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One of the most attractive recent approaches to processing well-structured large-scale convex optimization problems is
based on smooth convex-concave saddle point reformulation of the problem of interest and solving the resulting problem

by a fast first order saddle point method utilizing smoothness of the saddle point cost function. In this paper, we demonstrate
that when the saddle point cost function is polynomial, the precise gradients of the cost function required by deterministic
first order saddle point algorithms and becoming prohibitively computationally expensive in the extremely large-scale case,
can be replaced with incomparably cheaper computationally unbiased random estimates of the gradients. We show that for
large-scale problems with favorable geometry, this randomization accelerates, progressively as the sizes of the problem grow,
the solution process. This extends significantly previous results on acceleration by randomization, which, to the best of
our knowledge, dealt solely with bilinear saddle point problems. We illustrate our theoretical findings by instructive and
encouraging numerical experiments.

Keywords : convex-concave saddle point problems; large-scale convex programming; first order optimization algorithms;
acceleration by randomization

MSC2000 subject classification : Primary: 90C06; secondary: 90C25, 90C47, 90C52, 68W20
OR/MS subject classification : Primary: Programming; secondary: Nonlinear
History : Received March 27, 2013; revised November 29, 2013. Published online in Articles in Advance

September 29, 2014.

1. Introduction. The goal of this paper is to develop randomized first order algorithms for solving large-
scale “well-structured” convex-concave saddle point problems. The background and motivation for our work can
be briefly outlined as follows. Theoretically, all of convex programming is within the grasp of polynomial time
interior point methods (IPMs) capable of generating high-accuracy solutions at a low iteration count. However,
the complexity of an IPM iteration, in general, grows rapidly (as n3) with the design dimension n of the problem,
which in numerous applications (like linear programs with dense constraint matrices arising in signal processing)
make IPMs prohibitively time consuming in the large-scale case. There seemingly is consensus that “beyond the
practical grasp of IPMs,” one should use the first order methods (FOMs) which, under favorable circumstances,
allow medium-accuracy solutions in a (nearly) dimension-independent number of relatively cheap iterations.
Over the last decade, there was a significant progress in FOMs; to the best of our understanding, the key to
this progress is in discovering a way (Nesterov [11]) to utilize problems’ structure in order to accelerate FOM
algorithms and specifically to reduce a convex minimization problem minx∈X f 4x5 with potentially nonsmooth
objective f to a saddle point problem

min
x∈X

max
y∈Y

�4x1 y51 (SP)

where � is a C111 convex-concave function such that

f 4x5= max
y∈Y

�4x1 y50 (1)

The rationale is as follows: when f is nonsmooth (which indeed is the case in typical applications), the (unim-
provable in the large-scale case) rate of convergence of FOMs directly applied to the problem of interest
minx∈X f 4x5 is as low as O41/

√
t5, so finding a feasible �-optimal solution takes as many as O41/�25 itera-

tions. Utilizing representation (1), this rate can be improved to O41/t5; when X, Y are simple, this dramatic
acceleration keeps the iteration’s complexity basically intact.

Now, in the original Nesterov’s Smoothing (Nesterov [11]), (1) is used to approximate f by a C111 function
that is further minimized by Nesterov’s optimal algorithm for smooth convex minimization originating from
Nesterov [10]. An alternative is to work on (SP) “as it is” by applying to (SP) an O41/t5-converging saddle point
FOM, like the Mirror Prox algorithm (Nemirovski [8]); in what follows, we further develop this alternative.

When solving (SP) by an FOM, the computational effort per iteration has two components: (a) computing
the values of ï� at O415 points from Z = X × Y and (b) “computational overhead,” like projecting onto Z.
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Depending on problems’ structure and sizes, any one of these two components can become dominating; the
approach we are developing in this paper is aimed at the situation where the computational “expenses” related
to (a) by far dominate those related to (b) so that the “practical grasp” of the usual—deterministic—saddle point
FOMs as applied to (SP) is restricted with the problems where the required number of computations of ï�
(which usually is in the range of hundreds) can be carried out in a reasonable time. An attractive way to lift,
to some extent, these restrictions is to pass from the precise values of ï�, which can be prohibitively costly
computationally in the large-scale case, to computationally cheap unbiased random estimates of these values.
This idea (in retrospect, originating from the ad hoc sublinear type matrix game algorithm of Grigoriadis and
Khachiyan [3]) has been developed in several papers: see Arora and Kale [1], Nemirovski et al. [9], Juditsky
et al. [7, 4], Baes et al. [2], Juditsky and Nemirovski [6, §6.5.2], and references therein1. To the best of our
knowledge, for the time being “acceleration via randomization” was developed solely for the case of saddle point
problems with bilinear cost function �. The contribution of this paper is in extending the scope of randomization
to the case of when � is a polynomial.

The main body of this paper is organized as follows. In §2, we formulate the problem of interest and
present the necessary background on our “workhorse”—Mirror Prox algorithm. In §3, we develop a general
randomization scheme aimed at producing unbiased random estimates of ï� for a polynomial �. Theoretical
efficiency estimates for the resulting randomized saddle point algorithm are derived in §4. In §5, we illustrate
our approach by working out in full details two generic examples: optimizing the maximal eigenvalue of a
quadratic matrix pencil and low dimensional approximation of a finite collection of points. We show theoretically
(and illustrate by numerical examples) that in both these cases, in a meaningful range of problem sizes and �,
solving a problem within accuracy � by randomized algorithm is by far less demanding computationally than
achieving the same goal with the best known to us deterministic competitors, and the resulting “acceleration by
randomization” goes to � as the problem sizes grow.

2. Situation and goals.

2.1. Problem statement. Consider the situation as follows: let X ⊂ Ex1 Y ⊂ Ey be convex compact subsets
of Euclidean spaces, and let �4x1 y52 E 2=Ex ×Ey →R be a polynomial of degree d:

�4x1 y
︸︷︷︸

z

5=

d
∑

k=0

Qk4z1 : : : 1 z
︸ ︷︷ ︸

k

51 (2)

where Q0 is a constant, and for k > 0, Qk4z
11 : : : 1 zk5 is a k-linear symmetric form on E . From now on we

assume that �4x1 y5 is convex-concave on X × Y , that is, convex in x ∈X for fixed y ∈ Y and concave in y ∈ Y
for fixed x ∈X. Our problem of interest is the saddle point problem

SadVal = min
x∈X

max
y∈Y

�4x1 y50 (3)

Let

Opt4P5= min
x∈X

[

�̄4x5 2= max
y∈Y

�4x1 y5
]

4P5 and Opt4D5= max
y∈Y

[

�4y5 2= min
x∈X

�4x1 y5
]

4D5 (4)

be the primal-dual pair of convex programs associated with (3) so that Opt4P5= Opt4D5; let

DualityGap4x1 y5=
[

�̄4x5− Opt4P5
]

+
[

Opt4D5−�4y5
]

= �̄4x5−�4y5 (5)

be the associated duality gap; and, finally, let

F 4z 2= 6x3 y75= 6Fx4x1 y5=�′

x4x1 y53 Fy4x1 y5 2= −�′

y4x1 y572 Z 2=X × Y →E 2=Ex ×Ey (6)

be the monotone mapping associated with (3). Our ideal goal is, given tolerance � > 0, to find an �-solution to
(3), i.e., a point z� = 4x�1 y�5 ∈Z such that

DualityGap4z�5≤ �1 (7)

whence x� is a feasible �-optimal solution to 4P5, and y� is a feasible �-optimal solution to 4D5. We intend to
achieve this goal by utilizing randomized first order saddle point algorithm, specifically, Stochastic Mirror Prox
method (SMP) (Juditsky et al. [7]).

1 Note also a completely different type of randomization in smooth large-scale convex minimization proposed in Nesterov [12].
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2.2. Background on Stochastic Mirror Prox algorithm. A setup for SMP as applied to (3) is given by
• a norm � · � on the subspace

L6Z7 2= Lin4Z−Z5

in the embedding space E 2= Ex ×Ey of the domain Z 2=X × Y of the saddle point problem. The (semi)norm
on E conjugate to � · � is denoted by � · �∗:

���∗ = max
z∈L6Z7

{

��1 z� 2 �z� ≤ 1
}

3

• a distance-generating function (d.-g.f.) �4z52 Z → R, which should be convex and continuously differen-
tiable on Z and should be compatible with � · �, meaning strong convexity of �4 · 5, modulus 1, with respect
to � · �:

〈

�′4z5−�′4z′51 z− z′
〉

≥ �z− z′
�

2
∀ 4z1 z′

∈Z50

An SMP setup induces several important entities, specifically,
• �-center z� 2= arg minz∈Z �4z5 of Z;
• Bregman distance Vz4w5 2= �4w5−�4z5− ��′4z51w − z�, where z1w ∈ Z. By strong convexity of �, we

have Vz4w5≥
1
2�w− z�2;

• �-radius ì 2=
√

26maxZ �4·5− minZ �4·57; noting that 1
2�w−z��2 ≤ Vz�

4w5≤�4w5−�4z�5, we conclude
that

∀ 4w ∈Z52 �w− z� ≤ì3 (8)

• Prox-mapping Proxz4�5, z ∈Z, � ∈E, defined as

Proxz4�5= arg min
w∈Z

[

��1w� +Vz4w5
]

= arg min
w∈Z

[

�� −�′4z51w� +�4w5
]

0

As applied to (3), SMP operates with Stochastic Oracle representation of the vector field F associated with the
problem. A Stochastic Oracle is a procedure (“black box”) that, at tth call, a point zt being the input, returns
the random vector

g4zt1 �t5= F 4zt5+ã4zt1 �t5 ∈E

where ã4 · 1 · 5 is a deterministic function, and �11 �21 : : : 1 is a sequence of i.i.d. “oracle noises.” The SMP
algorithm is the recurrence

initialization: z1 = z�1

search points: zt 7→wt = Proxzt
4�tg4zt1 �2t−155 7→ zt+1 = Proxzt

4�tg4wt1 �2t55 7→ · · · 1

approximate solutions: zt = 4xt1 yt5=

[ t
∑

�=1

��

]−1 t
∑

�=1

��w�1

(9)

where �t > 0 are deterministic stepsizes.
The main results on SMP we need are as follows (see the case M =�= 0 of Juditsky et al. [7, Corollary 1]):

Theorem 1. Assume that L<� and � <� are such that

4a5 �F 4z5− F 4z′5�∗ ≤L�z− z′� ∀ z1 z′ ∈Z1

4b5 E�8ã4z1 �59= 0 ∀ z ∈Z1

4c5 E�8�ã4z1 �5�
2
∗
9≤ �2 ∀ z ∈Z0

(10)

Then for every t = 1121 : : : 1 the t-step SMP with constant stepsizes

�� = min
[

1
√

3L
1

ì
√

7�
√
t

]

11 ≤ � ≤ t (11)

ensures that

E8DualityGap4xt1 yt59≤Kt 2= max
[

2ì2L

t
1

6ì�
√
t

]

0 (12)

In addition, preserving 10(b) and strengthening 10(c) to

E�8ã4z1 �59= 01E
{

exp8�ã4z1 �5�2
∗
/�29

}

≤ exp819 (13)

we have an exponential bound on large deviations: for every å> 0, we have

Prop
{

DualityGap4xt1 yt5 >Kt +å
7ì�

2
√
t

}

≤ exp8−å2/39+ exp8−åt90 (14)
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3. Randomization. Problem (3) by itself is a fully deterministic problem: with “normal” representation of
the polynomial �4x1 y5 (e.g., by the list of its nonzero coefficients), a precise (� = 0) deterministic oracle for F is
available; utilizing this oracle, a solution of accuracy � is obtained in O415ì2L/� iterations, with computational
effort per iteration dominated by the necessity to compute the values of F at two points and the values of
two prox-mappings. When Z is “simple enough,” the complexity of the second of these two tasks—computing
prox-mappings—is a tiny fraction of the complexity of precise computation of the values of F . Whenever this
is the case, it might make sense to replace the precise values F (which can be very costly in the large-scale
case) with computationally cheap unbiased random estimates of these values. This is the option we intend to
investigate in this paper. We start with a general description of the randomization we intend to use.

