∈ Y VI(F, Y )

an y satisfying the latter condition is called a weak solution to the VI. A strong solution to VI(F, Y )
is a point y∗ ∈ Y such that

〈F (y∗), y − y∗〉 ≥ 0 ∀y ∈ Y.
assuming F monotone on Y , every strong solution to VI(F, Y ) is a weak one, and when F is continuous,
every weak solution to VI(F, Y ) is a strong solution as well. When F is monotone on Y and, as stated
above, Y is convex and compact, weak solutions to VI(F, Y ) do exist.

A natural measure of inaccuracy for an approximate solution y ∈ Y to VI(F, Y ) is the dual gap

function

ǫVI(y|F, Y ) = sup
y′∈Y

〈F (y′), y − y′〉;

weak solutions to the VI are exactly the points of Y where this (clearly nonnegative everywhere on
Y ) function is zero.

In the sequel we utilize the following simple fact originating from [15]:

3for implementation details, see section A.5
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Lemma 6. Let F be monotone on Y , let It = {yi ∈ Y, F (yi) : 1 ≤ i ≤ t} be a t-step execution
protocol associated with (F, Y ), λ be a t-step accuracy certificate, and yt =

∑t
i=1 λiyi be the associated

approximate solution. Then
ǫVI(y

t|F, Y ) ≤ Res(It, λ|Y ).

Indeed, we have
Res(It, λ|Y ) = supy′∈Y

[∑t
i=1 λi〈F (yi), yi − y′〉

]

≥ supy′∈Y
[∑t

i=1 λi〈F (y′), yi − y′〉
]
[since F is monotone]

= supy′∈Y 〈F (y′), yt − y′〉 = ǫVI(y
T |F, Y ).

3.2 Situation

In the sequel, we deal with the situation as follows. Given are

• Euclidean spaces Eξ, Eη,

• nonempty convex compact set Θ ⊂ Eξ × Eη with the projections Ξ onto Eξ, and H onto Eη.
Given ξ ∈ Ξ, η ∈ H, we set

Hξ = {η : [ξ; η] ∈ Θ}, Ξη = {ξ ∈ Ξ : [ξ; η] ∈ Θ},

and denote a point from Eξ × Eη as θ = [ξ; η] with ξ ∈ Eξ, η ∈ Eη;

• a monotone vector field

Φ(ξ, η) = [Φξ(ξ, η); Φη(ξ, η)] : Θ → Eξ × Eη.

We assume in the sequel that for once for ever properly selected functions η(ξ) : Ξ → H and ξ(η) :
H → Ξ, the point η(ξ), ξ ∈ Ξ, is a strong solution to the VI VI(Φη(ξ, ·),Hξ), and the point ξ(η),
η ∈ H, is a strong solution to the VI VI(Φη(·, η),Ξη), that is,

η(ξ) ∈ Hξ & 〈Φη(ξ, η(ξ)), η − η(ξ)〉 ≥ 0 ∀η ∈ Hξ (29)

and
ξ(η) ∈ Ξη & 〈Φξ(ξ(η), η), ξ − ξ(η)〉 ≥ 0 ∀ξ ∈ Ξη. (30)

Note that the assumptions on the existence of η(·), ξ(·) satisfying (29), (30) are automatically satisfied
when the monotone vector field Φ is continuous.

3.3 Induced vector fields

Let us call Φ (more precisely, the pair (Φ, η(·))) η-regular, if for every ξ ∈ Ξ, there exists Ψ = Ψ(ξ) ∈ Eξ

such that
〈Ψ(ξ), ξ′ − ξ〉 ≤ 〈Φ(ξ, η(ξ)), [ξ′; η′]− [ξ; η(ξ)]〉 ∀[ξ′; η′] ∈ Θ. (31)

Similarly, let us call (Φ, ξ(·)) ξ-regular, if for every η ∈ H there exists Γ = Γ(η) ∈ Eη such that

〈Γ(η), η′ − η〉 ≤ 〈Φ(ξ(η), η), [ξ′; η′]− [ξ(η); η]〉 ∀[ξ′; η′] ∈ Θ. (32)

When (Φ, η) is η-regular, we refer to the above Ψ(·) as to a primal vector field induced by Φ 4, and
when (Φ, ξ) is ξ-regular, we refer to the above Γ(·) as to a dual vector field induced by Φ.

