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Abstract

We propose a dynamic traveling salesman problem (TSP) with stochastic arc costs motivated
by applications, such as dynamic vehicle routing, in which a decision’s cost is known only
probabilistically beforehand but is revealed dynamically before the decision is executed. We
formulate the problem as a dynamic program (DP) and compare it to static counterparts to
demonstrate the dynamic paradigm’s advantage over an a priori approach. We then apply
approximate linear programming (ALP) to overcome the DP’s curse of dimensionality and obtain
a semi-infinite linear programming lower bound. The bound requires only expected arc costs
and knowledge of the uncertainty support set, and is valid for any distribution with these
parameters. Though NP-hard for arbitrary compact uncertainty sets, we show that it can be
solved in polynomial time for two important classes, polytopes with polynomially many extreme
points and hyper-rectangles. We also analyze the price-directed policy implied by our ALP and
derive worst-case guarantees for its performance. Our computational experiments demonstrate
the advantage of both the ALP bound and a related heuristic policy.

1 Introduction

The traveling salesman problem (TSP) is a fundamental combinatorial optimization model studied
in the operations research community for the past three quarters of a century. The TSP encapsulates
the basic structure at the heart of important vehicle routing applications, and also appears in a
variety of other contexts, such as genetics, manufacturing and scheduling [11].

In many of these applications, some or all of the TSP’s parameters are not known with certainty
ahead of time. The last three decades have seen a variety of work on TSP and other routing models
with stochastic parameters. For instance, Jaillet [43, 44] assumed that only the probability that
a city must be visited is available beforehand, and the decision maker must decide on an a priori
or static order to visit the cities, omitting the cities that do not require a visit in a particular
realization. This work introduced the notion of a priori optimization for routing and general
decision making under uncertainty, a popular modeling and solution paradigm to this day [20].

Though a priori optimization offers many benefits, by definition it also restricts the decision
maker’s options. Soon after its appearance, other authors began considering dynamic or adaptive
settings for stochastic TSP and other routing models. This paradigm offers a more flexible solution
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space and the potential for cost savings over an a priori solution, at the expense of (usually) more
complicated models and a heavier computational burden.

Within the stochastic routing context, in this paper we propose a TSP variant in which arc costs
are unknown ahead of time except in distribution, and the objective is to minimize the expected cost
of the tour. From a static perspective, the problem reduces to a deterministic TSP using expected
arc costs. However, we assume the salesman is allowed to observe outgoing arc realizations at each
city before deciding what place to visit next. This modeling choice is relevant to many practical
settings in which a decision’s cost is unknown a priori but revealed before the decision maker
must execute it. For instance, in real-time routing it may be possible for the driver to observe
outgoing traffic on different routes before deciding what location to visit next. The intelligent use
of such real-time information within routing offers transportation companies the opportunity for
differentiation and a competitive advantage [23, 54, 65]. One specific example is urban pickup and
delivery, where traffic congestion plays a major role in a route’s duration and dynamic routing
coupled with real-time traffic information can significantly reduce travel times; [23] mention that
such dynamic routing is informally implemented by urban pickup and delivery companies in Tokyo.

One way to approach problems like ours is via dynamic programming (DP). Unfortunately, the
well known curse of dimensionality severely limits the applicability of traditional DP methodology
for any model with the TSP’s structure [11]. Furthermore, allowing the salesman to consider arc
cost realizations before choosing his next destination implies extending the deterministic DP states
by all possible outgoing arc cost realizations, which could lead even to an uncountable state space
depending on the costs’ support set. To circumvent this difficulty, we employ approximate linear
programming (ALP); see e.g. [26]. This method involves approximating the true DP cost-to-go
function (with an affine function class in our case), and choosing the particular function within
this class that yields the best possible lower bound on the optimal expected cost-to-go. Once
computed, the approximate cost-to-go can also be used within the traditional Bellman recursion to
derive a policy, often called price-directed for its dependence on dual multipliers [1, 2, 4, 8]. ALP
offers a tractable way to study problems like our dynamic TSP, yielding bounds with theoretical
guarantees and empirically verified quality. Moreover, although unmodified price-directed policies
do not always produce good solutions, they give rise to high-quality heuristically modified policies
that can be computed efficiently.

1.1 Our Contribution

We consider the following to be our main contributions:

§2 We formally propose a dynamic TSP with stochastic arc costs, and demonstrate the advantage
of the dynamic decision paradigm over a static tour solution.

§3 We derive a semi-infinite linear programming (LP) lower bound from an affine approximation of
the cost-to-go function, which requires only expected costs and a description of each random
cost vector’s support set, and is robust with respect to any distribution having these parame-
ters. We give a worst-case guarantee for the bound’s quality, and show that it is polynomially
solvable when the support sets are either polytopes with polynomially many extreme points
or hyper-rectangles.

§4 We analyze a lookahead version of the price-directed policy implied by our cost-to-go approx-
imation and derive worst-case performance guarantees that depend on the approximation’s
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fidelity to the optimal cost-to-go.

§5 We propose a heuristic version of the lookahead policy and benchmark it and the ALP bound
on various instances to demonstrate their effectiveness.

1.2 Literature Review

Models like the one we propose appear only rarely, but the literature on stochastic and/or dynamic
TSP and more general vehicle routing is vast. We briefly review some salient topics; the interested
reader may refer to [25, 32, 38] for more details. The texts [11, 39, 67] cover the deterministic TSP
comprehensively.

The literature includes various stochastic or probabilistic TSP models, usually assuming a known
distribution governs some of the problem’s parameters, and then analyzing the expected cost of
the optimal tour, a heuristic and/or a lower bound. Different authors consider uncertainty in the
arc costs [55], city locations in a Euclidean instance [37, 43], or the subset of cities to visit from a
ground set [43, 44].

In general routing problems, many authors have studied models in which demand, i.e. the
requirement to visit a particular city or customer, is uncertain. The a priori approach fixes a
customer order or a route, generating different particular solutions based on demand realization,
e.g. [17, 21, 43, 44, 73]; see [20] for a recent survey. However, as technological advances enable more
real-time computation, the focus has shifted towards models that dynamically respond to demand
realization [18, 19, 22, 33, 52, 53, 71]. The surveys [54, 65] cover issues in dynamic routing.

Another paradigm to study dynamic routing is online optimization, where instead of minimizing
expected costs, the objective is to benchmark a solution against an omniscient algorithm that knows
all uncertainty a priori; this benchmark is referred to as a solution’s competitive ratio. The survey
[45] and its references cover many such models.

Routing models in which arc costs are uncertain have also been studied, though perhaps not to
the extent of models with uncertain demand. In many cases, costs represent time and the objective
is to minimize expected tardiness, the probability of tardiness, or to find a minimum-cost route
that meets an acceptable tardiness service level [46, 47, 51]. Our model’s approach to uncertain
arc costs is also similar to many stochastic shortest path problems, e.g. [15, 56, 59, 62, 64], and
sometimes appears in real-time shortest path applications [48, 49, 74].