Observe, first, that
F 4z5=Dï�4z51

where D = Diag8Idx1−Idy9, Idx and Idy being the identity mappings on Ex and Ey , respectively. Now, repre-
senting the polynomial �4z5 as

�4z5=

d
∑

k=0

Qk4z1 : : : 1 z
︸ ︷︷ ︸

k

51 (15)

where Qk4z
11 : : : 1 zk5 is a symmetric k-linear form on E; differentiating (15) in z and taking into account

symmetry of Qk, we have

�F 4z51h� = �Dï�4z51h� = �ï�4z51Dh� =

d
∑

k=1

kQk4Dh1 z1 0 0 0 1 z
︸ ︷︷ ︸

k−1

50 (16)

Now assume that we can associate with every z ∈Z a probability distribution Pz on E such that
∫

� dPz4�5= z ∀ z ∈E0 (17)

In order to get an unbiased estimate of F 4z5, one can act as follows:
• given z, draw d− 1 independent samples zi ∼ Pz, i = 11 : : : 1 d− 1;
• compute the linear form G=G6z11 : : : 1 zd−17 on E given by

∀h ∈E2 �G1h� =

d
∑

k=1

kQk

(

Dh1z11 z21 : : : 1 zk−1
)

1 (18)

thus ensuring that
E4z11 : : : 1zd−15∼Pz×···×Pz

{

G6z11 : : : 1 zd−17
}

= F 4z5 ∀ z ∈Z0 (19)

Note that we can represent a random variable distributed according to Pz as a deterministic function of z
and random variable � uniformly distributed on 60117, which makes G a deterministic function of z and � ∼

Uniform60117, as required by our model of a Stochastic Oracle.
Observe that for a general-type convex-concave polynomial �4x1 y5 of degree d, precise deterministic com-

putation of F 4z5 is as suggested by (18) with Pz being the unit mass sitting at the singleton z, that is, with
z1 = · · · = zd−1 = z. It follows that if the distributions Pz, for every z ∈ Z are such that computing the vectors
gk of coefficients of the linear forms Qk4Dh1 z11 : : : 1 zk−15 of h ∈ E is much cheaper than the similar task
for the linear forms Qk4Dh1 z1 : : : 1 z5 for a “general position” z ∈ Z, then computing the unbiased estimate
G = G6z11 : : : 1 zd−17 of F 4z5 is much cheaper computationally than the precise computation of F 4z5 so that
there are chances for the outlined randomization to reduce the overall complexity of computing �-solution to
(3). Let us look at a simple preliminary example:

Example 1 (Scalar case). Here E is just the space Rn of n-dimensional vectors, and we have access to
the coefficients of the k-linear forms Qk4·5 (e.g., Qk are given by lists of their nonzero coefficients). In this case,
we can specify Pz as follows:

Given z∈E=Rn\809, let Pz be the discrete probability distribution supported on the set 8f i =sign4zi5�z�1ei9
n
i=1,

where ei are the standard basic orths in E, with the probability mass of f i equal to �zi�/�z�1; when z = 0,
let Pz be the unit mass sitting at the origin. We clearly have Ef∼Pz

8f 9 = z, and all realizations of f ∼ Pz are
extremely sparse—with at most one nonzero entry. Now, in order to generate f ∼ Pz, we need preprocessing of
O415n arithmetic operations (a.o.) aimed to compute �z�1 and the “cumulative distribution” si = �z�−1

1

∑i
j=1 �zj �,
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i = 11 : : : 1 n. With this cumulative distribution at hand, to draw a sample f ∼ Pz takes just O415 ln4n5 a.o.: we
draw at random a real � uniformly distributed in 60117 (which for all practical purposes is just O415 a.o.), find
by bisection the smallest i ∈ 811 : : : 1 n9 such that � ≤ si (O415 ln4n5 a.o.) and return the index i and the value
sign4zi5�z�1 of the only nonzero entry in the resulting vector f (O415 a.o.). Thus, generating z11 : : : 1 zd−1 costs
O4156n+d ln4n57 a.o. Now, with our “ultimately sparse” z11 : : : 1 zd−1, computing the n coefficients of the linear
form Qk4Dh1 z11 : : : 1 zk−15 of h takes at most O4156d + nC7 a.o., where C is an upper bound on the cost of
extracting a coefficient of the k-linear symmetric form Qk, k ≤ d, given its “address.” The bottom line is that
the complexity of computing G6z11 : : : 1 zd−17 is

Cr 6P 7=O4156n+d ln4n5+d6d+ nC77=O4156d2
+dnC7 a.o.1

On the other hand, computing F 4z5 exactly costs something like

Cd6P 7=O415
[

n+

d
∑

k=1

kNkC

]

a.o.

where Nk is the total number of nonzero coefficients in Qk4 · 1 : : : 1 · 5. Assuming that d = O415, we see that
unless all Qk are quite sparse—with just Nk =O4n5 nonzero coefficients—mimicking unbiased Stochastic Oracle
takes by orders of magnitude less computations than precise deterministic computation of F 4z5.

4. Complexity analysis. The discussion in the previous section demonstrates that in some interesting cases
unbiased random estimates of the vector field F associated with (3) are significantly cheaper computationally
than the precise values of F . This does not mean, however, that in all these cases randomization is profitable—it
well may happen that as far as the overall complexity of �-solution is concerned, expensive high-quality local
information is better than cheap low-quality information. We intend to analyze the situation in the regime when
the degree d of the polynomial � is a small integer formally treated as O415; this allows us to ignore in the
sequel the details on how the hidden factors in O4 · 5′s to follow depend on d.

4.1. Preliminaries.
Standing assumptions. Observe that

L6Z7 2= Lin4Z−Z5= Lin4X −X5× Lin4Y − Y 5= L6X7×L6Y 70 (20)

Now, the sets
Xs

=
1
2 6X −X71 Y s

=
1
2 6Y − Y 71 Zs

=
1
2 6Z−Z7=Xs

× Y s

are unit balls of certain norms � · �X on L6X7, � · �Y on L6Y 7 and � · � on L6Z7, with

�4x1 y5� = max6�x�X1�y�Y 71 x ∈ L6X71 y ∈ L6Y 70 (21)

From now on, we make the following:

Assumption A. The just defined norm � · � with the unit ball 1
2 6Z−Z7 is the norm used in the SMP setup,

while the d.-g.f. �4x1 y5 is of the form �X4x5 + �Y 4y5, where 4� · �X1�X4 · 55 and 4� · �Y 1�Y 4 · 55 form SMP
setups for 4X1Ex5 and 4Y 1Ey5 respectively.2

Note that
• We have

�6�3�7�∗ = ���X1∗ + ���Y 1∗1 (22)

where � · �X1∗ and � · �Y 1∗ are the (semi)norms conjugate to � · �X , � · �Y , respectively. In particular, we have

�F 4z5�∗ = �ï�4z5�∗1 �F 4z5− F 4z′5�∗ = �ï�4z5−ï�4z′5�∗ ∀ z1 z′
∈E0 (23)

• The �-radius ì of Z is

ì=
√

ì2
X +ì2

Y 1 ìX =
√

26maxx∈X �X4x5− minx∈X �X4x571

ìY =
√

26maxy∈Y �Y 4y5− miny∈Y �Y 4y570
(24)

2 Note that such a sum indeed is a d.-g.f. fitting the norm � · �.
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Scale factor. When speaking about complexity of finding �-solution, we shall express it in terms of the
relative accuracy � = �/V, where the scale factor V is defined as follows. Let Ẑ be the convex hull of 809∪Z,
and let

�̂4z5=�4z5−�405− ��′4051 z� =

d
∑

k=2

Qk4z1 : : : 1 z50

We set
V=VZ6�7 2= max

z∈Ẑ
�̂4z5− min

z∈Ẑ
�̂4z50 (25)

The importance of this scale factor in our contents stems from the following simple observation (see also
Lemma 2).

Lemma 1. For properly chosen positive real C415 depending solely on d, for all k, 2 ≤ k ≤ d, and all
collections z11 : : : 1 zk of vectors from L6Ẑ7, one has

∣

∣Qk4z
11 : : : 1 zk5

∣

∣≤C415V
k
∏

i=1

�zi�Ẑ0
3 (26)

In particular, the vector field F 4z5 associated with (3) satisfies (10(a)) with

L=C415V
d
∑

k=2

k4k− 152k−2 2=C425V1 (27)

where C425 depends solely on d.

For proof, see the appendix.
An immediate question related to the definition of the scaling factor is whether a “shift of the problem by

a ∈ E”—a simple substitution of variables z = w − a—changes the factor and thus the complexity estimates,
although such a substitution leaves the problem “the same.” The answer is as follows: although the “shift option”
should be kept in mind, such a shift changes the Stochastic Oracle as given by (18). Indeed, this oracle is defined
in terms of the homogeneous components in the Taylor decomposition of �4 · 5 taken at the origin, and this is
why the origin is participating in the description of Ẑ and thus of V. Shifting the origin, we, in general, change
the SO4 (in particular, its computational complexity can change completely). Thus, there is nothing strange that
our scaling of the accuracy (and thus the efficiency estimates) corresponding to a given Z and a given (implicitly
participating in (18)) SO is not translation invariant.