4“a primal” instead of “the primal” reflects the fact that Ψ is not uniquely defined by Φ – it is defined by Φ and η

and by how the values of Ψ are selected when (31) does not specify these values uniquely.
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Example: Direct product case. This is the case where Θ = Ξ × H. In this situation, setting
Ψ(ξ) = Φξ(ξ, η(ξ)), we have for [ξ′; η′] ∈ Θ and ξ ∈ Ξ:

〈Φ(ξ, η(ξ)), [ξ′; η′]− [ξ; η(ξ)]〉 = 〈Φξ(ξ, η(ξ)), ξ
′ − ξ〉︸ ︷︷ ︸

=〈Ψ(ξ),ξ′−ξ〉

+ 〈Φη(ξ, η(ξ)), η
′ − η(ξ)〉︸ ︷︷ ︸

≥0 ∀η′∈Hξ=H

≥ 〈Ψ(ξ), ξ′ − ξ〉,

that is, (Φ, η(·)) is η-regular, with Ψ(ξ) = Φξ(ξ, η(ξ)). Setting Γ(η) = Φη(ξ(η), η), we get by similar
argument

〈Φ(ξ(η), η), [ξ′ ; η′]− [ξ(η); η]〉 ≥ 〈Γ(η), η′ − η〉, [ξ′; η′] ∈ Θ, η ∈ H,

that is, (Φ, ξ(·)) is ξ-regular, with Γ(η) = Φη(ξ(η), η).

3.4 Main observation

Proposition 2. In the situation of section 3.2, let (Φ, η(·)) be η-regular. Then
(i) Primal vector field Ψ(ξ) induced by (Φ, η(·)) is monotone on Ξ. Moreover, whenever It = {ξi ∈

Ξ,Ψ(ξi) : 1 ≤ i ≤ t} and Jt = {θi := [ξi; η(ξi)],Φ(θi) : 1 ≤ i ≤ t} and λ is a t-step accuracy certificate,
it holds

ǫVI(
t∑

i=1

λiθi|Φ,Θ) ≤ Res(Jt, λ|Θ) ≤ Res(It, λ|Ξ). (33)

(ii) Let (Φ, ξ) be ξ-regular, and let Γ be the induced dual vector field. Whenever θ̂ = [ξ̂; η̂] ∈ Θ, we
have

ǫVI(η̂|Γ,H) ≤ ǫVI(θ̂|Φ,Θ). (34)

3.5 Implications

In the situation of section 3.2, assume that for properly selected η(·), ξ(·), (Φ, η(·)) is η-regular, and
(Φ, ξ(·)) is ξ-regular, induced primal and dual vector fields being Ψ and Γ. In order to solve the dual

VI VI(Γ,H), we can apply to the primal VI VI(Ψ,Ξ) an algorithm with accuracy certificates; by
Proposition 2.i, resulting t-step execution protocol It = {ξi,Ψ(ξi) : 1 ≤ i ≤ t} and accuracy certificate
λ generate an execution protocol Jt = {θi := [ξi; η(ξi)],Φ(θi) : 1 ≤ i ≤ t} such that

Res(Jt, λ|Θ) ≤ Res(It, λ|Ξ),

whence, by Lemma 6, for the approximate solution

θt = [ξt, ηt] :=
t∑

i=1

λiθi =
t∑

i=1

λi[ξi; η(ξi)]

it holds
ǫVI(θ

t|Φ,Θ) ≤ Res(It, λ|Ξ).
Invoking Proposition 2.ii, we conclude that ηt is a feasible solution to the dual VI VI(Γ,H), and

ǫVI(η
t|Γ,H) ≤ Res(It, λ|Ξ). (35)

We are about to present two examples well suited for the just outlined approach.
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3.5.1 Solving affine monotone VI on LMO-represented domain

Let H be a convex compact set in Euclidean space Eη, and let H be equipped with an LMO. Assume
that we want to solve the VI VI(F,H), where

F (η) = Sη + s

is an affine monotone operator (so that S+ST � 0). Let us set Eξ = Eη, select Ξ as a proximal-friendly
convex compact set containing H, and set Θ = Ξ×H,

Φ(ξ, η) =

[
ST −ST

S

]

︸ ︷︷ ︸
S

[
ξ
η

]
+

[
0
s

]
.

We have

S + ST =

[
S + ST

]
� 0,

so that Φ is an affine monotone operator with

Φξ(ξ, η) = ST ξ − ST η, Φη(ξ, η) = Sξ + s.