The most similar models to ours in the literature are perhaps [23, 70]. The model in [23] is
also a TSP with random arc costs, but the entire network is visible to the salesman at all times
and costs evolve according to an underlying Markov chain. The authors propose an algorithm
that generates an optimal policy and computationally demonstrate the benefit of dynamic policies
over a fixed tour. Their analysis also indicates that even instances with as few as ten or twelve
cities are already computationally challenging and of practical significance. The TSP model in
[70] also has stochastic costs and allows dynamic decisions, though the paper focuses more on
minimizing tardiness. The author proposes a rollout policy [14] and demonstrates its effectiveness
with computational experiments. Such policies share several traits with our work; we discuss
differences and similarities below.

To our knowledge, this paper is the first application of ALP in a stochastic routing context,
and the first author’s previous work for the deterministic TSP [75] is the only other use of ALP in
routing models. The concept was first studied as early as a quarter-century ago [68, 77, 78], and
has received growing attention in the past decade [26, 27, 29]. Specific applications of ALP include
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commodity valuation [57], economic lot scheduling [5], inventory routing [1, 2], joint replenishment
[6, 7, 50], revenue management [3], and stochastic games [30].

However, the general toolkit of approximate dynamic programming (ADP) has been used ex-
tensively in routing and fleet management, e.g. [35, 36, 76] or [16, Chapter 11.4]; the text [63]
includes many such applications and surveys general ADP methodology. There are also many ADP
methodologies in addition to ALP for approximating value functions, such as approximate policy
iteration [13], approximate value iteration [63], approximate bilinear programming [60, 61], as well
as various statistical methods, e.g. parametric and non-parametric regression [40, 63].

The remainder of the paper is organized as follows: Section 2 introduces our notation, formulates
the dynamic TSP with stochastic arc costs and provides preliminary results. Section 3 discusses
ALP formulations for the problem, gives our cost-to-go approximation, and explains issues related
to obtaining the approximate cost-to-go and resulting bound. Section 4 covers how our approximate
cost-to-go determines a price-directed policy, and discusses worst-case performance results. Section
5 outlines our computational experiments, and Section 6 concludes and provides future research
avenues. The Appendix contains some technical proofs and the experimental results not included
in the body of the article.

2 Problem Formulation and Preliminaries

In the TSP, the salesman visits each city in N := {1, . . . , n} exactly once starting from and finally
returning to a distinguished city 0, sometimes called the home city or depot. In our model, each
arc cost is random and realized upon arrival at the arc’s tail. The objective is to minimize the
expected total cost of the tour, and the desired solution is not simply a tour, but rather a policy
that chooses the next city to visit based on the current location, the remaining cities to visit, as
well as the realized vector of outgoing arc costs.

Let Ci = (Cij : j ∈ N ∪ 0 \ i) ∈ Rn be the random vector of outgoing costs at city i; Ci
is realized upon arrival at i. The distribution of each Ci may differ among cities, and all Ci are
pairwise independent (though arc costs sharing the same tail are not necessarily independent).
Furthermore, we assume Ci only depends on the current city i and not on the remaining set of
cities to visit. Let Ci ⊆ Rn be the support of Ci; we assume this set is compact. For notational
convenience, we use c̄ij , cij and ĉij respectively to denote E[Cij ], minci∈Ci cij and maxci∈Ci cij .

We base our DP formulation on the classical formulation for the deterministic TSP [12, 41],
augmented to include outgoing costs. A state indicates the current city, the remaining cities to
visit, and the realized vector of outgoing travel costs. The state space of the problem is

S := {(0, N, c0) : c0 ∈ C0} ∪ {(i, U, ci) : i ∈ N,U ⊆ N \ i, ci ∈ Ci} ∪ {(0,∅)}.

States {(0, N, c0) : c0 ∈ C0} correspond to the start of the tour. In state (0, N, c0), the salesman
is at city 0, has all cities in N left to visit, and the outgoing arc costs are given by c0. The states
{(i, U, ci) : i ∈ N, U ⊆ N \i, ci ∈ Ci} correspond to intermediate steps of the tour. In state (i, U, ci),
the salesman is at city i ∈ N , has the cities in U left to visit, and the costs are given by ci. The
terminal state (0,∅) corresponds to the end of the tour. In each state (i, U, ci) with U 6= ∅, the
salesman must choose a city j ∈ U to visit next. Then, the salesman will transition to some state
(j, U \ j, cj) with cj ∈ Cj , according to the distribution of Cj . The transition from (i, U) to (j, U \ j)
is deterministic, while outgoing arc costs at (j, U \ j) are dictated by the distribution of Cj . The
cardinality |U | decreases by one with each transition, and we sometimes use t := n− |U | as a time
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index in the problem. At the start of the tour we have |U | = n, and the time period t is zero. After
the first transition, t = n− |U | = 1, and so forth.

Let y∗i,U (ci) ∈ R represent the optimal expected cost-to-go from state (i, U, ci) ∈ S; the collection
(y∗i,U (ci) : ci ∈ Ci) can be interpreted as a random variable or as a function of ci. The terminal cost
is zero, y∗0,∅ = 0, and we obtain the DP recursion

y∗i,U (ci) :=


minj∈U{cij + E[y∗j,U\j(Cj)]}, U 6= ∅
ci0, i ∈ N,U = ∅
0, i = 0, U = ∅

. (1)

Proposition 2.1. Each y∗i,U : Ci → R is non-decreasing, piecewise linear and concave as a function
of ci.

Proof. From the independence of the random vectors Ci and Cj it follows that the expectation in
(1) is constant with respect to ci, and therefore y∗i,U is the minimum over a set of affine functions. �

A solution of (1) induces a policy π∗ : S \ (0,∅) → N ∪ 0 that maps from the current state
(i, U, ci) ∈ S to an action j ∈ U ,

π∗(i, U, ci) :=

{
arg minj∈U{cij + E[y∗U\j(Cj)]}, U 6= ∅
0, U = ∅

, (2)

breaking ties arbitrarily. The LP formulation of (1) is

max
y

E[y0,N (C0)] (3a)

s.t. y0,N (c0)− E[yi,N\i(Ci)] ≤ c0i, ∀ i ∈ N, c0 ∈ C0 (3b)

yi,U∪j(ci)− E[yj,U (Cj)] ≤ cij , ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}, ci ∈ Ci (3c)

yi,∅(ci) ≤ ci0, ∀ i ∈ N, ci ∈ Ci. (3d)

This LP is potentially doubly infinite, since each variable yi,U is a function from the possibly infinite
set Ci to R, and the constraints range over the state-action pairs, also indexed partly by the sets
Ci. In light of Proposition 2.1, we can restrict the feasible region of each yi,U to an appropriately
chosen, well-behaved functional space on Ci, such as the space of continuous functions on Ci; the
exact choice is not important since (3) is usually intractable and we do not intend to solve it directly.
The formulation is important, however, because any feasible solution provides a lower bound on
the optimal expected cost-to-go.