4.2. Complexity analysis.
Preliminaries. From now on we assume that as applied to (3), SMP utilizes Stochastic Oracle SO given

according to (18) by a family of probability distributions P= 8Pz 2 z ∈Z9 on E satisfying (17) and we make the
following.

Assumption B. For some � ≥ 0, all distributions Pz, z ∈ Z, are supported on the set Z + 2�Zs ⊂ Aff4Z5,
where Zs =

1
2 6Z−Z7 and Aff4Z5 is the affine hull of Z.

In particular, when Pz is supported on Z for all z ∈Z (“proper case”), Assumption B is satisfied with �= 0.
It is time now to note that the SO we have developed so far gives rise to a parametric family of Stochastic

Oracles, specifically, as follows. First of all, our basic SO in fact can be “split” into two Stochastic Oracles,
SOx and SOy , providing estimates of the x- and the y-components Fx1 Fy of F 4z5= 6Fx4z53 Fy4z57: the estimates

Ex 3 Gx =Gx6z
11 : : : 1 zd−172 ∀� ∈Ex2 �Gx1 �� =

d
∑

k=1

kQk

(

6�3071 z11 : : : 1 zk−1
)

1

Ey 3 Gy =Gy6z
11 : : : 1 zd−172 ∀� ∈Ey2 �Gy1�� = −

d
∑

k=1

kQk

(

603�71 z11 : : : 1 zk−1
)

0

3 Recall that for a convex compact set U , � · �U is the norm on the linear span L6U7 of U with the unit ball U s =
1
2
6U − U7; see the

beginning of §4.1.
4 For example, with �4x1 y5 ≡ x3, the oracle (18) is G = 63x1x2307, zi = 6xi307 ∼ Pz. Substituting x = 1 + h, carrying out the construction
of the SO “in h-variable” and translating the result back to x-variable, the resulting SO turns out to be G= 63x1x2 + 3x1 − 3x2307, which
is not the oracle we started with.
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Here, as above, z11 : : : 1 zd−1 are, independently of each other, sampled from Pz. Now, given two positive integers
kx1 ky , we can “recombine” our “partial stochastic oracles” SOx, SOy into a new Stochastic Oracle SOkx1 ky

as
follows: in order to generate a random estimate of F 4z5 given z ∈Z, we generate 4d−15max6kx1 ky7 independent
samples zk� ∼ Pz, 1 ≤ k ≤ d− 1, 1 ≤ � ≤ kxy 2= max6kx1 ky7 and then set

g =G
kx1 ky
z

[

8zk�9 1≤k≤d−11
1≤�≤kxy

]

=

[

1
kx

kx
∑

�=1

Gx

[

z1
�1 : : : 1 z

d−1
�

]

3
1
ky

ky
∑

�=1

Gy

[

z1
�1 : : : 1 z

d−1
�

]

]

0 (28)

In the sequel, we refer to kx and ky as the x- and y-multiplicities of the Stochastic Oracle SOkx1 ky
. We will

make use of the following:

Lemma 2. Under Assumptions A, B, for all positive integer multiplicities kx, ky , SOkx1ky
ensures validity of

10(b), same as the validity of 10(b) and (13) with

� =C435V41 +�5d−1
[

min611ìX/
√
kx7+ min611ìY /

√
ky7
]

1 (29)

where C435 depends solely on d.

For proof, see the appendix.
We have arrived at the following.

Theorem 2. Let t ≥ 1 be given, let Assumptions A, B be satisfied, and let problem (3) be solved by t-step
SMP utilizing SOkx1 ky

, with the parameters L, � underlying the stepsize policy (11) given by (27), (29). Then,
for some C depending solely on d,

4a5 E8DualityGap4xt1 yt59

≤K4t5 2=C

[

ì2
X +ì2

Y

t
+

√

ì2
X +ì2

Y 41 +�5d−1�
√
t

]

V� = min611ìX/
√
kx7+ min611ìY /

√
ky73

4b5 Prop
{

DualityGap4xt1 yt5 >K4t5+Cå

√

ì2
X +ì2

Y 41 +�5d−1�V
√
t

}

≤ exp8−å2/39+ exp8−åt9 ∀å> 00

(30)

5. Illustrations. We illustrate the proposed approach by two examples. The first of them is of a purely
academic nature; the second can pretend to be of some applied interest. When selecting the examples, our major
goal was to illustrate randomization schemes different from the one in Example 1.

5.1. Illustration I: Minimizing the maximal eigenvalue of a quadratic matrix pencil. The problem we
are interested in is as follows: We are given a symmetric matrix quadratically depending on the “design variables”
x11 : : : 1 xJ , which themselves are matrices:

A4x5=

I
∑

i=1

[

aT
i x

T
j4i5qixj4i5ai + bT

i xj4i5ci + cTi x
T
j4i5bi

]

+d ∈Ey 2= Sm1 (31)

where
• Sm is the space of m×m symmetric matrices equipped with the Frobenius inner product;
• x = 8xj ∈Rmj×nj 9Jj=1 is a collection of variable matrices that we treat as a block-diagonal rectangular matrix

with diagonal blocks xj , 1 ≤ j ≤ J . We denote the linear space of all these matrices by Ex and equip it with the
Frobenius inner product;

• j4i5 ∈ 811 : : : 1 J 9, 1 ≤ i ≤ I , are given integers;
• 8ai1 bi1 ci1 qi9

I
i=1, d are data matrices of appropriate sizes and structures:

ai1 ci ∈Rnj4i5×m1 bi ∈Rmj4i5×m1 qi ∈ Smj4i51 d ∈ Sm0

In addition, we assume that all qi are positive semidefinite and that the values j4i5, 1 ≤ i ≤ I , cover the entire
range 1 ≤ j ≤ J , meaning that every one of the blocks xj indeed participates in A4 · 5.
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For a matrix a ∈ Rp×q , let �4a5 = 6�14a53 : : : 3�min6p1 q74a57 be the vector of singular values of a arranged
in the nonascending order, and let �a�nuc = ��4a5�1 be the nuclear norm of a. For a symmetric matrix a, let
�max4a5 be the maximal eigenvalue of a. Finally, let

X = 8x ∈Ex2 �x�nuc ≤ 190

Our goal is to solve the optimization problem

Opt = min
x∈X

8�max4A4x5590 (32)

Denoting by Y the standard spectahedron in Sm

Y = 8y ∈ Sm2 y � 01Tr4y5= 19

and observing that �max4a5= maxy8Tr4ay52 y ∈ Y 9, we can convert the problem of interest into the saddle point
problem as follows:

Opt = min
x∈X

max
y∈Y

[

�4x1 y5 2= Tr4yA4x55
]

0 (33)

From qi � 0, i ≤ I , and because y � 0 for all y ∈ Y , it immediately follows that the restriction of � on y ∈ Y
is convex in x ∈ Ex; as a function of y, � is just linear. Thus, � is a convex-concave on X × Y polynomial of
degree d = 3. The monotone mapping (6) associated with (33) is

Fx4x1 y5= 2 Diag
{

∑

i2 j4i5=j

6qixjaiya
T
i + biyc

T
i 711 ≤ j ≤ J

}

∈Ex1

Fy4x1 y5= −A4x51

(34)

Now let us apply to (33) the approach we have developed so far.
1. First, let us fix the setup for SMP. We are in the situation when Xs 2= 1

2 6X −X7 is X—the unit ball of the
nuclear norm on Ex; thus, � · �X is the nuclear norm on Ex. The set Y s = 1

2 6Y −Y 7 clearly is contained in the unit
nuclear norm ball of Sm and contains the concentric nuclear norm ball of radius 1/2, meaning that � · �Y is
within factor 2 of the nuclear norm:

2�y�nuc ≥ �y�Y ≥ �y�nuc ∀y ∈ Sm
=Ey0

The best, within O415 factors, known so far under circumstances choice of the d.-g.f.’s is (see Juditsky and
Nemirovski [6, §5.7.1] or Propositions 2 and 3 in appendix)

�X4x = Diag8x11 : : : 1 xJ 95=O415 ln4n5
J
∑

j=1

min6mj 1nj 7
∑

`=1

�
q4n5
` 4xj51

n=

J
∑

j=1

min6mj1 nj 71 q4n5=
1

2 ln4n5
1

�Y 4y5=O415 ln4m5
m
∑

`=1

�
q4m5
` 4y51

(35)

with explicitly given absolute constants O415. This choice is reasonably good in terms of the values of the
corresponding radii of X, Y that turn to be “quite moderate:”

ìX ≤O415
√

ln4n51 ìY ≤O415
√

ln4m50 (36)

Note that the efficiency estimate (30) says that we are interested in values of ìX , ìY that are as small as
possible. At the same time, it is immediately seen that if �4 · 5 is a d.-g.f. for Z compatible with the norm
generated by Z (i.e., with the unit ball Zs =

1
2 6Z−Z7), then the �-radius of Z is at least O415, so that ìX , ìY

are “nearly as good” as they could be.
The outlined d.-g.f.’s are also the best known under circumstances in terms of the computational complexity

of the associated prox-mapping; it is easily seen that this complexity is dominated by the necessity to carry out
singular value decomposition of a matrix from Ex (which takes O4

∑

j mjnj min6mj1 nj 75 a.o.) and eigenvalue
decomposition of a matrix from Sm (O4m35 a.o.); see below.

4 To avoid trivial situations, we assume from now on that m> 1, n> 1.
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2. With our approach, the “basic” option when solving (33) is to use the deterministic version of SMP, i.e., to
use as Pz the unit mass sitting at z. The corresponding efficiency estimate can be obtained from (30) by setting
kx = ky = �; taking into account (36), the resulting estimate says that a solution to (33) of a given accuracy
� ≤V will be found in course of

Nd4�/V5=O415 ln4mn5V/� (37)

iterations. Now let us evaluate the arithmetic complexity of an iteration. From the description of the algorithm,
it is clear than the computational effort at an iteration is dominated by the necessity to compute exactly O415
values of the monotone mapping (34) and of O415 prox-mappings. To simplify evaluating the computational
cost of an iteration, assume from now on that we are in the simple case:

mj = nj = �1 1 ≤ j ≤ J 0

In this case, computing O415 values of the prox-mapping costs

Cprox =O4156m3
+ J�37 a.o.