Setting ξ(η) = η, we ensure that ξ(η) ∈ Ξ when η ∈ H and Φξ(ξ(η), η) = 0, implying (30). Since we
are in the direct product case, we can set Γ(η) = Φη(ξ(η), η) = Sη + s = F (η); thus, VI(Γ,H) is our
initial VI of interest. On the other hand, setting

η(ξ) ∈ Argmin
η∈H

〈Sξ + s, η〉,

we ensure (29). Since we are in the direct product case, we can set

Ψ(ξ) = Φξ(ξ, η(ξ)) = ST [ξ − η(ξ)];

note that the values of Ψ can be straightforwardly computed via calls to the LMO representing H. We
can now solve VI(Ψ,Ξ) by a proximal algorithm B with accuracy certificates and recover, as explained
above, approximate solution to the VI of interest VI(F,H). With the Non-Euclidean Restricted
Memory Level method with certificates [2] or Mirror Descent with certificates (see, e.g., [14]), the
approach results in non-asymptotical O(1/

√
t)-converging algorithm for solving the VI of interest,

with explicitly computable factors hidden in O(·). This complexity bound, completely similar to the
one obtained in [14], seems to be the best known under the circumstances.

3.5.2 Solving skew-symmetric VI on LMO-represented domain

Let H be an LMO-represented convex compact domain in Eη, and assume that we want to solve
VI(F,H), where

F (η) = 2QTPη + f : Eη → Eη

with K × dimEη matrices P,Q such that and the matrix QTP is skew-symmetric:

QTP + P TQ = 0.
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Let Eξ = RK ×RK , let Ξ1, Ξ2 be two convex compact sets in RK such that

PH ⊂ Ξ1, QH ⊂ Ξ2. (36)

Let us set Ξ = Ξ1 × Ξ2, and let

Φ(ξ = [ξ1; ξ2], η) =




IK P

−IK Q

−P T −QT





ξ1
ξ2
η


+




0
0
f


 .

Not that Φ is monotone and affine. Setting

ξ(η) = [Qη;−Pη]

and invoking (36), we ensure (30); since we are in the direct product case, we can take, as the dual
induced vector field,

Γ(η) = Φη(ξ(η), η) = −P T (Qη)−QT (−Pη) + f = [QTP − P TQ]η + f = 2QTPη + f = F (η);

so that the dual VI VI(Γ,H) is our VI of interest.
On the other hand, setting

η(ξ = [ξ1; ξ2]) ∈ Argmin
η∈H

〈f − P T ξ1 −QT ξ2, η〉,

we ensure (29). Since we are in the direct product case, we can define primal vector field as

Ψ(ξ1, ξ2) = Φξ([ξ1, ξ2], η([ξ1; ξ2])) =

[
ξ2 + Pη(ξ1, ξ2)
−ξ1 +Qη(ξ1, ξ2)

]
.

Note that LMO for H allows to compute the values of Ψ, and that Ξ can be selected to be proximal-
friendly. We can now solve VI(Ψ,Ξ) by a proximal algorithm B with accuracy certificates and recover,
as explained above, approximate solution to the VI of interest VI(F,H). When the design dimension
dimΞ of the primal VI is small, other choices of B, like the Ellipsoid algorithm, are possible, and
in this case we can end up with linearly converging, with the converging ratio depending solely on
dimΞ, algorithm for solving the VI of interest. We are about to give a related example, which can be
considered as multi-player version of the “Attacker vs. Defender” game.

Example: Nash Equilibrium with pairwise interactions. Consider the situation as follows:
there are

• L ≥ 2 players, ℓ-th of them selecting a mixed strategy wℓ from probabilistic simplex ∆Nℓ
of

dimension Nℓ,

• encoding matrices Dℓ of sizes mℓ ×Nℓ, and loss matrices M ℓℓ′ of sizes mℓ ×mℓ′ such that

M ℓℓ = 0,M ℓℓ′ = −[M ℓ′ℓ]T , 1 ≤ ℓ, ℓ′ ≤ L.

• The loss of ℓ-th player depends on mixed strategies of the players according to

Lℓ(η := [w1; ...;wL]) =

L∑

ℓ′=1

wT
ℓ E

ℓℓ′wℓ′ , E
ℓℓ′ = DT

ℓ M
ℓℓ′Dℓ′ + 〈gℓ, η〉.
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In other words, every pair of distinct players ℓ, ℓ′ are playing matrix game with matrix M ℓℓ′ ,
and the loss of player ℓ is the sum, over the pairwise games he is playing, of his losses in these
games, the “coupling constraints” being expressed by the requirement that every player uses the
same mixed strategy in all pairwise games he is playing.