Lemma 2.2. Let yi,U : Ci → R for i ∈ N ∪ 0 and U ⊆ N \ i be feasible for (3). Then yi,U (ci) ≤
y∗i,U (ci) for all (i, U, ci) ∈ S. In particular, E[y0,N (C0)] ≤ E[y∗0,N (C0)].

Proof. The proof follows inductively from the definition of y∗. �

2.1 Allowing Returns

One important issue is the impact of requiring exactly one visit to each city. In certain settings it
could be reasonable to allow returns to previously visited cities or the depot, if this could reduce
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overall costs. In a deterministic TSP, this requirement can be made without loss of generality if
costs satisfy the triangle inequality, but the situation is more complicated in our case. To begin,
allowing returns transforms our model from a finite-stage to an infinite-stage DP with walks of
arbitrary length. However, we can ensure a finite objective and walks of bounded length if we
assume costs are almost surely positive and bounded away from zero, which is reasonable in most
practical settings. The more complex issue involves how information is used in repeat visits. Each
of two possible extensions offers its own challenges and advantages, which we briefly outline:

i) Costs are fixed upon their first realization: Suppose the costs the salesman observes upon
his first arrival at a city are fixed for the remainder of the problem. This variant is a TSP
version of the stochastic shortest path problem with recourse [62], or a stochastic version of
the Canadian traveler’s problem [58]. Even shortest path versions of this problem are quite
difficult: The adversarial version is PSPACE-complete and the stochastic version is #P-hard
[58, 62]. The state space S must be augmented to include previously observed costs from
past visits, increasing its dimension by an order of magnitude and drastically increasing the
number of possible states. Though the overall approach outlined in this work could be applied
to such a problem, it would require additional analysis and is beyond our current scope.

ii) Costs are re-sampled for each visit to a city: Now suppose costs are re-sampled from the same
distribution every time the salesman arrives at a city. In this case the structure of the state
space S remains the same, but we add intermediate states (0, U, c0) representing a mid-way
stop at the depot, and we augment the action space by always allowing the salesman to visit
any city. This extension is also quite challenging, since after visiting the last city the problem
is still a stochastic shortest path problem [15]. The DP recursion is now

y∗i,U (ci) = min
{

min
j∈U
{cij +E[y∗j,U\j(Cj)]}, min

j∈N∪0\(U∪i)
{cij +E[y∗j,U (Cj)]}

}
, i ∈ N ∪0, U ⊆ N \ i,

where we again assume y∗0,∅ = 0, and the LP formulation is

max
y

E[y0,N (C0)]

s.t. yi,U∪j(ci)− E[yj,U (Cj)] ≤ cij , ∀ i ∈ N ∪ 0, j ∈ N \ i, U ⊆ N \ {i, j}, ci ∈ Ci
yi,U (ci)− E[yj,U (Cj)] ≤ cij , ∀ i ∈ N ∪ 0, j ∈ N ∪ 0 \ i, U ⊆ N \ {i, j}, ci ∈ Ci
y0,∅(ci) ≤ 0, ∀ c0 ∈ C0.

Some of our subsequent analysis and approximation of (3) applies to this LP at the expense of
slightly more complex bases and notation; this includes the tractability of an ALP bound and
related policies. However, our theoretical worst-case guarantees on the bound and resulting
policies do not carry through, as they depend on structural properties that are lost in this
variant of the problem.

2.2 Comparison to Static TSP

Another question regarding the dynamic TSP model is whether we gain by allowing dynamic deci-
sions; i.e. by being adaptive [28]. An alternative for the problem would be to solve a deterministic
TSP, perhaps with arc costs given by c̄ij = E[Cij ], and implement this solution regardless of the
actual cost realizations.
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Example 2.3 (Adaptivity Gap). Consider an instance in which arc costs entering cities in N are
i.i.d. Bernoulli random variables with parameter p ∈ (0, 1), and arc costs entering the depot are
zero with probability one. The expected cost of any fixed tour is then pn. In contrast, a greedy
dynamic policy that at every city chooses any outgoing arc of minimum cost fares much better. At
period t = 0, . . . , n − 1, the policy incurs zero cost unless all outgoing arcs have unit cost, which
occurs with probability pn−t. At the final period, the policy incurs no cost. Therefore, the expected
total cost of the greedy policy is

n−1∑
t=0

pn−t =
p(1− pn)

1− p
.

The ratio of the two costs is
(1− p)n
1− pn

,

and this ratio goes to infinity as n→∞. In the terminology introduced in [28], our problem has an
infinite adaptivity gap; that is, there exist problem instances for which a dynamic policy performs
arbitrarily better than a fixed route. In other words, allowing dynamic updating of decisions may
significantly decrease expected cost over any fixed tour. Note that we invert the ratio from the
original definition because our model is a minimization problem.

On the other hand, if each Ci is sufficiently “small” the difference between the dynamic TSP
and its deterministic counterpart given by c̄ may be small. Define the optimal cost-to-go function
for this deterministic TSP as

ȳi,U :=


minj∈U{c̄ij + ȳj,U\i}, U 6= ∅
c̄i0, i ∈ N,U = ∅
0, i = 0, U = ∅

. (4)

For A ⊆ Rn, let D(A) := supx,y∈A‖x− y‖ be A’s diameter.

Proposition 2.4. For any (i, U, ci) ∈ S,

|y∗i,U (ci)− ȳi,U | ≤
∑
j∈U∪i

D(Cj), (5a)

and

|E[y∗0,N (c0)]− ȳ0,N | ≤
∑
i∈N∪0

D(Ci). (5b)

Proof. Let i ∈ N and ci ∈ Ci. Starting with U = ∅,

|y∗i,∅(ci)− ȳi,∅| = |ci0 − c̄i0| ≤ sup
ci∈Ci
{|ci0 − c̄i0|} ≤ D(Ci),
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using the fact that c̄i ∈ conv(Ci). Subsequently, the difference between the stochastic and deter-
ministic cost-to-go functions is

|y∗i,U (ci)− ȳi,U | =
∣∣min
j∈U
{cij + E[y∗j,U\j(Cj)]} −min

j∈U
{c̄ij + ȳj,U\j}

∣∣
≤ max

j∈U
{|cij + E[y∗j,U\j(Cj)]− c̄ij − ȳj,U\j |}

≤ max
j∈U
{|cij − c̄ij |}+ max

j∈U
{|E[y∗j,U\j(Cj)]− ȳj,U\j |}

≤ D(Ci) + max
j∈U
{|E[y∗j,U\j(Cj)]− ȳj,U\j |} ≤

∑
j∈U∪i

D(Cj),

where the last inequality follows from induction. �

The norm in the definition of D may be any `p norm, i.e. ‖x‖p =
(∑

i|xi|p
) 1

p . Also, from the
definition of c̄ this proof only uses c̄i ∈ conv(Ci), and thus a similar result holds for any fixed set of
costs in the convex hull of each support set. Since the difference between the optimal expected cost-
to-go in our model and the deterministic cost-to-go is bounded by the diameters of each support
set, if these diameters are small enough (e.g. constant with respect to n), we can approximate
the dynamic TSP deterministically with any possible realization of arc costs and obtain a close
approximation.