Indeed, with our �X4 · 5, computing the x-component of prox-mapping reduces to solving the optimization problem
minv∈Ex 1�v�nuc≤16

∑J
j=

∑�
`=1 �

q
` 4vj5 − Tr4gT v57 with a given q ∈ 41127 and a given g ∈ Ex. To solve the problem, we

compute the singular value decompositions of all diagonal blocks gj in g, thus getting a representation g =U Diag8�9V T

with block-diagonal orthogonal matrices U , V , which takes O415J�3 a.o. It is immediately seen that the problem
admits an optimal solution v of the same structure as g: v =U Diag8�9V T . Specifying � reduces to solving the convex
optimization problem

min
�∈Rn 2 ���1≤1

[

∑

j

6��j �
q
+�j�j 7

]

3

this convex problem with separable objective and a single separable constraint clearly can be solved within machine
precision in O4n5 a.o. Finally, given �, it takes O415J�3 operations to compute the x-component U Diag8�9V T of
the prox-mapping. Thus, the total cost of the x-component of the prox-mapping is O415J�3 a.o. The situation with
computing the y-component of the mapping is completely similar, and the cost of this component is O415m3 a.o.

Looking at (34), we see that computing O415 values of F at “general position” points z, assuming all the data
matrices dense, is

CF =O415�m4� +m5I a.o.

As a result, the arithmetic cost of finding �-solution to (33) (and thus to (32)) by the deterministic version of
SMP is

Cd4�5=O415 ln4mn5 6

äprox
︷ ︸︸ ︷

m3
+ J�3

+

äF
︷ ︸︸ ︷

m�4m+ �5I7
︸ ︷︷ ︸

ä

V
�

a.o. (38)

Note that we are not aware of better complexity bounds for large-scale problems (32), at least in the case when
in the expression for ä, the term m3 is dominated by the sum of other terms.

3. Now let us look whether we can reduce the overall arithmetic cost of �-solution to (32) by randomization.
An immediate observation is that the only case when it can happen is the one of äF �äprox. Indeed, comparing
the efficiency estimates (30) and (37), we conclude that randomization can only increase the iteration cost of
�-solution; in order to overweigh the growth in the number of iterations, we need to reduce significantly the
arithmetic cost of an iteration, and to this end, this cost, in the deterministic case, should be by far dominated by
the cost of computing the values of F (the only component of our computational effort that can be reduced by
randomization). Assuming äF �äprox, let us look which kind of randomization could be useful in our context.
Note that in order for randomization to be useful, the underlying distributions Pz should be supported on the
set of those pairs (x1 y) for which computing an estimate g of F 4z5 according to (28) is much cheaper than
computing F at a general-type point 4x1 y5 ∈ Ex × Ey . A natural way to meet this requirement us to use the
“matrix analogy” of Example 1, where Pz are supported on the set of low rank matrices. Specifically, in order
to get an unbiased estimate of F 4z5, z= 4x1 y5 ∈X × Y , let us act as follows.

(a) We compute the singular value decomposition x = U Diag8�6x79V T of x = Diag8x11 : : : 1 xJ 9 (here
�6x7= 6�4x153 : : : 3�4xJ 57) and eigenvalue decomposition y =W Diag8�4y59W T of y,5 where U1V are block-
diagonal n× n orthogonal with � × � diagonal blocks, and W is an orthogonal m×m matrix.

5 Note that the singular values of y are the same as eigenvalues since y � 0 because y ∈ Y .
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(b) We specify Px as the distribution of a random matrix � ∈Ex, which takes the values

��6x7�1 Col`6U 7ColT` 6V 71 1 ≤ `≤ n1

with the probabilities 4�6x75`/��6x7�1 (when �6x7 = 0, � takes value 0 with probability 1); here Col`4A5
denotes `-th column of a matrix A.

(c) We specify Py as the distribution of the random symmetric matrix �, which takes values
Coli6W 7ColTi 6W 7, 1 ≤ i ≤m, with probabilities �i4y5, and specify Pz as the direct product of Px and Py .
Observe that the expectation of � ∼ Pz is exactly z and that Pz, z ∈ Z = X × Y , is supported on Z due to
��4x5�1 ≤ 1, x ∈X, ��4y5�1 = 1, y ∈ Y . In other words, Assumption B is satisfied with �= 0.

Note that with the just defined Pz, a realization � = 4�1�5∼ Pz is of very special structure:

� = u× vT 1 u1 v ∈Rn1 � =wwT 1 w ∈Rm3 (39)

moreover, among the J consecutive �-dimensional blocks uj1 vj , j = 11 : : : 1 J , of every one of the vectors
u1 v ∈Rn=J� , all blocks but one are zero, and the nonzero blocks uj , vj share a common index j .

It is immediately seen that with the just defined distributions Pz, the unbiased estimate (28) of F 4z5 is as
follows (see (34)):

Gkx
x =

1
kx

kx
∑

`=1

Diag
{

∑

i2 j4i5=j

[

qiu
2`−1
j 6v2`−1

j 7T aiw
2`6w2`7T aT

i + qiu
2`
j 6v

2`
j 7T aiw

2`−16w2`−17T aT
i

+2biw
2`−16w2`−17T cTi

]

1 j = 11 : : : 1 J
}

1

G
ky
y = −d−

1
ky

ky
∑

`=1

I
∑

i=1

[

1
2a

T
i v

2`−1
j4i5 6u2`−1

j4i5 7T qiu
2`
j4i56v

2`
j4i57

T ai +
1
2a

T
i v

2`
j4i56u

2`
j4i57

T qiu
2`−1
j4i5 6v2`−1

j4i5 7T

+bT
i u

2`−1
j4i5 6v2`−1

j4i5 7T ci + cTi v
2`−1
j4i5 6u2`−1

j4i5 7T bi
]

1

(40)

where the collections

�`
=
(

6u`
13 : : : 3 u

`
J 76v

`
13 : : : 3 v

`
J 7

T 1w`6w`7T
)

1 `= 11 : : : 12 max6kx1 ky7

are independently of each other drawn from Pz.
It is immediately seen that the arithmetic cost of computing 4Gx1Gy5 given z = 4x1 y5 is composed of the

components as follows.
1. “Setup cost”—one of computing singular value decomposition of x and eigenvalue decomposition of y6

(O4154m3 + J�35 a.o.) plus the cost of computing the “cumulative distributions” Sj4x5= ��6x7�−1
1

∑j
�=14�6x75� ,

1 ≤ j ≤ J�, Si4y5=
∑i

�=1 ��4y5 (O4154m+ J�5 a.o.).
2. After the setup cost is paid, for every `

—generating �` costs O4154ln4m5+ ln4J�5+m+ �5 a.o.;
—computing the contribution of 4�2`−11 �2`5 to Gx costs no more than O415I�4m+ �5 a.o. (look at (40)),

and this cost should be paid kx times;
—computing the contribution of 4�2`−11 �2`5 to Gy costs at most O4154m + �52K a.o., where K =

max1≤j≤J Card8i2 j4i5 = j9 (look at (40) and take into account that the vectors u`, v` have a single nonzero
�-dimensional block each), and this cost should be paid ky times.

Thus, the cost of computing 4Gkx
x 1G

ky
y 5 is

O415
(

m3 + J�3 + kx�4m+ �5I + ky4m+ �52K + ky ln4J 5
)

a.o.1

K = max
1≤j≤J

Card8i2 j4i5= j9
(41)

(note that J ≤ I). To simplify the analysis to follow, assume from now on that I = J ≤ exp84m + �52K9 and
j4 · 5 is one-to-one. In this case K = 1 and the cost of an iteration is

O415
(

m3
+ J�3

+ kx�4m+ �5J + ky4m+ �52
)

a.o. (42)

6 In fact, this cost is nonexistent: by construction of the method, the points z where one needs to evaluate F are the values of already
computed prox-mappings; according to how we compute these values (see above), they go together with their singular value/eigenvalue
decompositions.
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Now let us evaluate the overall complexity of finding, with confidence 1 − �, � � 1, an �-solution by the
randomized SMP. We assume from now on that � ≤V (otherwise the problem is trivial since DualityGap4z5≤V
for every z ∈X ×Y ). For the sake of simplicity, we restrict ourselves with the case of kx = ky = 1. Invoking the
efficiency estimate (30 b) with å=O415

√

ln41/�5 and taking into account (36) and that we are in the situation
of � = 0, the number t of iterations that results, with confidence 1 − �, in DualityGap4xt1 yt5 ≤ � is bounded
from above by

Nr1�4�5=O415 ln4mn5 ln41/�54V/�521

provided that ln41/�5 ≤ O415 ln4mn54V/�52. Thus, the iteration count now is nearly square of the one for the
deterministic algorithm, see (37). Taking into account (42), the overall complexity of achieving our goal with
the randomized algorithm does not exceed

Cr1�4�5=O415 ln4mn5 ln41/�56m3
+ J�3

+ 4m+ �54m+ �J 574V/�52 a.o.

The ratio of this quantity and the “deterministic complexity” (see (38) and take into account that we are in the
case of I = J ) is

R=
Cr1 �4�5

Cd4�5
=O415 ln41/�5

[

m3 + �3J + 4m+ �54m+ �J 5

m3 + �3J +m�4m+ �5J

]

︸ ︷︷ ︸

r

·
V
�
0

It is immediately seen that when V/� and � are fixed, and m1�1 J vary in such a way that m1n= �J go to �

and �/m, m/n go to 0, R goes to 0 as O41/m5, meaning that eventually the randomized algorithm outperforms
its deterministic competitor, and the “performance ratio” goes to � as the sizes m1n of the problem grow.

Numerical illustration. In the experiment we are about to describe, the sizes of problem (32) were selected as

m= 3001 mj ≡ nj ≡ � = 21 I = J = 510001 j4i5≡ i1

which results in dim x = 201000, dim y = 451150. The data matrices qi � 01 ai1 bi1 ci were generated at random
and normalized to have spectral norms 1, which ensures V≤ 1. A generated instance was processed as follows:

• First, it was solved by the Deterministic Mirror Prox algorithm (DMP) with online adjustable “aggressive”
stepsize policy (Nemirovski [8]); up to this policy, this is nothing but SMP with Pz specified as the unit mass
sitting at z, z ∈Z.

• Next, it was solved by SMP (10 runs) with kx = 1, ky = 1007 and the stepsize policy

�� = �min
[

1
√

3L
1

√

ì2
X +ì2

Y
√

7�
√
�

]

1 � = 1121 : : :

with L and � given by (27) (where we replace V by its valid upper bound 1) and (29) (where we use ìX1ìY

as given by (36)). When � = 1, our stepsize policy becomes the “rolling horizon” version of (11); it can be
shown that this policy (which does not require the number t of steps to be chosen in advance) is, theoretically,
basically as good as its constant stepsizes prototype. The role of the “acceleration factor” �≥ 1 is to allow for
larger stepsizes than those given by the worst-case-oriented considerations underlying (11), the option that for
DMP is given by the aforementioned on-line adjustable stepsize policy (in our experiments, the latter resulted
in stepsizes that, at average, were ≈ 250 times the “theoretically safe” ones). The value of � we used (1,000)
was selected empirically in a small series of pilot experiments and was never revised in the main series of
experiments.

