
MATH 2420 Discrete Mathematics
Lecture notes

Numbering Systems

Objectives:

1. Represent a binary (hexadecimal, octal) number as a decimal number.

2. Represent a decimal (hexadecimal, octal) number in binary notation.

3. Represent a binary number in hexadecimal (octal) notation.

4. Add and subtract binary numbers.

Introduction:

We use numbers to represent how many objects we see in a basket. Or how many people are
in a theatre. Or how much money the national debt is at the moment. Those numbers are
represented by the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Using those ten symbols we represent
any number we can think of. But what are we actually representing?

In actual fact, there is no number ’10’. Ten is actually two digits, a one and a zero, which
represent a total count. If we separate the digits we see that the one represents a group of
items and the zero is a place holder. We say that the one is in the “ten’s place” and the
zero is in the “one’s place.” The term, “ten’s place” means that the digit in that location
represents whole groups of ten items (people, apples, books, dollars). So the number “10” is
actually “one group of ten and zero ones.”

Written out mathematically we see it as

(1× 10) + (0× 1) = 10

Moving one more space to the left we find the “hundred’s place”. Digits in this position
represent whole groups of one-hundred items. If we look at the number 125 mathematically
we see it as

(1× 100) + (2× 10) + (5× 1) = 125

The concept of place to represent whole groups of items (e.g. hundred’s place, ten’s place,
one’s place) makes the representation of numbers a sort of code. Note that each position to
the left is a power of ten starting with the one’s place as “zero” (i.e. 100 = 1). Then the ten’s
place, the first position to the left, is the first power (i.e. 101 = 10). The hundred’s place is
the second power (i.e. 102 = 100) and so on. Each position further left represents a whole
power of ten, which we call the base. That makes this base ten, or decimal. A move to
the left indicates an increase in magnitude. It is important to remember that the counting
beings at zero, not at one. Anything raised to the power zero is one. Since the first position
is the “one’s place” then that is represented by the power zero.

103 102 101 100

thousands hundreds tens ones

We are most familiar with base ten counting since we have ten fingers and learn to count
using our fingers. It’s still quite useful at times. Using base ten we can count anything we
see, and somethings we can, and there is no limit to our capabilities in that regard. True, the
numbers get so large that we can’t grasp them in our head or write them, but then we use

1



a shorthand method known as scientific notation and use the power of ten to make things
simpler.

One major drawback - computers don’t count in base ten. They don’t have fingers and they
only know about electrical current. On or off - that’s all they know. This presents us with a
challenge.

To use computers we must understand how they “think” and that means we have to adjust
our way of thinking to theirs. They don’t have ten fingers, they only have two (on/off), so
we must come down to them. This isn’t necessarily in our favor.

Using only two states, on and off, to describe something is termed binary. The prefix bi-
means “two”. In a binary numbering system there are only two digits - 0 (zero) and 1 (one).
Remember I mentioned that there really isn’t a number ten, just two digits put together to
represent a bunch of items? Well, in binary, or base two, there isn’t a number two. Already
things are getting weird.

In any number system based on a number n, that number will not appear in
the list of available digits.

We’ve changed the base of the numbering system from ten to two. This means that a move
to the left, instead of being a higher power of ten, is now a higher power of two.

23 22 21 20

eights fours twos ones

Numbers look rather strange in base two because you only see one and zero. So to represent
the number 12 (base 10) in binary (base 2) it looks like so

1100

which can be expressed mathematically as

(1× 23) + (1× 22) + (0× 21) + (0× 20).

To differentiate between base 10 and base 2 numbers, we write the base as a subscript on the
number, like so

11002

Converting Between Bases:

Converting a base 2 number to a base 10 number is rather simple. Each position in the base
2 number represents a power of two. Multiplying the binary digit (1 or 0) by the power of two
at that position then adding the values together gives you the base 10 number. For example,
the binary number 1101012 can be converted to base 10 by the following:

1101012 = 1× 25 + 1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20

= 32 + 16 + 4 + 1
= 5310

Converting from base 10 to base 2 is not quite as intuitive. There are two ways to approach
this.

2



One way is to find the largest power of two that will “fit” inside the number (largest value not
greater than). Subtract that from the number, then try again. Repeat this until the number
is reduced to simply the value one. Any power of two not used in a subtraction is “missing”
and represented by a zero in the resulting binary number. As you find powers of two in the
number, a one is used to represent that power of two. Writing out the ones and zeros in the
order used (largest to smallest) gives you the binary representation.

A second way uses a repetitive division process. Starting with the base 10 number, divide it
by two. The remainder (0 or 1) is written to the side. Then divide again, again writing the
remainder (0 or 1) to the side. Repeat this until the quotient is zero. Perform the division
going down the page in a column. At the end, read the remainders backward (upward) and
that is the binary number. For example, convert 20910 to binary by the division method:

2 → 209
2 ↪→ 104 1 ↑
2 ↪→ 52 0 ↑
2 ↪→ 26 0 ↑
2 ↪→ 13 0 ↑
2 ↪→ 6 1 ↑
2 ↪→ 3 0 ↑
2 ↪→ 1 1 ↑
2 ↪→ 0 1 ↑

20910 = 110100012

Higher Bases:

Notice the number of digits it took to represent the number 209 in base two? Eight digits
instead of three. Seems like it takes more digits to represent the same value in base two than
it does in base ten. You’d be right in thinking that.