Another useful deterministic option for our problem is to consider the optimistic deterministic
TSP with arc costs cij = minci∈Ci cij . Let y

i,U
be the optimistic cost-to-go function defined by (4)

with costs c instead of c̄. For two sets A,B ⊆ Rn, let D(A,B) := supx∈A infy∈B‖x− y‖ be the sets’
deviation; see e.g. [72, Chapter 7].

Proposition 2.5. For any (i, U, ci) ∈ S,

y∗i,U (ci)−
∑
j∈U∪i

D(Cj , cj) ≤ yi,U ≤ y
∗
i,U (ci), (6a)

and

E[y∗0,N (C0)]−
∑
i∈N∪0

D(Ci, ci) ≤ y0,N
≤ E[y∗0,N (C0)]. (6b)

Proof. The left-hand inequality is proved in a similar fashion to Proposition 2.4. For the right-hand
inequality, if we let yi,U (ci) = y

i,U
, ∀ ci ∈ Ci, then y is feasible for (3), and thus y

i,U
is a lower

bound for the cost-to-go at any state (i, U, ci); in particular, E[y0,N (C0)] = y
0,N

is a lower bound

on the optimal value of (3a). �

Proposition 2.5 implies that any bound for a deterministic TSP cost-to-go function with costs
c also provides a lower bound for the dynamic TSP cost-to-go, and the bound’s quality partly
depends on how much the actual costs can vary from the optimistic prediction c. We compare our
approach to one such bound in the next section.
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3 Approximate Linear Program

The exact solution of (3) is intractable for even moderately sized instances. In ALP, for m≪ |S|
we define a collection of basis vectors or functions bi,U : Ci → Rm, for each i ∈ N ∪ 0, U ⊆ N \ i.
Then for any λ ∈ Rm, we can approximate the cost-to-go as yi,U (ci) ≈ 〈λ, bi,U (ci)〉, where 〈·, ·〉
represents the inner product. The corresponding approximate LP is

max
λ

E[〈λ, b0,N (C0)〉] (7a)

s.t. 〈λ, b0,N (c0)〉 − E[〈λ, bi,N\i(Ci)〉] ≤ c0i, ∀ i ∈ N, c0 ∈ C0 (7b)

〈λ, bi,U∪j(ci)〉 − E[〈λ, bj,U (Cj)〉] ≤ cij , ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}, ci ∈ Ci (7c)

〈λ, bi,∅(ci)〉 ≤ ci0, ∀ i ∈ N, ci ∈ Ci. (7d)

Problem (7) is a semi-infinite LP; when the support sets Ci are finite, it is a finite-dimensional LP.
Because it defines a feasible solution for (3), any feasible solution of (7) immediately implies a lower
bound on (3a) with (7a).

Example 3.1 (Deterministic Basis). As an initial example, suppose the basis b does not differ based
on arc costs, so that bi,U (ci) = bi,U only depends on the current city i and the set of remaining
cities U . Recall that cij = minci∈Ci cij ; the left-hand sides of the constraints (7b) through (7d) do
not vary with c, and therefore (7) becomes

max
λ
〈λ, b0,N 〉

s.t. 〈λ, b0,N − bi,N\i〉 ≤ c0i, ∀ i ∈ N
〈λ, bi,U∪j − bj,U 〉 ≤ cij , ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}
〈λ, bi,∅〉 ≤ ci0, ∀ i ∈ N ;

Any feasible solution to this LP provides a lower bound on the optimal value of the deterministic
TSP with optimistic costs c, and thus a lower bound for (3) through Proposition 2.5.

Though we do not pursue it here, it is possible to apply ALP to the deterministic TSP in this
fashion to obtain lower bounds [75]. Instead, our focus is to solve (7) for a more complex basis that
accounts for different arc costs.

3.1 Affine Cost-to-Go Approximation

Consider the cost-to-go approximation

y0,N (c0) ≈ λ0 +
∑
i∈N

c0iη0i, ∀ c0 ∈ C0 (8a)

yi,U (ci) ≈ λi0 +
∑
k∈U

(λik + cikηik), ∀ i ∈ N,∅ 6= U ⊆ N \ i, ci ∈ Ci (8b)

yi,∅(ci) ≈ λi0 + ci0ηi0, ∀ i ∈ N, ci ∈ Ci, (8c)

where λ ∈ Rn2+1, η ∈ Rn2+n. Intuitively, from a city i ∈ N basis (8) assigns a nominal cost λi0 for
returning to the depot, and additional nominal costs λik for each city that must be visited prior
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to the return. The cost is then adjusted by ηik based on the realization cik of each outgoing cost
to a city k that could be visited next. The approximation uses only one nominal cost, λ0, for the
initial states at the home city 0, because the salesman always has the same remaining cities from
that location. With this approximation, (7) becomes

max
λ,η

λ0 +
∑
k∈N

c̄0kη0k (9a)

s.t. λ0 − λi0 + c0iη0i +
∑
k∈N\i

(c0kη0k − λik − c̄ikηik) ≤ c0i, ∀ i ∈ N, c0 ∈ C0 (9b)

λi0 − λj0 + λij + cijηij +
∑
k∈U

(λik + cikηik − λjk − c̄jkηjk) ≤ cij ,

∀ i ∈ N, j ∈ N \ i,∅ 6= U ⊆ N \ {i, j}, ci ∈ Ci
(9c)

λi0 − λj0 + λij + cijηij − c̄j0ηj0 ≤ cij , ∀ i ∈ N, j ∈ N \ i, ci ∈ Ci (9d)

λi0 + ci0ηi0 ≤ ci0, ∀ i ∈ N, ci ∈ Ci. (9e)

As with many ALP’s, even though we have reduced the decision variables to a manageable number,
the constraint set remains very large – at least exponential in n and possibly uncountable depending
on the support sets Ci.

Before discussing the model’s optimization, we formulate its dual to derive further insight into
the approximation given by (8). The dual is

min
x

∑
i∈N

∑
c0∈C0

c0ix
c0
0i +

∑
i∈N

∑
j∈N\i

∑
U⊆N\{i,j}

∑
ci∈Ci

cijx
ci
ij,U +

∑
i∈N

∑
ci∈Ci

ci0x
ci
i0 (10a)

s.t.
∑
i∈N

∑
c0∈C0

xc00i = 1 (10b)

∑
i∈N

∑
c0∈C0

c0x
c0
0i = c̄0 (10c)

−
∑
c0∈C0

xc00i +
∑
j∈N\i

∑
U⊆N\{i,j}

[∑
ci∈Ci

xciij,U −
∑
cj∈Cj

x
cj
ji,U

]
+
∑
ci∈Ci

xcii0 = 0, ∀ i ∈ N (10d)

− c̄i0
∑
j∈N\i

∑
cj∈Cj

x
cj
ji,∅ +

∑
ci∈Ci

ci0x
ci
i0 = 0, ∀ i ∈ N (10e)