We have described convex Nash Equilibrium problem, meaning that for every ℓ, Lℓ(w1, ..., wL) is
convex (in fact, linear) in wℓ, is jointly concave (in fact, linear) in wℓ := (w1, ..., wℓ−1, wℓ+1, ..., wL),
and

∑L
ℓ=1 Lℓ(η) is the linear function 〈g, η〉, g =

∑
ℓ gℓ, and thus is convex. It is known (see, e.g.,

[15]) that Nash Equilibria in convex Nash problem are exactly the weak solutions to the VI given by
monotone operator

F (η := [w1; ...;wL]) = [∇w1L1(η); ...;∇wL
LL(η)]

on the domain
H = ∆N1 × ...×∆NL

.

Let us set

Q =
1

2




D1

D2

. . .

DL


 , P =




M1,1D1 M1,2D2 ... M1,LDL

M2,1D1 M2,2D2 ... M2,LDL

...
...

. . . ...
ML,1D1 ML,2D2 ... ML,LDL


 .

Then

QTP =
1

2




DT
1M

1,1D1 DT
1M

1,2D2 ... DT
1M

1,LDL

DT
2M

2,1D1 DT
2M

2,2D2 ... DT
2M

1,LDL

...
...

. . . ...
DT

LM
L,1D1 DT

LM
L,2D2 ... DT

LM
L,LDL




so that QTP is skew-symmetric due to M ℓℓ′ = −[M ℓ′ℓ]T . Besides this, we clearly have

F (η := [w1; ...;wL]) = 2QTPη + f, f = [∇w1〈g1, η〉; ...;∇wL
〈gL, η〉].

Observe that if D1, ...,DL are well organized, so are Q and P .

Indeed, for Q this is evident: to find the column of Q which makes the largest inner product
with x = [x1; ...;xL], dimxℓ = mℓ, it suffices to find, for every ℓ, the column of Dℓ which
makes the maximal inner product with xℓ, and then to select the maximal of the resulting
L inner products and the corresponding to this maximum column of Q. To maximize the
inner product of the same x with columns of P , note that

xTP =
[
[
∑L

ℓ=1
xTℓ M

ℓ,1]
︸ ︷︷ ︸

yT1

D1, ..., [
∑L

ℓ=1
xTℓ M

ℓ,L]
︸ ︷︷ ︸

yTℓ

DL

]
,

so that to maximize the inner product of x and the columns of P means to find, for every
ℓ, the column of Dℓ which makes the maximal inner product with yℓ, and then to select
the maximal of the resulting L inner products and the corresponding to this maximum
column of P .
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We see that if Dℓ are well organized, we can use the approach from section 3.5.2 to approximate the
solution to the VI generated by F on H. Note that in the case in question the dual gap function
ǫVI(η|F,H) admits a transparent interpretation in terms of the Nash Equilibrium problem we are
solving: for η = [w1; ...;wL] ∈ H, we have

ǫVI(η|F,H) ≥ ǫNash(η) :=

L∑

ℓ=1

[
Lℓ(η)− min

w′
ℓ∈∆Nℓ

Lℓ(w1, ..., wℓ−1, w
′
ℓ, wℓ+1, ..., wL)

]
, (37)

and the right hand side here is the sum, over the players, of the (nonnegative) incentives for a player ℓ
to deviate from his strategy wℓ to another mixed strategy when all other players stick to their strategies
as given by η. Thus, small ǫVI([w1; ...;wL]|·, ·) means small incentives for the players to deviate from
mixed strategies wℓ.

Verification of (37) is immediate: denoting fℓ = ∇wℓ
〈gℓ, w〉, by definition of ǫVI we have

for every η′ = [w′
1; ...;w

′
L] ∈ H:

ǫVI(η|F,H) ≥ 〈F (η′), η − η′〉 = ∑
ℓ〈∇wℓ

Lℓ(η
′), ηℓ − η′ℓ〉

=
∑

ℓ〈fℓ, ηℓ − η′ℓ〉+
∑

ℓ,ℓ′〈DT
ℓ M

ℓℓ′Dℓ′w
′
ℓ′ , wℓ − w′

ℓ〉
=

∑
ℓ〈fℓ, ηℓ − η′ℓ〉+

∑
ℓ,ℓ′〈DT

ℓ M
ℓℓ′Dℓ′wℓ′ , wℓ − w′

ℓ〉
[since

∑
ℓ,ℓ′〈DT

ℓ M
ℓℓ′Dℓ′zℓ′ , zℓ〉 = 0 due to M ℓℓ′ = −[M ℓ′ℓ]T ]

=
∑

ℓ〈∇wℓ
L(η), wℓ − w′

ℓ〉 =
∑

ℓ[Lℓ(η)− Lℓ(w1, ..., wℓ−1, w
′
ℓ, wℓ+1, ..., wL)]

[since Lℓ is affine in wℓ]

and (37) follows.