• In every experiment, a solution with the duality gap ≤ � = 0001 was sought. Since the duality gap is not
directly observable, this goal was achieved as follows. From time to time (specifically, after every 30 iterations
for DMP and every 50 iterations for SMP) we computed F 4zt5 for the current approximate solution zt = 4xt1 yt5
(see (9)), thus getting g 2= ïx�4x

t1 yt5 and A4xt5 = ïy�4x
t1 yt5. We then computed the maximal eigenvalue

�+ = �max4A4x
t55, which is nothing but �̄4xt5 = maxy∈Y �4x1 y5, and the quantity �− = minx∈X6�4x

t1 yt5 +

Tr46x − xt7T g57, which is a lower bound on �4yt5 = minx∈X �4x1 y
t5. The quantity ã = �+ − �− is an upper

bound on DualityGap4xt1 yt5, and the relation ã≤ � = 0001 was used as the termination criterion.
The results of a typical experiment are presented in Table 1. We see that although randomization increases

essentially the iteration count, it results in overall reduction of the CPU time by a quite significant factor.
It makes sense to note that of 2,167 sec CPU time for DMP, 91% (1,982 sec) were spent on computing the
values of F , and just 9% on computing prox-mappings; for SMP, both these components take nearly equal times.

7 With our m1�1 J , the coefficient at kx in the right-hand side of (41) is nearly 30 times larger than the one at ky ; this is why we use ky � kx .
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Table 1. Effect of randomization, problem (33) (i = j = 510001m= 3001 j4i5≡ i1mj ≡ nj ≡ 2).

Iteration count CPU, sec

Algorithm Min Mean Max Min Mean Max

DMP 61 2167
SMP 251 281 351 496 571 708

Note. DMP/SMP—deterministic/randomized mirror prox. Data for SMP are obtained in 10 runs
of the algorithm. Running times include those needed to check the termination criterion.

5.2. Illustration II: Low dimensional approximation. Consider the problem as follows: we are given n
unit vectors aj ∈Rm, 1 ≤ j ≤ n, and know that for some given k, 1 < k ≤m/2, and � ∈ 40115 all a′

js are at the
� · �2-distance at most � < 1 from a certain k-dimensional subspace L, common for all points. The problem is
to recover this subspace,8 which reduces to solving the problem

Opt∗ = max
x∈Pk

min
y∈Y

n
∑

j=1

yja
T
j xaj1 (43)

where Pk ⊂ Ex = Sm is the family of all orthoprojectors of rank k on Rm, and Y = 8y ∈ Rn
+
2
∑

j yj = 19 is the
standard simplex in Ey =Rn. The set Pk is nonconvex; we relax it to the set

X =
{

x ∈ Sm2 Im � x � 01Tr4x5= k
}

1

thus arriving at the relaxed saddle point problem

−Opt = min
x∈X

max
y∈Y

[

�4x1 y5 2= −

n
∑

j=1

yja
T
j xaj

]

Fx4x1 y5= −

n
∑

j=1

yjaja
T
j 1 Fy4x1 y5= 6aT

1 xa13 : : : 3 a
T
nxan7

(44)

(we have equivalently transformed the relaxed problem to fit our standard notation). Note that � is a polynomial
of degree d = 2 (just bilinear). Let us apply to (44) our approach.

Scale factor. We clearly have V≤ 1 (recall that �aj�2 = 1, 0 � x � Im for x ∈X, and �y�1 ≤ 1 for y ∈ Y ).
Setup. We set

�X4x5=
8

q41 + q5

m
∑

i=1

�
1+q
i 4x51 q = min611 ln4k5/ ln4m/k571

�Y 4y5=
8
√

e
p41 +p5

n
∑

j=1

y
1+p
j 1 p = 1/42 ln4n551

(45)

thus getting d.-g.f.’s for X, Y compatible with � · �X , � · �Y , respectively (Proposition 2 and Remark 1); the
corresponding radii of X, Y are

ìx ≤O415
√

k ln4k5/ ln4m/k51 ìY ≤O415
√

ln4n53 (46)

see (68).
Deterministic algorithm. When solving (44) within accuracy � < 1 by the deterministic algorithm DMP,

—the iteration count is Nd4�5=O4154k ln4k5/ ln4m/k5+ ln4n55/4�5,
—the complexity of an iteration is O4154m3 +n5 a.o. for computing prox-mappings and O415m2n a.o. for

computing the values of F .
Note that as far as deterministic solution algorithms are concerned, the outlined bounds result in the best known
to us overall arithmetic complexity of finding an �-solution in the large-scale case.

When n�m, the cost of prox-mapping is much smaller than the one of computing the values of F , implying
that there might be room for accelerating by randomization.

8 Note the difference with the principal component analysis: we want to minimize the maximal, over j , deviation of aj , from L rather than
the sum of squares of these deviations.
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Table 2. Deterministic (DMP) and randomized (SMP, kx = 1, ky = 10) algorithms on the
low dimensional approximation problem.

Method No. of steps CPU, sec Final deviation D

�= 0041 �+ � = 0045 DMP 20 478 00401
SMP 20 104 00427

�= 0061 �+ � = 0065 DMP 20 504 00603
SMP 20 105 00620

�= 0081 �+ � = 0085 DMP 20 478 00809
SMP 20 92 00819

Randomization. In order to compute, given z = 4x1 y5 ∈ X × Y , unbiased random estimates of Fx4x1 y5 and
Fy4x1 y5, we act as follows.

1. We associate with y the distribution Py on Y as follows: � ∼ Py takes the values ej (basic orths in Rn)
with probabilities yj , 1 ≤ j ≤ n (see Example 1); the corresponding random estimate Gx of Fx4x1 y5 takes the
values −aja

T
j with probabilities yj , 1 ≤ j ≤ n. Generating the estimate requires the “setup cost” of O4n5 a.o.;

after this cost is paid, generating the estimate takes O4156ln4n5+m27 a.o.
2. We associate with x ∈X the distribution Px on X as follows. Given x, we compute its eigenvalue decom-

position x =U Diag8�9U T . The vector � belongs to the polytope Q = 8� ∈Rm2 0 ≤ �i ≤ 1 ∀ i1
∑

i �i = k9. Now,
there is a simple algorithm in Juditsky et al. [4, §A.1] that allows us, given � ∈ Q, to represent � as a convex
combination

∑m
i=1 �i�

i of extreme points of Q (which are Boolean vectors with exactly k entries equal to 1); the
cost of building this representation is O415km2 a.o. We build this representation and define Px as the distribution
of a random symmetric matrix that takes values U Diag8�i9U T with probabilities �i, 1 ≤ i ≤ m, so that the
random estimate of Fy4x1 y5 is the vector with the entries G

y
j =

∑

`∈Ii
4aT

j Col`6U 752, 1 ≤ j ≤ n, where Ii is the
set of indexes of the k nonzero entries of the Boolean vector �i, and i takes values 11 : : : 1m with probabilities
�11 : : : 1 �m. Finally, we set Pz = Px × Py . Note that this distribution is supported on X × Y (i.e., Assumption B
is satisfied with �= 0). The “setup” cost of sampling from Px is O415m3 a.o.; after this cost is paid, generating
a sample value of Gy costs O415kmn a.o.

With the outlined randomization, the cost of generating a sample value of Gkx1ky
in the range ln4n5≤O415m2

costs
O4154m3

+ kxkmn+ kym
25 a.o.

When n � m � k and kx, ky are moderate, this cost is by far less than the cost O415m2n of deterministic
computation of F 4x1 y5, so our randomization indeed possesses some potential. Analysis completely similar to
the one in §5.1 shows that our current situation is completely similar to the one in the latter section: although
with kx = O415, ky = O415, the iteration count for the randomized algorithm is proportional to �−2 instead of
being proportional to �−1, as for the deterministic algorithm, the growth in this count, in certain meaningful
range of values of k1m1n1 � is by far overweight by reduction in the cost of an iteration. As a result, for � fixed
and in the case of appropriate proportion between k1m1n, the randomized algorithm progressively outperforms
its deterministic competitor as the sizes of the problem grow.

Numerical illustration. In the experiment we are about to describe, the sizes of problem (44) were selected as

m= 1001 k = 101 n= 30010000

The data points aj were selected at random in certain “smart” way aimed at creating difficult instances; we are
not sure that this goal was indeed achieved, but at least the PCA solution (which, with straightforward random
generation of aj , turns out to recover perfectly well the approximating subspace) was “cut off”: the largest, over
all j , distance of aj ’s to the k = 10-dimensional PCA subspace in our experiments was as large as 0.99.

Implementation of the approach was completely similar to the one outlined in §5.1; the only specific issue
which should be addressed here is the one of termination. Problem (44) by its origin is no more than a relaxation
of the “true” problem (43), so solving it within a given accuracy is not of much interest. Instead, we from time
to time (namely, every 10 iterations) took the x-component xt of the current approximate solution, subjected it
to eigenvalue decomposition, and checked straightforwardly what is the largest, over j ≤ n, � · �2-deviation D
of aj from the k-dimensional subspace of Rm spanned by k principal eigenvectors of xt . We terminated the
solution process when this distance was ≤ �+ �, where � is a prescribed tolerance.

Typical experimental results are presented in Table 2. The results look surprisingly good—the iteration count
is quite low and is the same for both deterministic and randomized algorithms. We do not know whether this

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

20
7.

93
.1

16
] 

on
 1

9 
A

ug
us

t 2
01

5,
 a

t 1
4:

12
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Ben-Tal and Nemirovski: Randomized Algorithms for Large-Scale Convex Polynomial Problems
Mathematics of Operations Research 40(2), pp. 474–494, © 2015 INFORMS 487

unexpected phenomenon reflects the intrinsic simplicity of the problem or our inability to generate really difficult
instances or is because we worked with reasonable but not “really small” values of �; this being said, we again
see that randomization reduces the CPU time by a quite significant factor.

Acknowledgments. Research of both authors was supported by the BSF [Grant 2008302]. Research of the second author
was also supported by NSF [Grants DMS-0914785 and CMMI-1232623].

Appendix A. Proofs

A.1. Proof of Lemma 1. In what follows, Ci are positive quantities depending solely on d, and Ẑ is the convex hull of
809∪Z. Observe that L6Ẑ7 2= Lin4Ẑ− Ẑ5⊃ L6Z7 2= Lin4Z−Z5 and Ẑs 2= 41/256Ẑ− Ẑ7⊃Zs 2= 41/256Z−Z7; as a result,

�z�Ẑ ≤ �z� ∀ z ∈ L6Z70 (47)

10. Observe that for some C1 one has

∀ 4z ∈ Ẑ12 ≤ k ≤ d52 �Qk4z1 : : : 1 z5� ≤C1V0 (48)

Indeed, let z ∈ Ẑ. The univariate polynomial

p4t5 2= �̂4tz5=

d
∑

k=2

Qk4z1 : : : 1 z5t
k

on the segment 0 ≤ t ≤ 1 is bounded in absolute value by V (since V is the variation of �̂ on Ẑ 3 0 and �̂405= 0), so that
the moduli �Qk4z1 : : : 1 z5� of its coefficients are bounded by C1V for some C1 depending solely on d.