−
∑
c0∈C0

xc00i +
∑

U⊆N\{i,j}

∑
ci∈Ci

xciij,U

+
∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

[∑
ci∈Ci

xciik,U∪j −
∑
ck∈Ck

xckki,U∪j

]
= 0, ∀ i ∈ N, j ∈ N \ i

(10f)

− c̄ij
∑
c0∈C0

xc00i +
∑

U⊆N\{i,j}

∑
ci∈Ci

cijx
ci
ij,U

+
∑

k∈N\{i,j}

∑
U⊆N\{i,j,k}

[∑
ci∈Ci

cijx
ci
ik,U∪j − c̄ij

∑
ck∈Ck

xckki,U∪j

]
= 0, ∀ i ∈ N, j ∈ N \ i

(10g)

x ≥ 0; x has finite support. (10h)
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In this relaxed primal model, each variable xciij,U corresponds to the probability of visiting state
(i, U ∪ j, ci) and choosing action j. Similarly, variables xc00i and xcii0 respectively correspond to the
probability of choosing i from initial state (0, N, c0) and of visiting state (i,∅, ci) immediately
before the terminal state. This set of decision variables may be finite, countably or uncountably
infinite depending on the sets Ci, but in any of these cases only a finite number must be positive
at any optimal solution. The proof of the following lemma is included in the Appendix.

Lemma 3.2. Problems (9) and (10) are strong duals. That is, the two problems are weak duals,
both attain their optimal values, and these optimal values are equal.

The objective (10a) minimizes the expected cost given by the probabilities x. Constraint (10b),
corresponding to λ0, requires the total probability of visiting state-action pairs (0, N, c0, i) at the
depot to be one. Similarly, the vector equation (10c), which corresponds to η0i for each i ∈ N ,
requires the expected cost vector implied by probabilities xc00i to equal c̄0. This is indeed a relaxation,
since the probabilities implied by an actual policy must exactly match C0’s distribution, and not
simply match its expectation. Constraint (10d), corresponding to λi0, is a probability flow balance
requiring the probability of entering city i to equal the probability of exiting it. The constraint
(10e) stemming from ηi0 requires the expected cost of returning to the depot 0 from i, conditioned
upon visiting i last, to be equal to c̄i0. Constraint (10f), corresponding to λij , is a probability flow
balance on the ordered pair (i, j): The probability of visiting i before j must equal the probability
of exiting i when j is still remaining, either by going to j itself or to another remaining city. Here
again we have a relaxation, since in a policy this must hold not only for individual cities j, but for
sets of cities as well. Finally, (10g), which corresponds to ηij , requires the expectation of arc (i, j)’s
cost, conditioned upon visiting i before j, to equal c̄ij .

The relaxed primal also allows us to make an additional common sense observation about the
cost-to-go approximation (8). Intuitively, we expect higher realized costs in any state to imply a
higher cost-to-go; the next result confirms this intuition.

Corollary 3.3. In (9), we can impose η ≥ 0 without loss of optimality.

Proof. Adding η ≥ 0 to (9) and using an argument identical to the proof of Lemma 3.2, we obtain
a strong dual optimization problem similar to (10), except with constraints (10c), (10e) and (10g)
relaxed to greater-than-or-equal. However, any optimal solution to the modified model must satisfy
these constraints at equality, because an optimal solution would not have outgoing probability flow
in any of these constraints that is more expensive than necessary. �

Another question about (9) is how the bound it provides for (3) compares to other tractable
bounds. One possible comparison is with the LP relaxation of the arc-based formulation for the
deterministic TSP with optimistic costs c,

min
z

∑
i∈N∪0

∑
j∈N∪0\i

cijzij (11a)

s.t.
∑

j∈N∪0\i

zij = 1, ∀ i ∈ N ∪ 0 (11b)

∑
j∈N∪0\i

zji = 1, ∀ i ∈ N ∪ 0 (11c)
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∑
i∈U

∑
j∈N∪0\U

zij ≥ 1, ∀ ∅ 6= U ⊆ N ∪ 0 (11d)

z ≥ 0. (11e)

We use z variables instead of x to distinguish the formulations. This LP is solvable in polynomial
time [11] and is a lower bound for the optimal expected cost E[y∗0,N (C0)], since it is a lower bound
on y

0,N
, the deterministic TSP with arc costs c, which in turn bounds our problem by Proposition

2.5.

Theorem 3.4. The optimal value of (9) provides a lower bound greater than or equal to the bound
provided by (11).

Proof. By setting ηij = 0, ∀ i ∈ N ∪ 0, j ∈ N ∪ 0 \ i in (9), we obtain the LP

max
λ

λ0

s.t. λ0 − λi0 −
∑
k∈N\i

λik ≤ c0i, ∀ i ∈ N

λi0 − λj0 + λij +
∑
k∈U

(λik − λjk) ≤ cij , ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}

λi0 ≤ ci0, ∀ i ∈ N .

It follows from Theorem 18 in [75] that this LP’s optimal value is greater than or equal to the
optimal value of (11). �

The next example shows that the bound provided by our affine cost-to-go approximation can
indeed exceed the best possible deterministic bound.

Example 3.5 (Example 2.3 Continued). Consider again the instance where the Cij with j ∈ N are
i.i.d. Bernoulli random variables with parameter p ∈ (0, 1), and the Ci0 are zero with probability
one. Because c = 0, no deterministic bound can improve on the trivial zero bound. The ALP (9)
is now

max
λ,η

λ0 + p
∑
k∈N

η0k

s.t. λ0 − λi0 + c0iη0i +
∑
k∈N\i

(c0kη0k − λik − pηik) ≤ c0i, ∀ i ∈ N, c0 ∈ {0, 1}N

λi0 − λj0 + λij + cijηij +
∑
k∈U

(λik + cikηik − λjk − pηjk) ≤ cij ,

∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j}, ci ∈ {0, 1}U∪j

λi0 ≤ 0, ∀ i ∈ N ; η ≥ 0.

By the instance’s symmetry, we can take λi0 = λj0, λik = λjk for distinct i, j, k ∈ N , with similar
equalities holding for η. The last constraint class immediately implies λi0 = 0, and ηi0 may be
ignored since it does not appear in the LP. After applying these derived equations and using η ≥ 0,
the first and second constraint classes collapse to

λ0 + (ci0 + (n− 1))η0i ≤ c0i + (n− 2)(λij + pηij), ∀ c0i ∈ {0, 1}
λij + (cij + (n− 2)(1− p))ηij ≤ cij , ∀ cij ∈ {0, 1}.
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Therefore, the ALP reduces to two decoupled two-variable LP’s,

max
λ0,η0i

λ0 + pnη0i max
λij ,ηij

λij + pηij

s.t. λ0 + (n− 1)η0i ≤ (n− 2)V s.t. λij + (n− 2)(1− p)ηij ≤ 0

λ0 + nη0i ≤ 1 + (n− 2)V λij + (1 + (n− 2)(1− p))ηij ≤ 1

η0i ≥ 0 ηij ≥ 0,

where V represents the second LP’s optimal value. It is simple to show that V = max{0, p− (n−
2)(1− p)}, and using this, the first LP’s optimal value is then

max{0, (n− 1)(p(n− 1)− (n− 2)), pn− (n− 1)2(1− p)}.