3.6 Relation to [14]

Here we demonstrate that the decomposition approach to solving VI’s with monotone operators on
LMO-represented domains cover the approach, based on Fenchel-type representations, developed in
[14]. Specifically, let H be a compact convex set in Euclidean space Eη, G(·) be a monotone vector
field on H, and η 7→ Ax + a be an affine mapping from Eη to Euclidean space Eξ. Given a convex
compact set Ξ ⊂ Eξ, let us set

Θ = Ξ×H, Φ(ξ, η) = [Φξ(ξ, η) := Aη + a; Φη(ξ, η) := G(η) −A∗ξ] : Θ → Eξ × Eη, (38)

so that Φ clearly is a monotone vector field on Θ. Assume that η(ξ) : Ξ → H is a somehow selected
strong solution to VI(Φη(ξ, ·),H):

∀ξ ∈ Ξ : η(ξ) ∈ H & 〈G(η(ξ)) −A∗ξ, η − η(ξ)〉︸ ︷︷ ︸
=〈Φη(ξ,η(ξ)),η−η(ξ)〉

≥ 0∀η ∈ H; (39)

(cf. (29)); note that required η(ξ) definitely exists, provided that G(·) is continuous and monotone.
Let us also define ξ(η) as a selection of the point-to-set mapping η 7→ Argmin ξ∈Ξ〈Aη + a, ξ〉, so that

∀η ∈ H : ξ(η) ∈ Ξ & 〈Aη + a, ξ − ξ(η)〉︸ ︷︷ ︸
=〈Φξ(ξ(η),η),ξ−ξ(η)〉

≥ 0,∀ξ ∈ Ξ (40)

(cf. (30)).
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Observe that with the just defined Ξ, H, Θ, Φ, η(·), ξ(·) we are in the direct product case of the
situation described in section 3.2. Since we are in the direct product case, (Φ, η(·)) is η-regular, and
we can take, as the induced primal vector field associated with (Φ, η(·)), the vector field

Ψ(ξ) = Aη(ξ) + a = Φξ(ξ, η(ξ)) : Ξ → Eξ, (41)

and as the induced dual vector field, the field

Γ(η) = G(η) −A∗ξ(η) = Φη(ξ(η), η) : H → Eξ, (42)

Note that in terms of [14], relations (41) and (39), modulo notation, form what in the reference is
called a Fenchel-type representation (F.-t.r.) of a vector field Ψ : Ξ → Eξ, the data of the represen-

tation being Eη, A, a, η(·), G(·), H; on a closer inspection, every F.-t.r. of a given monotone vector
field Ψ : Ξ → Eξ can be obtained in this fashion from some setup of the form (38).

Assume now that Ξ is LMO-representable, and we have at our disposal G-oracle which, given on
input η ∈ H, returns G(η). This oracle combines with LMO for Ξ to induce a procedure which, given
on input η ∈ H, returns Γ(η). As a result, we can apply the decomposition machinery presented
in sections 3.2 – 3.5 to reduce solving VI(Ψ,Ξ) to processing (Γ,H) by an algorithm with accuracy
certificates. It can be easily seen by inspection that this reduction recovers constructions and results
presented in . The bottom line is that the developed in section 3 decomposition-based approach
to solving VI’s with monotone operators on LMO-represented domains covers the developed in [14,
sections 1 – 4] approach based on Fenchel-type representations of monotone vector fields5.
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A Appendix

A.1 Proof of Lemma 1

It suffices to prove the φ-related statements. Lipschitz continuity of φ in the direct product case is
evident. Further, the function θ(x1, x2; y1) = max

y2∈Y2[y1]
Φ(x1, x2; y1, y2) is convex and Lipschitz con-

tinuous in x = [x1;x2] ∈ X for every y1 ∈ Y1, whence φ(x1, y1) = min
x2∈X2[x1]

θ(x1, x2; y1) is convex

and lower semicontinuous in x1 ∈ X1 (note that X is compact). On the other hand, φ(x1, y1) =

max
y2∈Y2[y1]

min
x2∈X2[x1]

Φ(x1, x2; y1, y2) = max
y2∈Y2[y1]

[
χ(x1; y1, y2) := min

x2∈X2[x1]
Φ(x1, x2; y1, y2)

]
, so that χ(x1; y1, y2)

is concave and Lipschitz continuous in y = [y1; y2] ∈ Y for every x1 ∈ X1, whence

φ(x1, y1) = max
y2∈Y2[y1]

χ(x1; y1, y2)

is concave and upper semicontinuous in y1 ∈ Y1 (note that Y is compact).
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Next, we have