20. Our next observation is that for some C2 one has

∀ 4z ∈ L6Ẑ712 ≤ k ≤ d52 �Qk4z1 : : : 1 z5� ≤C2V�z�k
Ẑ
0 (49)

Indeed, let 2 ≤ k ≤ d. By homogeneity it suffices to verify (49) when �z�Ẑ = 1, so that z= 1
2 6z

1 − z27 with some z11 z2 ∈ Ẑ.
Setting h4t11 t25= t1z

1 + t2z
2, consider the polynomial of two variables

p4t11 t25=Qk

(

h4t11 t251h4t11 t251 : : : 1 h4t11 t25
)

0

Observe that p is a polynomial of degree ≤ k ≤ d on the 2D plane that is bounded in absolute value by C1V in the triangle t11
t2 ≥ 01 t1 + t2 ≤ 1 (by (48) and using that for the outlined t11 t2 we have h4t11 t25 = 41 − t1 − t25 · 0 + t1z

1 + t2z
2 ∈ Ẑ). As

a result, the moduli of the coefficients of p do not exceed C3V with appropriately chosen C3, whence p41/21−1/25 =

Qk4z1 : : : 1 z5 is bounded in absolute value by C2V with appropriately chosen C2.
30. Now let 2 ≤ k ≤ d, and let z11 : : : 1 zk ∈ L6Ẑ7, �zi�Ẑ ≤ 1, 1 ≤ i ≤ k. Consider the polynomial of k real variables

p4t11 : : : 1 tk5=Qk

( k
∑

i=1

tiz
i1

k
∑

i=1

tiz
i1 : : : 1

k
∑

i=1

tiz
i

)

0

The degree of this polynomial does not exceed k ≤ d, and

�p4t11 : : : 1 tk5� ≤C2V�t1z
1
+ : : : + tkz

k
�
k
Ẑ

≤C2V�t�k1

by (49). It follows that for some C4 we have
∣

∣

∣

∣

¡kp4t11 : : : 1 tk5

¡tk¡tk−11 : : : 1 ¡t1

∣

∣

∣

∣

≤C4V0

The left-hand side in this relation is k!�Qk4z
11 : : : 1 zk5� (recall that Qk4 · 1 : : : 1 · 5 is k-linear and symmetric), and we see that

∀
{

zi ∈ L6Ẑ71�zi�Ẑ ≤ 1
}k

i=1
2
∣

∣Qk4z
11 : : : 1 zk5

∣

∣≤
C4

k!
V1

which by homogeneity implies (26).
40. It remains to prove the “in particular” part of Lemma 1. Taking into account (23), (20)–(22), to this end it suffices

to verify that the second order directional derivative D2�4z56h1h7 = d2/4dt25
∣

∣

t=0
�4z+ th5 taken at a point z ∈ Z along a

direction h ∈ L6Z7 satisfies
�D2�4z56h1h7� ≤L�h�

2

with L given by (27). This is immediate: by (2) we have

D2�4z56h1h7=
d
∑

k=2

k4k− 15Qk4h1h1 z1 : : : 1 z50

We have �z�Ẑ ≤ 2 by definition of � · �Ẑ (recall that z ∈ Z), so that by (26) the modulus of the right-hand side does not
exceed

∑d
k=2 k4k− 152k−2�h�2

Ẑ
C415V. It remains to note that �h�Ẑ ≤ �h� because h ∈ L6Z7 and (47). Q.E.D.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

20
7.

93
.1

16
] 

on
 1

9 
A

ug
us

t 2
01

5,
 a

t 1
4:

12
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Ben-Tal and Nemirovski: Randomized Algorithms for Large-Scale Convex Polynomial Problems
488 Mathematics of Operations Research 40(2), pp. 474–494, © 2015 INFORMS

A.2. Proof of Lemma 2.
10. Let, as always, Ẑ be the convex hull of 809 ∪ Z, and let us fix z ∈ Z. Consider the random vectors �x1 �y taking

values in Ex, Ey , respectively:

�x =Gx6z
11 : : : 1 zd−171 �y =Gy6z

11 : : : 1 zd−171 � = 6�x3 �y71

�x = �x − Fx4z51 �y = �y − Fy4z51 �= 6�x3 �y71

where z11 : : : 1 zd−1 are drawn, independently of each other, from Pz. We claim that for some C5, depending solely on d,
it holds

���∗ ≤C5V41 +�5d−10 (50)

Indeed, by construction of G6z11 : : : 1 zd−17 and in view of (2) we have

∀h ∈ L6Z72



















��1h� =

d
∑

k=1

kQk4Dh1 z11 : : : 1 zk−151

�F 4z51h� =

d
∑

k=1

kQk4Dh1 z1 : : : 1 z51

=⇒ ���∗ = max
h∈L6Z71�h�≤1

d
∑

k=1

k
[

Qk4Dh1 z1 : : : 1 z5−Qk4Dh1 z11 : : : 1 zk−15
]

≤ max
h2 �h�≤1

d
∑

k=2

kC415V�Dh�Ẑ

[

�z�k−1
Ẑ

+ �z1
�Ẑ�z2

�Ẑ: : : �z
k−1

�Ẑ

]

1

(51)

where the concluding inequality is due to (26) (take into account that h ∈ L6Z7= L6X7×L6Y 7, whence Dh ∈ L6Z7⊂ L6Ẑ7,
and that z1 zi ∈ Aff4Z5⊂ L6Ẑ7). Invoking (47), we get �Dh�Ẑ ≤ �Dh� = �h�. Along with this, z ∈ Z implies that �z�Ẑ ≤ 2,
and Assumption B combines with (47) and the relation �z′�Ẑ ≤ 2 for all z′ ∈ Z to imply that �zi�Ẑ ≤ 241 + �5. In view of
these observations, the concluding quantity in (51) is ≤

∑d
k=2 kC

415V2k−161 + 41 + �5k−17, so that ���∗ ≤ C5V41 + �5d−1

with C5 depending solely on d, as claimed in (50).
20. We need the following fact:

Proposition 1. Let F be a Euclidean space, � · � be a norm on F , � · �∗ be the conjugate norm, let æ be a Polish space
equipped with a Borel probability distribution, and F be the space of all Borel mappings f 2 æ → F such that for some
cf ∈ 401�5 it holds E8exp8�f 4 · 5�2

∗/c
2
f 99≤ exp819. Then

(i) F is a linear space, and the quantity �6f 7= inf8c > 02 E8exp8�f 4 · 5�2
∗/c

299≤ exp8199 is a (semi)norm on F;
(ii) Let U be a convex compact set in F such that U s = 41/256U −U7 is the unit ball of the norm � · �. Assume that U

admits a d.-g.f. �4 · 5 compatible with � · �, and let ì be the �-radius of U s . Then for properly chosen absolute constant
O415, with � =O415ì the following holds true:

(!) Let f11 f21 : : : 1 be an F -valued martingale-difference, that is, a sequence of random vectors taking values in F and
such that E�t−18ft9 ≡ 0 for all t, where E�t−1 is the conditional expectation with respect to the �-algebra spanned by
f11 : : : 1 ft−1. Assume that for a sequence of nonnegative deterministic reals �11�21 : : : 1 it holds

E�t−1

{

exp8�ft4 · 5�
2
∗/�

2
t 9
}

≤ exp819 a.s.

Then for every t one has

�6f1 + · · · + ft7≤ �

√

t
∑

�=1

�2
� 0 (52)

Proof. (i) is well known; for the sake of completeness, here is the proof. The fact that indeed needs verification is
the triangle inequality. Thus, let f 1 g ∈ F, a > �6f 7 and b > �6g7; all we need is to prove that a+ b ≥ �6f + g7. Setting
�= a/4a+ b5, we have

exp
{

�f + g�2
∗/4a+ b52

}

≤ exp
{

6�f �∗ + �g�∗7
2/4a+ b52

}

= exp
{

6�4�f �∗/a5+ 41 −�54�g�∗/b57
2
}

≤ � exp
{

4�f �∗/a5
2
}

+ 41 −�5 exp
{

4�g�∗/b5
2
}

1

where the concluding ≤ is due to the convexity of the univariate function exp8s29. Taking expectations in the resulting
inequality, we get E 8exp8�f + g�2

∗/4a+ b5299≤ exp819; that is, a+ b ≥ �6f + g7, as claimed. (i) is justified.
(ii) Let

�4u5=

{

�42u51u ∈
1
2U1

+�1 u 6∈ 1
2U1

so that Dom� =
1
2U , and let f 4�5 = maxu∈ 1

2 U
6��1u� − �4u57 be the Fenchel transform of �. Since � is strongly convex

on U , modulus 1, with respect to � · �, � is strongly convex on its domain, modulus 4 with respect to � · �, whence, by the
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standard properties of the Fenchel transformation, f possesses Lipschitz continuous gradient; specifically, �f ′4�5−f ′4�5� ≤

�� − ��∗/4 for all �1�. The Fenchel transform of the function �−4u5 = �4−u5 is f−4�5 = f 4−�5. Now let �s be the
inf-convolution of �4 · 5 and �−4 · 5; i.e., the function

�s4u5 = inf
v1w2 v+w=u

4�4v5+�−4w55= inf
v1w′ 2v−w′=u

4�4v5+�4w′55

=







min
v1w′∈41/25U 2 v−w′=u

6�4v5+�4v′571 u ∈U s = 1
2 6U −U71

+�1 u 6∈U s 0

The Fenchel transform of the inf-convolution of � and �− is the sum of the Fenchel transforms of � and �− (recall that
the functions are convex with closed compact domains and are continuous on their domains); that is, it is the function
g4�5 = f 4�5 + f 4−�5, so that the Fenchel transform of �s4 · 5 satisfies �g′4�5 − g′4�5� ≤ �� − ��∗/2. By the standard
properties of the Fenchel transform, it follows that �s4 · 5 is strongly convex, modulus 2 with respect to � · �, on its domain
(which is exactly the unit ball U s of the norm � · �), and the variation (the maximum minus the minimum) of �s on the
domain is ≤ì2 (since the variation of �4 · 5 over 1

2U , that is, the variation of �4 · 5 over U , is ì2/2). The bottom line is that
the unit ball U s of � · � admits a continuous strongly convex, modulus 1 with respect to � · �, function (specifically, 1

2�
s
∣

∣

U s )
with variation over U s not exceeding ì2/2. Invoking Juditsky and Nemirovski [5, Proposition 3.3], it follows that the space
4F 1� · �∗5 is O415ì2 regular (for details, see Juditsky and Nemirovski [5]). With this in mind, the conclusion (!) in (ii) is
an immediate consequence of Juditsky and Nemirovski [5, Theorem 2.1(ii)]. Q.E.D.