Since there aren’t as many digits to use in base two, it takes more positions to represent a
larger number. Each position represents a power of the base, but if the base is smaller then
each position represents a smaller bundle. Larger bases means we would need fewer digits.

Base ten is a larger base, and one we are familiar with (see fingers), but it isn’t a good base
for computers. We’ve already discussed that computers think in binary, and ten isn’t a power
of two. Why would that matter?

If we change to a base that is a power of two, eight, say, then the conversion from binary (the
computer) to the higher base (us) is easy. Let’s look at base eight, for example.

Base Eight, or Octal:

Base eight is also known as octal. It didn’t take early computer scientists long to get tired
of the binary. Too long and takes too much effort to type and think. Better to use a higher
base. Eight happens to be a convenient base since it is a power of two, mainly, two to the
third (23).

The same rules apply to base eight as to base two or base ten - the actual number eight
does not appear. The digits available are 0, 1, 2, 3, 4, 5, 6 and 7. More digits, easier to
represent larger values. The base changed so the powers at each position changed.

83 82 81 80

five-hundred-twelves sixty-fours eights ones

3



And that’s just up to 83. Still not as big as 103, but better than 23 by a long shot.

We have to remind ourselves that though the number looks like a normal base ten number,
it isn’t. It’s base eight, or octal. Each digit past the first position (80) represents a power of
eight and a bundle of eight.

Converting from base eight to base ten is the same as for base two. Each position is a power
of eight, so multiply the octal digit by that power of eight, then add up all the resulting
products.

15678 = 1× 83 + 5× 82 + 6× 81 + 7× 80

= 512 + 320 + 48 + 7
= 88710

Converting from base ten to base eight can be done using either of the two methods proposed
for decimal-to-binary conversion. The division method works the same with octal as with
binary, only the remainders are now anything from 0 to 7 instead of just 0 or 1.

8 → 209
8 ↪→ 26 1 ↑
8 ↪→ 3 2 ↑
8 ↪→ 0 3 ↑

20910 = 3218

Conversion from base eight to base two, or vice versa, is even easier because no division is
needed. Eight is a power of two, three to be exact, so we can use that to make the conversion
easier. Given a binary (base two) number we can convert it to octal by grouping binary digits
together into groups of three, starting at the far right (one’s place). If we run out of digits at
the far left we simply add zeros in front as place holders. Let’s look at our example number,
20910. In binary it is

11010001

which can be grouped into threes as such

11︸︷︷︸ 010︸︷︷︸ 001︸︷︷︸ .

Now, convert each of those triplets from binary into octal/decimal

112 = 1× 21 + 1× 20 = 3
0102 = 0× 22 + 1× 21 + 0× 20 = 2
0012 = 0× 22 + 0× 21 + 1× 20 = 1

So, that means
11︸︷︷︸
3

010︸︷︷︸
2

001︸︷︷︸
1

.

Wasn’t that convenient? Now, if only we didn’t have to do that math. Well, we don’t. If we
think beforehand and make a table of binary and octal digits we can see a pattern emerge:

4



Octal Binary
7 111
6 110
5 101
4 100
3 011
2 010
1 001
0 000

So now it’s a matter of grouping the binary digits into groups of three (starting from the
right) and then replacing each group of three by the corresponding octal digit. Each binary
triplet represents a pattern which corresponds to a single octal digit, like so:

011 = 3 010 = 2 001 = 1

Base Sixteen, Hexadecimal:

Octal was fine and a great advance over binary. It’s easier to see what the number really is
and it takes fewer digits, which means less writing or typing. But in these days of megabytes,
gigabytes, and terabytes even octal is stressed. We need a bigger base. Continuing with our
logic of powers of two we move on to 24, base sixteen, or hexadecimal.

Remember what was said about a higher base being able to represent large numbers with
fewer digits? Well, base sixteen can accomodate a really large number, more than base ten.
It converts from binary the same as octal, just in groups of four instead of eight. But it
does present us with a slight problem. We only have symbols for numbers from 0 to 9, but
hexadecimal goes past 9. Now what? We borrow from the alphabet and use letters A through
F. Now a number can be comprised of digits and letters, which makes for interesting reading
sometimes.

Hexadecimal Binary
F 1111
E 1110
D 1101
C 1100
B 1011
A 1010
9 1001
8 1000
7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000

5



Just like in base ten, two, and eight, there is no symbol for 16 in hexadecimal. The “digits”
only go up to 15. This means that 1016 is actually one group of 16 and zero in the one’s place.

Following the same theme as we did with octal, we can convert from binary to hexadecimal
by grouping binary digits together. But now, instead of groups of three (8 = 23) we use
groups of four (16 = 24). So that binary number we were working with earlier, 11010001 can
be converted into hexadecimal like this:

1101 = D 0001 = 1

So our number is D1 in hexadecimal.

Addition with Binary Numbers:

Adding numbers together in binary is really quite similar to adding numbers in decimal (base
ten), only you have to remember that 1 + 1 does not equal 2 but 102. Just like adding five
and five results in a carry, adding one and one results in a carry in base two.

6