This bound is non-zero for p > n−2
n−1 , and approaches the optimal expected cost-to-go as p→ 1.

3.2 Constraint Generation

To efficiently model the constraints in problem (9), we use constraint generation; see also [1, 2, 7,
50, 75]. For constraint classes (9b, 9d, 9e), the separation problem is equivalent to maximizing a
linear function over one of the sets Ci, for i ∈ N ∪ 0. As long as this maximization can be carried
out efficiently (i.e. in polynomial time), these constraint classes can be accounted for efficiently as
well. However, for constraints (9c), the situation is more complex. Fix λ and η; for an ordered pair
of cities i ∈ N and j ∈ N \ i the separation problem is equivalent to

max
ci∈Ci

∅6=U⊆N\{i,j}

cij(ηij − 1) +
∑
k∈U

(λik + cikηik − λjk − c̄jkηjk). (12)

This problem is a bilinear mixed-binary optimization problem over the compact set Ci×{0, 1}N\{i,j},
and thus usually intractable.

Lemma 3.6. The separation problem (12) is NP-hard, even when the sets Ci are `2 balls.

The proof of this lemma is in the Appendix. In this general case, exact separation is inefficient;
constraint sampling [26, 27, 29] is likely the only viable choice, but suffers from requiring access
to an idealized distribution over the constraints. In our current research we are exploring possible
solutions to this difficulty. Nonetheless, there are tractable special cases of the separation problem,
which we discuss next.

Proposition 3.7. Suppose each set Ci for i ∈ N has polynomially many extreme points, say
O(p(n)). Then the separation problem (12) is solvable in O(np(n)) time for each ordered pair
(i, j), and thus (9) is solvable in polynomial time via the ellipsoid algorithm.

Proof. For a fixed ci ∈ Ci, the maximization in (12) can be solved greedily: For each k ∈ N \ {i, j},
include it in the set U only if the term in the parenthesis is positive. When none of these terms
is positive, include the non-positive term of smallest absolute value to ensure U 6= ∅. If Ci has
O(p(n)) extreme points, we can carry out this greedy optimization procedure at each extreme point
and then choose the overall maximizer, all in O(np(n)) time. �

As two examples, Proposition 3.7 covers the cases where each set Ci is a simplex or an `1 ball.
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Proposition 3.8. Suppose the convex hull of each set Ci for i ∈ N is a hyper-rectangle: conv(Ci) =
[ci, ĉi], with ci, ĉi ∈ Rn respectively representing lower- and upper-bound vectors. Then the separa-
tion problem (12) is solvable in O(n) time for each ordered pair (i, j), and thus (9) is solvable in
polynomial time.

Proof. With hyper-rectangles, (12) also has a simple greedy algorithm: For each k ∈ N \ {i, j}, by
Corollary 3.3 we have max{cikηik, ĉikηik} = ĉikηik. So if λik + ĉikηik − λjk − c̄jkηjk > 0, add k ∈ U ;
otherwise k 6∈ U . If no term is positive, include the non-positive term with smallest absolute value
to ensure U 6= ∅. Finally, if ηij − 1 > 0, use ĉij as a coefficient for it; otherwise use cij . �

This last result also suggests a tractable option when dealing with more general arc cost support
sets Ci: Solve (12) over the hyper-rectangles defined by cij = minci∈Ci cij and ĉij = maxci∈Ci cij
respectively. This approach yields a more conservative but computationally efficient bound.

4 Price-Directed Policies

Any candidate solution y to (3), regardless of feasibility or optimality, determines a policy via (2)
by substituting it for y∗. Such policies are called greedy with respect to y [26, 29], or price-directed
[1, 2, 4, 8]. In the specific case of the approximation given by (8), for any λ ∈ Rn2+1, η ∈ Rn2+n

we obtain

πλ,η(i, U, ci) =


arg minj∈U

{
cij + λj0 +

∑
k∈U\j(λjk + c̄jkηjk)

}
, |U | ≥ 2

j, U = j ∈ N \ i
0, U = ∅

, (13)

with ties again broken arbitrarily.
To analyze these policies for our problem, it is necessary to assume additional structure on the

arc costs and the optimal expected cost-to-go. In particular, we assume in this section that the
optimal expected cost-to-go is non-decreasing with respect to the set of remaining cities:

E[y∗i,U (Ci)] ≤ E[y∗i,U∪j(Ci)], ∀ i ∈ N, j ∈ N \ i, U ⊆ N \ {i, j} (14a)

E[y∗i,N\i(Ci)] ≤ E[y∗0,N (C0)], ∀ i ∈ N . (14b)

This assumption is natural in most real-world situations; the more cities the salesman has left to
visit, the higher the cost he should expect to incur. In the deterministic case, (14a) holds provided
costs are non-negative and satisfy the triangle inequality. However, in our stochastic model we
cannot assume the triangle inequality always holds without violating the independence of arc costs
with different tails.

Our first approximation result for price-directed policies is generic. While all of our approxi-
mations are pointwise lower bounds on the optimal expected cost-to-go, this theorem requires only
that the approximation be a lower bound in expectation.

Theorem 4.1. Let ỹi,U : Ci → R be an approximate cost-to-go function for each i ∈ N ∪ 0,
U ⊆ N \ i satisfying E[ỹi,U (Ci)] ≤ E[y∗i,U (Ci)]. Assume (14) holds, and suppose in addition that
E[y∗i,U (Ci)] ≥ 0 and

αE[y∗i,U (Ci)] ≤ E[ỹi,U (Ci)], ∀ i ∈ N ∪ 0, U ⊆ N \ i, (15)
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for some α ∈ (0, 1]. Then the expected cost of using the price-directed policy with approximation ỹ
is bounded above by (1 + (1− α)n)E[y∗0,N (C0)].

As with other ALP performance guarantees on price-directed policies, e.g. [26, Theorem 1] or
[29, Theorem 3], when ỹ = y∗ we recover the optimal cost, and the performance guarantee decreases
with the approximation quality. Unlike those results, however, our performance guarantee depends
on a multiplicative factor α, which is more common in approximation algorithms; see e.g. [42].

Proof. Consider a state (i, U, ci), and suppose the policy chooses j ∈ U , whereas k ∈ U is an
optimal choice. Then

cij + E[ỹj,U\j(Cj)] ≤ cik + E[ỹk,U\k(Ck)] ≤ cik + E[y∗k,U\k(Ck)] = y∗i,U (ci),

and therefore
cij ≤ y∗i,U (ci)− E[ỹj,U\j(Cj)] ≤ y∗i,U (ci)− αE[y∗j,U\j(Cj)].

Let c ∈ C0 × · · · × Cn be a realization of all arc costs, and relabel the cities in the order that the
price-directed policy visits them under this realization. Summing over traversed arcs, the total cost
of the price-directed tour satisfies

n−1∑
i=0

ci,i+1 + cn0 ≤ y∗0,N (c0) +
∑
i∈N

(
y∗i,{i+1,...,n}(ci)− αE[y∗i,{i+1,...,n}(Ci)]

)
.