30. Now we can complete the proof of Lemma 2. We have already seen that SO generates unbiased random estimates
of F , whence SOkx 1 ky

possesses the same property; thus, SOkx 1 ky
meets the requirement 10(b), which is the first claim in

Lemma 2. Now let us prove the second claim in this Lemma. In the notation from item 10, setting F = L6X7 and denoting
by � the orthoprojector of Ex onto F ⊂Ex, (50) implies that

���x�X1∗ = ��x�X1∗ ≤C5V41 +�5d−1 (53)

(since ���∗ = ��x�X1∗ + ��y�Y 1∗). The x-component ãx of the “observation error” of SOkx 1 ky
(the difference ã = 6ãx3ãy7

of the random estimate of F 4z5 generated by SOkx 1 ky
and F 4z5) is

ãx =

kx
∑

t=1

ft =⇒ �ãx =

kx
∑

t=1

f̃t1 (54)

where f̃11 : : : 1 f̃kx are independent copies of the zero mean random vector k−1
x ��x ∈ F . Along with this, choosing a point

x̄ ∈X and setting X̃ =X − x̄ ⊂ F , �̃4�5=�4x̄+ �5, � ∈ X̃, we see that Xs =
1
2 6X̃ − X̃7 admits a d.-g.f., specifically, �̃4 · 5,

that is compatible with � · �X and is such that the �̃-radius of X̃ is ìX . Invoking Proposition 1.(ii) and taking into account
that we are in the situation �6f̃t7= �6ft7≤C5k

−1
x V41 +�5d−1 by (53), we get that for properly chosen C6 depending solely

on d we have

E
{

exp8�ãx�
2
X1∗/�̃

2
x 9
}

≤ exp8191 �̃x =C6ìXV41 +�5d−1/
√
kx

(note that �ãx�X1∗ = ��ãx�X1∗). Along with this, by (53) �f̃t�X1∗ ≤C5k
−1
x V41 +�5d−1 almost surely, whence

E
{

exp8�ãx�
2
X1∗/�̄

2
x 9
}

≤ exp8191 �̄x =C5V41 +�5d−10

The bottom line is that with properly selected C7 depending solely on d and with

�x =C7V41 +�5d−1 min
[

11ìX

/

√
kx
]

1

we have

E
{

exp8�ãx�
2
X1∗/�

2
x 9
}

≤ exp8190

By similar reasons, with properly selected C8 depending solely on d and with

�y =C8V41 +�5d−1 min
[

11ìY

/

√
ky
]

1

we have

E
{

exp8�ãy�
2
Y 1∗/�

2
y 9
}

≤ exp8190

Taking into account that �ã�∗ = �ãx�X1∗ + �ãy�Y 1∗ and item (i) of Proposition 1, the second claim in Lemma 2
follows. Q.E.D.
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A.3. Proofs for §5. What follows is a slight modification of the reasoning from Nesterov and Nemirovski [13, §A.2]; we
present it here to make the paper self-contained.

(a) Let Sm be the space of m×m symmetric matrices equipped with the Frobenius inner product; for y ∈ Sm, let �4y5
be the vector of eigenvalues of y (taken with their multiplicities in the nonascending order). For an integer k, 1 ≤ k ≤m, let
Y k = 8y ∈ Sm2 ��4y5�� ≤ 11��4y5�1 ≤ k9, so that Y k is the unit ball of certain rotation-invariant norm � · �4k5 on Sm.

Lemma 3. Let m1n1k be integers such that m≥ n≥ k ≥ 1, and let F be a linear subspace in Sm such that every matrix
y ∈ F has at most n nonzero eigenvalues. Let, further, q ∈ 40115, and let

�4y5=
1

1 + q

m
∑

j=1

��j4y5�
1+q 2 Sm

→R0

The function �4 · 5 is continuously differentiable and convex, and its restriction on the set Y k
F = 8y ∈ F 2 �y�4k5 ≤ 19 is strongly

convex with respect to � · �4k5 modulus
�= q min

[

11 1
2k

1+qn−q
]

0 (55)

Proof. 10. Observe that
�4y5= Tr4f 4y551 f 4s5=

1
1 + q

�s�1+q 0 (56)

Function f 4s5 is continuously differentiable on the axis and twice continuously differentiable outside of the origin; conse-
quently, we can find a sequence of polynomials fr4s5 converging, as r → �, to f along with their first derivatives uniformly
on every compact subset of R and, along with this, converging to f uniformly along with the first and the second derivative
on every compact subset of R\809. Now let y1h ∈ Sm, let y = uDiag8�9uT be the eigenvalue decomposition of y, and let
h= uĥuT . For a polynomial p4s5=

∑L
`=0 p`s

`, setting P4w5= Tr4
∑L

`=0 p`w
`52 Sm →R, and denoting by � a closed contour

in C encircling the spectrum of y, we have

(a) P4y5= Tr4p4y55=
∑m

j=1 p4�j4y55

(b) DP4y56h7= Tr
( L
∑

`=0

`p` Tr4y`−1h5

)

= Tr4p′4y5h5=

m
∑

j=1

p′4�j4y55ĥjj

(c) D2P4y56h1h7 =
d

dt

∣

∣

∣

∣

t=0

DP4y+ th56h7=
d

dt

∣

∣

∣

∣

t=0

Tr4p′4y+ th5h5

=
d

dt

∣

∣

∣

∣

t=0

1
2�ı

∮

�
Tr4h4zI − 4y+ th55−15p′4z5dz

=
1

2�ı

∮

�
Tr4h4zI − y5−1h4zI − y5−15p′4z5dz

=
1

2�ı

∮

�

m
∑

i1 j=1

ĥ2
ij

p′4z5

4z−�i4y554z−�j4y55
dz=

n
∑

i1 j=1

ĥ2
ijâij 1

âij =











p′4�i4y55−p′4�j4y55

�i4y5−�j4y5
1 �i4y5 6= �j4y51

p′′4�i4y551 �i4y5= �j4y50

We conclude from (a1b) that as k → �, the real-valued polynomials Fr4 · 5 = Tr4fr4 · 55 on Sm converge, along with their
first order derivatives, uniformly on every bounded subset of Sm, and the limit of the sequence, by 4a5, is exactly �4 · 5.
Thus, �4 · 5 is continuously differentiable, and 4b5 says that

D�4y56h7=
m
∑

j=1

f ′4�j4y55ĥjj 0 (57)

Along with this, (a− c) say that if U is a closed convex set in Sm that does not contain singular matrices, then Fr4 · 5, as
r → �, converge along with the first and the second derivative uniformly on every compact subset of U , so that �4 · 5 is
twice continuously differentiable on U , and at every point y ∈U we have

D2�4y56h1h7=
m
∑

i1 j=1

ĥ2
ijâij 1 âij =















f ′4�i4y55− f ′4�j4y55

�i4y5−�j4y5
1 �i4y5 6= �j4y51

f ′′4�i4y551 �i4y5= �j4y51

(58)

and in particular �4·5 is convex on U .
30. We intend to prove that (i) �4 · 5 is convex and (ii) its restriction on the set Y k

F is strongly convex, with certain modulus
�> 0, with respect to the norm � · �4k5. Since � is continuously differentiable, all we need to prove (i) is to verify that

�� ′4y′5−� ′4y′′51 y′
− y′′

� ≥ 0 (∗)
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for a dense in Sm ×Sm set of pairs 4y′1 y′′5, e.g., those with nonsingular y′ − y′′. For a pair of the latter type, the polynomial
q4t5 = Det4y′ + t4y′′ − y′55 of t ∈ R is not identically zero and thus has finitely many roots on 60117. In other words, we
can find finitely many points t0 = 0 < t1 < · · ·< tn = 1 such that all “matrix intervals” ãi = 4yi1 yi+15, yk = y′ + tk4y

′′ − y′5,
1 ≤ i ≤ n − 1, are composed of nonsingular matrices. Therefore, � is convex on every closed segment contained in one
of ãi’s, and since � is continuously differentiable, 4∗5 follows.

40. It remains to prove that with � given by (55) one has

〈

� ′4y′5−� ′4y′′51 y′
− y′′

〉

≥ ��y′
− y′′

�
2
4k5 ∀y′1 y′′

∈ Y k
F 0 (59)

Let � > 0, and let Y � be a convex open in Y k = 8y2 �y�4k5 ≤ 19 neighborhood of Y k
F such that for all y ∈ Y � at most n

eigenvalues of y are of magnitude > �. We intend to prove that for some �� > 0 one has

〈

� ′4y′5−� ′4y′′51 y′
− y′′

〉

≥ ���y
′
− y′′

�
2
4k5 ∀y′1 y′′

∈ Y �0 (60)

Same as above, it suffices to verify this relation for a dense in Y � ×Y � set of pairs y′1 y′′ ∈ Y �, e.g., for those pairs y′1 y′′ ∈ Y �

for which y′ − y′′ is nonsingular. Defining matrix intervals ãi as above and taking into account continuous differentiability
of �, it suffices to verify that if y ∈ãi and h= y′ − y′′, then D2�4y56h1h7≥ ���h�2

4k5. To this end observe that by (58) all
we have to prove is that

D2�4y56h1h7=
m
∑

i1j=1

ĥ2
ijâij ≥ ���h�

2
4k50 (61)

50. Setting �j = �j4y5, observe that �i 6= 0 for all i because of the origin of y. We claim that if ��i� ≥ ��j �, then
âij ≥ q��i�

q−1. Indeed, the latter relation definitely holds true when �i = �j . Now, if �i and �j are of the same sign, then
âij = 4��i�

q − ���
q
j 5/4��i� − ��j �5 ≥ q��i�

q−1, since the derivative of the concave (recall that 0 < q ≤ 1) function tq of t > 0
is positive and nonincreasing. If �i and �j are of different signs, then âij = 4��i�

q + ��j �
q5/4��i� + ��j �5 ≥ ��i�

q−1 because
��j �

q ≥ ��j ���i�
q−1, and therefore âij ≥ q��i�

q−1. Thus, our claim is justified.
Without loss of generality, we can assume that the positive reals �i = ��i�, i = 11 : : : 1m, form a nondecreasing sequence

so that, by above, âij ≥ q�
q−1
j when i ≤ j . Besides this, at most n of �j are ≥ �, since y′1 y′′ ∈ Y � and therefore y ∈ Y � by

convexity of Y �. By the above,

D2�4y56h1h7≥ 2q
∑

i<j≤m

ĥ2
ij�

q−1
j + q

m
∑

j=1

ĥ2
jj�

q−1
j 1

or, equivalently by symmetry of ĥ, if

hj
=













ĥ1j

ĥ2j
000

ĥj1 ĥj2 · · · ĥjj













and Hj is the Frobenius norm �hj�Fro of hj , then

D2�4y56h1h7≥ q
m
∑

j=1

H2
j �

q−1
j 0 (62)