SadVal(φ,X1,X2) = inf
x1∈X1

[
sup
y1∈Y1

[
sup

y2:[y1;y2]∈Y
inf

x2:[x1;x2]∈X
Φ(x1, x2; y1, y2)

]]

= inf
x1∈X1

[
sup

[y1;y2]∈Y
inf

x2:[x1;x2]∈X
Φ(x1, x2; y1, y2)

]

= inf
x1∈X1

[
inf

x2:[x1;x2]∈X
sup

[y1;y2]∈Y
Φ(x1, x2; y1, y2)

]
[by Sion-Kakutani Theorem]

= inf
[x1;x2]∈X

sup
[y1;y2]∈Y

Φ(x1, x2; y1, y2) = SadVal(Φ,X, Y ),

as required in (2). Finally, let x̄ = [x̄1; x̄2] ∈ X and ȳ = [ȳ1; ȳ2] ∈ Y . We have

φ(x̄1)− SadVal(φ,X1, Y1) = φ(x̄1)− SadVal(Φ,X, Y ) [by (2)]
= sup

y1∈Y1

φ(x̄1, y1)− SadVal(Φ,X, Y )

= sup
y1∈Y1

sup
y2:[y1;y2]∈Y

inf
x2:[x̄1;x2]∈X

Φ(x̄1, x2; y1, y2)− SadVal(Φ,X, Y )

= sup
[y1;y2]∈Y

inf
x2:[x̄1;x2]∈X

Φ(x̄1, x2; y1, y2)− SadVal(Φ,X, Y )

= inf
x2:[x̄1;x2]∈X

sup
y=[y1;y2]∈Y

Φ(x̄1, x2; y)− SadVal(Φ,X, Y )

≤ sup
y=[y1;y2]∈Y

Φ(x̄1, x̄2; y)− SadVal(Φ,X, Y )

= Φ(x̄)− SadVal(Φ,X, Y )

and

SadVal(φ,X1, Y1)− φ(ȳ1) = SadVal(Φ,X, Y )− φ(ȳ1) [by (2)]

= SadVal(Φ,X, Y )− inf
x1∈X1

φ(x1, ȳ1)

= SadVal(Φ,X, Y )− inf
x1∈X1

[
inf

x2:[x1;x2]∈X
sup

y2:[ȳ1;y2]∈Y
Φ(x1, x2; ȳ1, y2)

]

= SadVal(Φ,X, Y )− inf
x=[x1;x2]∈X

sup
y2:[ȳ1;y2]∈Y

Φ(x; ȳ1, y2)

≤ SadVal(Φ,X, Y )− inf
x=[x1;x2]∈X

Φ(x; ȳ1, ȳ2)

= SadVal(Φ,X, Y )− Φ(ȳ).

We conclude that

ǫsad([x̄1; ȳ1]|φ,X1, Y1) =
[
φ(x̄1)− SadVal(φ,X1, Y1)

]
+

[
SadVal(φ,X1, Y1)− φ(ȳ1)

]

≤
[
Φ(x̄)− SadVal(Φ,X, Y )

]
+ [SadVal(Φ,X, Y )− Φ(ȳ)] = ǫsad([x̄; ȳ]|Φ,X, Y ),

as claimed in (3). �

A.2 Proof of Lemma 2

For x1 ∈ X1 we have

φ(x1; ȳ1) = min
x2:[x1;x2]∈X

max
y2:[ȳ1;y2]∈Y

Φ(x1, x2; ȳ1, y2) ≥ min
x2:[x1;x2]∈X

Φ(x1, x2; ȳ1, ȳ2)

≥ min
x2:[x1;x2]∈X

[
Φ(x̄; ȳ)︸ ︷︷ ︸
φ(x̄1;ȳ1))

+〈G, [x1;x2]− [x̄1; x̄2]
]
〉 [since Φ(x; ȳ) is convex and G ∈ ∂xΦ(x̄; ȳ)]

≥ φ(x̄1; ȳ1) + 〈g, x1 − x̄1〉 [by definition of g,G],
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as claimed in (a). “Symmetric” reasoning justifies (b). �

A.3 Proof of Lemma 3

Assume that (5) holds true. Then G clearly is certifying, implying that

χG(x̄1) = 〈G, [x̄1; x̄2]〉,

and therefore (5) reads

〈G, [x1;x2]〉 ≥ χG(x̄1) + 〈g, x1 − x̄1〉 ∀x = [x1;x2] ∈ X,

where, taking minimum in the left hand side over x2 ∈ X2[x1],

χG(x1) ≥ χG(x̄1) + 〈g, x1 − x̄1〉 ∀x1 ∈ X1,

as claimed in (ii).
Now assume that (i) and (ii) hold true. By (i), χG(x̄1) = 〈G, [x̄1; x̄2]〉, and by (ii) combined with

the definition of χG,

∀x = [x1;x2] ∈ X : 〈G, [x1;x2]〉 ≥ χG(x1) ≥ χG(x̄1) + 〈g, x1 − x̄1〉 = 〈G, x̄〉+ 〈g, x1 − x̄1〉,

implying (5). �

A.4 Dynamic Programming generated well-organized matrices

Consider the situation as follows. There exists an evolving in time system S, with state ξs at time
s = 1, 2, ...,m belonging to a given finite nonempty set Ξs. Further, every pair (ξ, s) with s ∈ {1, ...,m},
ξ ∈ Ξs is associated with nonempty finite set of actions As

ξ, and we set

Ss = {(ξ, a) : ξ ∈ Ξs, a ∈ As
ξ}.

Further, for every s, 1 ≤ s < m, a transition mapping πs+1(ξ, a) : Ss → Ξs+1 is given. Finally, we are
given vector-valued functions (”outputs”) χs : Ss → Rrs .

A trajectory of S is a sequence {(ξs, as) : 1 ≤ s ≤ m} such that (ξs, as) ∈ Ss for 1 ≤ s ≤ m and

ξs+1 = πs(ξs, as), 1 ≤ s < m.

The output of a trajectory τ = {(ξs, as) : 1 ≤ s ≤ m} is the block-vector χ[τ ] = [χ1(ξ1, a1); ...;χm(ξm, am)].
We can associate with S the matrix D = D[S] with K = r1 + ...+ rm rows and with columns indexed
by the trajectories of S; specifically, the column indexed by a trajectory τ is χ[τ ].

For example, knapsack generated matrix D is of the form D[S] with system S as follows:

• Ξs, s = 1, ...,m, is the set of nonnegative integers which are ≤ H;

• As
ξ is the set of nonnegative integers ps such that ps ≤ p̄s and ξ − hsps ≥ 0;

• the transition mappings are πs+1(ξ, a) = ξ − ahs;

• the outputs are χs(ξ, a) = fs(a), 1 ≤ s ≤ m.
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Observe that matrixD = D[S] is well organized, provided the cardinalities of Ξs and A
s
ξ are reasonable.

Indeed, given x = [x1; ...;xm] ∈ Rn = Rr1× ...×Rrm , we can identify D[x] by Dynamic Programming,
running first the backward Bellman recurrence

Us(ξ) = maxa∈As
ξ

{
xTs fs(ξ, a) + Us+1(ξ − hsa

}

As(ξ) = Argmax a ∈ As
ξ

{
xTs fs(ξ, a) + Us+1(ξ − hsa

} , ξ ∈ Ξs

}
, s = m,m− 1, ..., 1

(where Um+1(·) ≡ 0), and then identify the (trajectory indexing the) column of D corresponding to
D[x] by running the forward Bellman recurrence

ξ1 ∈ Argmax ξ∈Ξ1
U1(ξ) ⇒ a1 ∈ A1(ξ1) ⇒ ...

⇒ ξs+1 = πs(ξs, as) ⇒ as+1 ∈ As+1(ξs+1) ⇒ ...
, s = 1, 2, ...,m − 1.

A.5 Attacker vs. Defender via Ellipsoid algorithm

In our implementation,

1. Relation (26) is ensured by specifying U , V as centered at the origin Euclidean balls of radius
R, where R is an upper bound on the Euclidean norms of the columns in D and in A (such a
bound can be easily obtained from the knapsack data specifying the matrices D, A).

2. We processed the monotone vector field associated with the primal SP problem (28), that is, the
field

F (u, v) = [Fu(u, v) = A[u]− v;Fv(u, v) = u−D[v]]

by Ellipsoid algorithm with accuracy certificates from [15]. For τ = 1, 2, ..., the algorithm
generates search points [uτ ; vτ ] ∈ RK × RK , with [u1; v1] = 0, along with execution protocols
Iτ = {[ui; vi], F (ui, vi) : i ∈ Iτ}, where Iτ = {i ≤ τ : [ui; vi] ∈ U × V }, augmented by accuracy
certificates λτ = {λτi ≥ 0 : i ∈ Iτ} such that

∑
i∈Iτ

λτi = 1. From the results of [15] it follows
that for every ǫ > 0 it holds

τ ≥ N(ǫ) := O(1)K2 ln

(
2
R+ ǫ

ǫ

)
⇒ Res(Iτ , λτ |U × V ) ≤ ǫ. (43)