Let Ui denote the random variable representing the set of remaining cities when i is visited under
the price-directed policy. Taking the expectation on the previous inequality,

E[total cost] ≤ E[y∗0,N (C0)] +
∑
i∈N

E
[
y∗i,Ui(Ci)− αE[y∗i,Ui(Ci)]

]
.

Using the pairwise independence of the different Ci random cost vectors, it follows that Ui and Ci
are independent, and hence

E[total cost] ≤ E[y∗0,N (C0)] + (1− α)
∑
i∈N

∑
U⊆N\i

P(Ui = U)E[y∗i,U (Ci)] ≤ (1 + (1− α)n)E[y∗0,N (C0)],

where the last inequality follows from (14). �

Unfortunately, this result cannot be used directly with an optimal solution of (9). As the next
example shows, even in the deterministic case it is possible for the ALP to provide a tight bound for
E[y∗0,N (C0)] while still giving an arbitrarily bad approximation of the optimal expected cost-to-go
in particular states.

Example 4.2. Consider a deterministic TSP instance with cities arrayed around a unit circle at
equal intervals in order from 0 to n, and arc costs given by Euclidean distances; see Figure 1.
The distance between consecutive cities is dn = 2 sin( π

n+1), an optimal tour with cost (n + 1)dn
follows the cities in order from 0 to n and back to 0, and a tight optimal solution (λ∗, η∗) of (9)
is λ∗i0 = λ∗ij = dn, λ∗0 = (n + 1)dn and η∗ = 0. However, when n is odd the optimal cost-to-go

from state (n+1
2 ,∅), i.e. when the salesman is at city n+1

2 and must only return to 0, is 2, while the
approximate cost-to-go given by this dual solution is λ∗(n+1)/2,0 = dn, which goes to zero as n→∞.
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Figure 1: Instances from Example 4.2 with n = 7 and n = 15. The optimal tour travels around the
circle, but if the salesman is in the bottom city and only needs to return to the top, the optimal
solution of (9) under-approximates the cost-to-go: The true cost is the vertical dotted arrow, and
the approximate cost is the overlying solid arrow.

In order to take advantage of Theorem 4.1, we must therefore recompute the bound at every
step for every available action; this involves O(n2) total solutions of LP’s of the form (9). If the ALP
is solvable in polynomial time, we retain polynomial solvability, although the high computational
burden may be unrealistic in some settings. The ideas of re-solving the ALP and “looking ahead”
have previously been applied with empirical success, e.g. [7].

Theorem 4.3. Suppose the following conditions hold:

i) cij > 0 and
ĉij
cij
≤ Γ, for some Γ > 0 and all distinct i, j ∈ N ∪ 0.

ii) c is symmetric and satisfies the triangle inequality; i.e. cij = cji and cij ≤ cik + ckj, for all
distinct i, j, k ∈ N ∪ 0.

iii) Condition (14) holds.

Consider the following price-directed policy: At any encountered state (i, U, ci) with U 6= ∅, let
E[ỹj,U\j(Cj)] for j ∈ U be given by recomputing (9) |U | times, using every remaining city j ∈ U
instead of 0 as start city and U \ j as cities to visit. Then Theorem 4.1 applies with α = 5

8Γ , so

that the total expected cost of using this policy is bounded above by
(

1 +
(

1− 5
8Γ

)
n
)
E[y∗0,N (C0)].

For the conditions given in Theorem 4.3, if we apply Christofides’ heuristic [24] using arc costs c,
we are guaranteed a 3Γ

2 -approximation of the optimal policy’s expected cost. However, in contrast
to the policies we introduce in this section, this solution is non-adaptive and may perform poorly
in practice, as Example 2.3 illustrates.

Proof. From (i) we know that y
j,U\j ≥ ΓE[y∗j,U\j(Cj)] for any ∅ 6= U ⊆ N , j ∈ U . This number

y
j,U\j is the cost of a shortest Hamiltonian path starting at j, visiting cities U \ j and ending at 0.

By Theorem 3.4, E[ỹj,U\j(Cj)] provides a bound on y
j,U\j at least as good as its LP relaxation. It

remains to prove using (ii) that the LP relaxation gives a bound within a factor of 5/8 for y
j,U\j .

This last component of the argument follows from [69]. �
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There is a conjecture in the algorithms community that the LP relaxation of the symmetric
shortest Hamiltonian path problem, also called the s-t TSP or TSP path, actually gives a bound
within a factor of 2/3 [10, 69]. Any improvement in this bound guarantee would immediately imply
a corresponding improved guarantee for Theorem 4.3’s policy via Theorem 3.4.

5 Computational Experiments

We next discuss a series of computational experiments designed to test the efficacy of the bound
given by (9) and the related price-directed policies. To generate test instances, we used deterministic
asymmetric TSP instances from TSPLIB [66] and created two types of stochastic instance from each
deterministic one. The instance set includes all ftv instances with 44 cities or fewer; though these
instances appear small, [23] suggest that even instances with as few as ten or twelve cities are
computationally difficult and practically relevant. However, the instance size is worth highlighting
in particular because the performance of policies may depend on problem size. We carried out all
experiments on a Dell workstation with dual Intel Xeon 3.2 GHz processor and 2 GB RDRAM,
using CPLEX 9.0 as an LP solver.

The first instance type has independently distributed arc costs with two possible realizations,
so that each support set Ci is composed of the vertices of a hyper-rectangle. Each arc is either high,
where the deterministic cost is multiplied by a factor H = 1 + βH , or low, where the deterministic
cost is multiplied by a factor L = 1 − βL. The experiment’s two input parameters are βH , the
increment factor for high arc costs, and P(H), the probability of the arc cost being high. The
probability of a low arc cost is of course the complementary probability, P(L) = 1− P(H), and we
calculate βL so that the arc’s expected cost matches the deterministic instance’s arc cost:

βL =
βHP(H)

1− P(H)
.

For example, if high and low arc costs are equally likely, then clearly βH = βL. But if there is a
60% probability of a high cost, then βL = 3βH/2. By choosing the parameters in this way, the
optimal expected cost of a fixed tour equals the deterministic instance’s optimal cost, which we can
use to benchmark our results.

The arcs in the second instance type also have two possible realizations, high or low. However,
in this case a city’s outgoing arc costs are all either high or low, simulating a high-traffic versus
low-traffic possibility, so that the support set Ci is comprised of two points. The parameters are
otherwise defined exactly as in the independent case.

For a given instance, recall that ȳ0,N denotes the optimal expected cost of a fixed tour, equal in
this case to its optimal cost in the deterministic model and available from TSPLIB. By the definition
of the arc cost distribution, we have cij = Lc̄ij for every pair of cities i, j, and thus the best possible
optimistic bound is y

0,N
= Lȳ0,N . Our experiments compare the ALP bound (9) to this optimistic

bound y
0,N

.