60. Now note that

0 <�j ≤ 1 ∀ j1 �j ≤ �1 j ≤m− n1
m
∑

j=1

�j ≤ k (63)

because y ∈ Y � ⊂ Y k and �j > 0 for all j . Now, by the definition of � · �4k5, setting

� = �h�4k5

[

≡ �ĥ�4k5

]

1

observe that either � is the spectral norm ��4ĥ5�� of ĥ, or k� is the nuclear norm of ĥ. In the first case, the Frobenius
norm of ĥ is ≥ �, meaning that

∑m
j=1 H

2
j = �ĥ�2

Fro ≥ �2. Since q ∈ 40115 and 0 <�j ≤ 1 for all j by (63), we conclude from
(62) and from the evident relation �ĥ�2

Fro =
∑

j �h
j�2

Fro =
∑

j H
2
j that in the case in question we have

D2�4y56h1h7≥ q
m
∑

j=1

H2
j ≥ q�2

≡ q�h�
2
4k50 (64)

Now assume that we are in the second case:

k�h�4k5 = k� = �h�nuc = �ĥ�nuc0 (65)
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Observe that hj are matrices of rank ≤ 2, so that �hj�nuc ≤
√

2Hj , and since Ĥ =
∑m

j=1 h
j , we have �ĥ�nuc ≤

∑

j �hj�nuc ≤
√

2
∑

j Hj , which combines with (65) to imply the first inequality in the following chain:

k2
�h�

2
4k5 = �ĥ�

2
nuc ≤ 2

( m
∑

j=1

Hj

)2

= 2
( m
∑

j=1

6Hj�
4q−15/2
j 7�

41−q5/2
j

)2

≤ 2
( m
∑

j=1

�
q−1
j H 2

j

)( m
∑

j=1

�
1−q
j

)

[Cauchy inequality]

≤ 2q−1D2�4y56h1h7

( m
∑

j=1

�
1−q
j

)

[by (62)]

≤ 2q−1D2�4y56h1h7

(

4m− n5�1−q
+

m
∑

j=m−n+1

�
1−q
j

)

[by (63)]

≤ 2q−1D2�4y56h1h7

(

4m− n5�1−q
+

[

n−1
m
∑

j=m−n+1

�j

]1−q

n

)

[since 0 < q < 1]

≤ 2q−1D2�4y56h1h7

(

4m− n5�1−q
+ k1−qnq

)

[by (63)]0

Thus, in the case of (65) we have

D2�4y56h1h7≥
q

2
k2

4m− n5�1−q + k1−qnq
�h�

2
4k50

Setting

�� = q min
[

11 1
2

k2

4m− n5�1−q + k1−qnq

]

(66)

and recalling (64), we arrive at the desired inequality (61).
70. As we have already explained, (61) implies the validity of (60) with �� given by (66). Since Y k

F ⊂ Y � and �� → � as
� → +0 (see (55)), (59) follows. Q.E.D.

Lemma 3 is the key to the two statements as follows.

Proposition 2. Let k1m be integers such that 1 ≤ k ≤m/2, and let X = 8x ∈ Sm2 I � x � 01Tr4x5= k9. The function

�4x5=
4

�41 + q5

m
∑

j=1

��j4x5�
1+q1

q =

{

min611 ln4k5/ ln4m/k571 k > 11

1/42 ln4m551 k = 11
�=











11 k ≥
√
m1

q/21 1 < k<
√
m1

q/42
√
e51 k = 11

(67)

is convex continuously differentiable function on E that is strongly convex, modulus 1 with respect to � · �X , on X and thus
is a d.-g.f. for X compatible with � · �X . The �-radius of X satisfies

ìX ≤ 2

√

2k
�41 + q5

0 (68)

Proof. The only nonevident statement is that � is strongly convex, modulus 1 with respect to � · �X , on X, and this
is what we are about to prove. Let � · �4k5 be the norm on Sm with the unit ball Y k = 8y ∈ Sm2 ��4y5�� ≤ 11��4y5�1 ≤ k9,
and let

�4x5=
1

1 + q

m
∑

j=1

��j4x5�
1+q 0

When k ≥
√
m, Y k contains the unit ball of the Frobenius norm, and consequently � · �4k5 ≤ � ·�Fro, and q = 1, meaning that

the function �4 · 5= 1
2 � · �2

Fro is strongly convex, modulus 1, with respect to � · �Fro, and therefore is strongly convex, modulus
� 2= 1, with respect to � · �4k5 ≤ � ·�Fro. Let now k <

√
m. In this case q ∈ 40115, and therefore, by Lemma 3, � is strongly

convex, modulus � 2= q min611 1
2k

1+qm−q7, on Y k. Note that �= q/2 when k > 1 and �= q/42
√

e5 when k = 1.
Now observe that X clearly is contained in Y k, implying that �4x5 is strongly convex, modulus � with respect to

� · �4k5, on X. At the same time, we claim that the � · �X-unit ball Xs ⊂ L6X7 = 8x ∈ Sm2 Tr4x5 = 09 contains the set
8x ∈ L6X72 �x�4k5 ≤ 1/29, meaning that � · �X ≤ 2� · �4k5 on L6X7; as a result, �4 · 5 is strongly convex, modulus �/4 with
respect to � · �X , on X, so that �4x5 = 44/�5�4x5 is strongly convex, modulus 1 with respect to � · �X , on X, and this is
exactly what we want to prove. To support our claim, let x ∈ L6X7 be such that �x�4k5 ≤ 1/2, and let x = U Diag8�9U T be
the eigenvalue decomposition of x. Since x ∈ L6X7 and �x�4k5 ≤ 1/2, we have

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

20
7.

93
.1

16
] 

on
 1

9 
A

ug
us

t 2
01

5,
 a

t 1
4:

12
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Ben-Tal and Nemirovski: Randomized Algorithms for Large-Scale Convex Polynomial Problems
Mathematics of Operations Research 40(2), pp. 474–494, © 2015 INFORMS 493

(a)
∑m

j=1 �j = 01
(b) ��j � ≤ 1/2 ∀ j ≤m1
(c) 2� 2=

∑m
j=1 ��j � ≤ k/20

Now let us select �j ≥ 0, 1 ≤ j ≤m, in such a way that
(d) �j ≤ 1/2 − ��j � ∀ j1
(e)

∑

j �j =
1
2k−�0

Such a selection is possible because ��j � ≤ 1/2 (by (b)) and
∑m

j=161/2 − ��j �7 = m/2 − 2� ≥ k/2 − � (see (c) and take into
account that k ≤m/2). Now let �+ = 24�+ +�5, �− = 24�− +�5, where �+ is the vector with coordinates max6�i107, and �− is
the vector with coordinates max6−�i107. We have �± ≥ 0 (since �≥ 0) and ��±�� ≤ 1 (by (d)). Finally,

∑

j �
+

j =
∑

j �
−
j = �

by (a) and by the definition of �, whence
∑

j �
+

j =
∑

j �
−
j = 2

∑

j �j +2�= k by (e). These relations imply that the symmetric
matrices x± =U Diag8�±9U T belong to X, and by construction x =

1
2 6x

+ − x−7, so that x ∈Xs , as claimed. Q.E.D.

Proposition 3. Let K, M , N be positive integers such that 2K ≤ M ≤ N , and let � · �4K5 be the norm on RM×N with
the unit ball X = 8x ∈RM×N 2 ��4x5�� ≤ 11��4x5�1 ≤K9. Then the function

�4x5=
4

q41 + q5

M
∑

i=1

�
1+q
i 4x51 q = min611 ln42K5/ ln4M/K571 (69)

is convex and continuously differentiable, and its restriction on X is strongly convex, modulus 1 with respect to � · �4K5, on X.
The �-radius ìX of X satisfies

ìX ≤ 2

√

2K
q41 + q5

0 (70)

Proof. The only nontrivial claim is that �4 · 5 is strongly convex, modulus 1, with respect to � · �4K5. When q = 1,
i.e., when

√
2K ≥

√
M , X clearly contains the ball 8x2 �x�Fro ≤ 1/

√
29, so that � · �4K5 ≤

√
2� · �Fro, and �4x5 = 2�x�2

Fro is
strongly convex, modulus 4, with respect to � · �Fro, and thus indeed strongly concave, modulus 2, with respect to � · �4k5.
Now let q < 1. Let m=M +N , n= 2M , k = 2K, so that 1 < k ≤m/2, and let

A4x5=

[

x
xT

]

be the linear embedding of RM×N into Sm. It is well known that the eigenvalues of A4x5 are the n = 2M reals ±�i4x5,
1 ≤ i ≤M , and m− n zeros. Therefore for the norm � · �4k5 from Lemma 3 it holds

�x�4K5 = �A4x5�4k5 ∀x ∈RM×N 0 (71)

By Lemma 3, the function �+4y5 = 2/q41 + q5
∑m

j=1 ��j4y5�
1+q is convex and continuously differentiable on the entire Sm,

and its restriction on the set Y = 8y ∈ Im4A52 �y�4k5 ≤ 19 is strongly convex, modulus 1 with respect to � · �4k5, on Y ,
implying, because of (71), that the function �4x5 = �+4A4x55 is convex and continuously differentiable on RM×N , and its
restriction on the unit ball X of the norm � · �4K5 is strongly convex, modulus 1 with respect to � · �4K5, on X. Q.E.D.

Remark 1. Note that inspecting the proofs, it is easily seen that the results of Propositions 2 and 3 remain true if when
one replaces Sm (respectively, RM×N ) with their subspaces composed of block-diagonal matrices of a given block-diagonal
structure. For example, when 1 ≤ k ≤m/2, the function

�4x5=
4

�41 + q5

m
∑

j=1

x
1+q
j

with q1� given by (67) is a d.-g.f. for the set X = 8x ∈Rm 2 0 ≤ xj ≤ 1 ∀ j1
∑m

j=1 xj = k9 compatible with the norm � · �X

with the unit ball Xs =
1
2 6X −X7 on the space L6X7 = Lin4X −X5 = 8x ∈ Rm2

∑

j xj = 09 (treat m-dimensional vectors as
diagonals of m×m diagonal matrices).
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