3. When computing F (ui, vi) (this computation takes place only at productive steps – those with
[ui; vi] ∈ U × V ), we get, as a byproduct, the columns Ai = A[ui] and D

i = D[vi] of matrices
A, D, along with the indexes qi, pi of these columns (recall that these indexes, according to
the construction of A, D, are collections of m nonnegative integers). In our implementation, we
stored these columns, same as their indexes and the corresponding search points [ui; vi]. As is
immediately seen, in the case in question the approximate solution [wτ ; zτ ] to the SP problem
of interest (25) induced by execution protocol Iτ and accuracy certificate λτ is comprised of two
sparse vectors

wτ =
∑

i∈Iτ

λτi δ
D
pi , z

τ =
∑

i∈Iτ

λτi δ
A
qi (44)

where δDp is the “p-th basic orth” in the simplex ∆N of probabilistic vectors indexed by pure

strategies of Defender, and similarly for δAq . Thus, we have no difficulties with representing our
approximate solutions6, in spite of their huge ambient dimension.

6Note that applying Caratheodory theorem, we could further “compress” the representations of approximate solutions
– make these solutions convex combinations of at most K + 1 of δDpi ’s and δApi ’s.
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According to our general theory and (43), the number of steps needed to get an ǫ-solution [w; z] to
the problem of interest (i.e., a feasible solution with ǫsad([w; z]|ψ,W,Z) ≤ ǫ) does not exceed N(ǫ),
with computational effort per step dominated by the necessity to identify A[ui], D[vi] by Dynamic
Programming.

In fact, we used the outlined scheme with two straightforward modifications.

• First, instead of building the accuracy certificates λτ according to the rules from [15], we used
the best, given execution protocols Iτ , accuracy certificates by solving the convex program

min
λ

{
Res(Iτ , λ) := max

y∈U×V

∑

i∈Iτ

λi〈F (ui, vi), [ui; vi]− y〉 : λi ≥ 0,
∑

i∈Iτ

λi = 1

}

In our implementation, this problem was solved from time to time, specifically, once per 4K2

steps; with our simple U , V , this problem is well within the scope of cvx.

• Second, given current approximate solution (44) to the problem of interest, we can compute its
saddle point inaccuracy exactly instead of upper-bounding it by Res(Iτ , λτ |U × V ). Indeed, it
is immediately seen that

ǫsad([w
τ ; zτ ]|ψ,W,Z) = Max(AT [

∑

i∈Iτ

λτiD
i])−Min(DT [

∑

i∈Iτ

λτiA
i]).

In our implementation, we performed this computation each time when a new accuracy certificate
was computed, and terminated the solution process when the saddle point inaccuracy became
less than a given threshold (1.e-4).

A.6 Proof of Proposition 2

(i): Let ξ1, ξ2 ∈ Ξ, and let η1 = η(ξ1), η2 = η(ξ2). By (31) we have

〈Ψ(ξ2), ξ2 − ξ1) ≥ 〈Φ(ξ2, η2), [ξ2 − ξ1; η2 − η1]〉
〈Ψ(ξ1), ξ1 − ξ2) ≥ 〈Φ(ξ1, η1), [ξ1 − ξ2; η1 − η2]〉

Summing inequalities up, we get

〈Ψ(ξ2)−Ψ(ξ1), ξ2 − ξ1) ≥ 〈Φ(ξ2, η2)− Φ(ξ1, η1), [ξ2 − ξ1; η2 − η1]〉 ≥ 0,

so that Ψ is monotone.
Further, the first inequality in (33) is due to Lemma 6. To prove the second inequality in (33), let

It = {ξi ∈ Ξ,Ψ(ξi) : 1 ≤ i ≤ t}, Jt = {θi := [ξi; η(ξi)],Φ(θi) : 1 ≤ i ≤ t}, and let λ be t-step accuracy
certificate. We have

θ = [ξ; η] ∈ Θ ⇒∑t
i=1 λi〈Φ(θi), θi − θ〉 ≤ ∑t

i=1 λi〈Ψ(ξi), ξi − ξ〉 [see (31)]
≤ Res(It, λ|Ξ)
⇒ Res(Jt, λ|Θ) = supθ=[ξ;η]∈Θ

∑t
i=1 λi〈Φ(θi), θi − θ〉 ≤ Res(It, λ|Ξ).

(i) is proved.
(ii): Let η ∈ H. Invoking (32), we have

〈Γ(η), η̂ − η〉 ≤ 〈Φ(ξ(η), η), [ξ̂; η̂]− [ξ(η); η]〉 ≤ ǫVI(θ̂|Φ,Θ),

and (34) follows. �
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