As an additional bound benchmark, we include an a posteriori bound [71], whose rationale is
the following. Suppose the salesman had access to all arc costs at the start of the tour; then he
could solve a deterministic TSP on whatever realization of arc costs he observes. The expected
cost of an optimal TSP tour in this setting [55] is an anticipative version of our problem, and thus
a lower bound. However, computing this expectation exactly is difficult, if not impossible, so the
a posteriori procedure repeatedly samples a full realization of all arcs and solves a deterministic
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TSP to optimality on this realization; the average of all realizations’ deterministic optimal values
is then an estimate of the bound. We note that, unlike the ALP bound, the a posteriori procedure
solves many NP-hard optimization problems instead of a single polynomially-solvable LP, and has
access through simulation to the full arc cost distribution, instead of requiring only expected costs
and a description of the costs’ support sets, as the ALP does. Therefore, the a posteriori bound
should be considered a best-possible benchmark rather than a competing methodology.

The experiments then compare the optimal expected fixed tour cost ȳ0,N to a policy. In pre-
liminary experiments, we used the price-directed policy given by the optimal solution of (9) within
(13). However, this policy’s performance was quite weak, confirming the indication from Example
4.2 that a fixed set of dual multipliers do not necessarily provide an accurate estimate of a state’s
cost-to-go, even when the bound they provide is tight. Instead, we designed a heuristic policy
to test the recomputing idea presented in Theorem 4.3. At any encountered state (i, U, ci) with
|U | ≥ 2, we use

π̄LP(i, U, ci) := arg min
j∈U

{
cij + ȳLP

j,U\j
}
,

where ȳLP
j,U\j is the optimal value of the LP relaxation of a j-0 shortest Hamiltonian path problem

with deterministic costs c̄, a formulation analogous to (11) with expected costs instead of optimistic
costs. This approximation is not necessarily a lower bound, but is also computationally much
simpler to solve than the ALP (9). We used 50 simulations of each instance’s arc costs to estimate
both the a posteriori bound and the heuristic policy’s expected cost.

Our heuristic policy shares many traits with rollout policies [14, 70], in which a deterministic
heuristic is used within a simulation framework to design a more sophisticated policy. In particular,
our heuristic uses a lookahead at each city, estimating the cost-to-go of each possible next state (see
also [7]), and also uses certainty equivalence, the idea that potential future states’ cost-to-go can
be estimated by replacing unknown parameters with their expectations. However, unlike rollout
policies, our heuristic uses ȳLP

j,U\j , a cost-to-go estimate derived from a relaxation.

Our experiments use every combination of H ∈ {1.05, 1.1, 1.15, 1.2, 1.25, 1.3} and P(H) ∈
{0.5, 0.6, 0.675, 0.75} for every one of the four selected instances from TSPLIB, yielding 96 instances
each for the two kinds of arc cost distributions. The motivation behind this choice of instance
parameters is to ensure enough distance between y

0,N
and ȳ0,N .

Table 1 contains the results of our experiments for instance ftv33 with independently dis-
tributed arc costs; the results for the remaining instances with independently distributed costs
are included in the Appendix. Our results indicate the following relationship between each of the
examined bounds and solution expected costs holds in virtually all cases:

best optimistic bound, y
0,N
≤ ALP bound, λ∗0 +

∑
k∈N

c̄0kη
∗
0k ≤ a posteriori bound

≤ heuristic policy ≤ best fixed tour, ȳ0,N .

(16)

Because the a posteriori bound is the tightest, in addition to reporting all quantities in absolutes,
we report all other quantities as percentages of this bound. The gaps between successive quantities
in (16) uniformly grow with H or P(H), i.e. either as the costs’ support sets grow larger or as high
costs become more likely.

Our results indicate that the ALP bound is always greater than the optimistic bound y
0,N

, the

best possible bound achieved with deterministic costs. The relative difference between the two is
increasing with respect to both H and P(H). In addition, the ALP is reasonably close to the a
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Instance: ftv33
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1221.70 (95.12%) 1157.40 (90.76%) 1093.10 (87.28%) 1028.80 (84.49%) 964.50 (82.02%) 900.20 (79.91%)
ALP Bound 1266.19 (98.59%) 1222.82 (95.89%) 1173.34 (93.69%) 1120.05 (91.98%) 1063.11 (90.41%) 1003.44 (89.08%)
A Posteriori Bound 1284.35 1275.20 1252.36 1217.73 1175.90 1126.48
Heuristic Policy Cost 1284.85 (100.04%) 1282.17 (100.55%) 1274.07 (101.73%) 1269.47 (104.25%) 1258.63 (107.04%) 1239.55 (110.04%)
Fixed Tour Cost 1286.00 (100.13%) 1286.00 (100.85%) 1286.00 (102.69%) 1286.00 (105.61%) 1286.00 (109.36%) 1286.00 (114.16%)
P(H) = 0.6
Optimistic Bound 1189.55 (92.53%) 1093.10 (86.21%) 996.65 (81.26%) 900.20 (77.13%) 803.75 (73.74%) 707.30 (70.86%)
ALP Bound 1255.72 (97.68%) 1193.63 (94.14%) 1119.86 (91.31%) 1036.81 (88.84%) 945.19 (86.72%) 847.46 (84.90%)
A Posteriori Bound 1285.57 1267.96 1226.48 1167.06 1089.93 998.23
Heuristic Policy Cost 1286.72 (100.09%) 1283.71 (101.24%) 1276.75 (104.10%) 1269.34 (108.76%) 1242.72 (114.02%) 1213.57 (121.57%)
Fixed Tour Cost 1286.00 (100.03%) 1286.00 (101.42%) 1286.00 (104.85%) 1286.00 (110.19%) 1286.00 (117.99%) 1286.00 (128.83%)
P(H) = 0.675
Optimistic Bound 1152.45 (89.86%) 1018.91 (81.33%) 885.36 (74.61%) 751.82 (69.23%) 618.27 (64.89%) 484.72 (61.51%)
ALP Bound 1246.28 (97.17%) 1160.22 (92.61%) 1057.06 (89.08%) 928.39 (85.49%) 787.13 (82.61%) 632.08 (80.21%)
A Posteriori Bound 1282.54 1252.83 1186.60 1085.92 952.81 788.04
Heuristic Policy Cost 1284.43 (100.15%) 1277.00 (101.93%) 1267.91 (106.85%) 1239.88 (114.18%) 1184.30 (124.30%) 1115.72 (141.58%)
Fixed Tour Cost 1286.00 (100.27%) 1286.00 (102.65%) 1286.00 (108.38%) 1286.00 (118.42%) 1286.00 (134.97%) 1286.00 (163.19%)
P(H) = 0.75
Optimistic Bound 1093.10 (85.76%) 900.20 (74.16%) 707.30 (65.11%) 514.40 (57.74%) 321.50 (52.48%) 128.60 (50.46%)
ALP Bound 1230.60 (96.54%) 1107.64 (91.25%) 932.65 (85.86%) 716.83 (80.46%) 462.33 (75.47%) 185.35 (72.72%)
A Posteriori Bound 1274.67 1213.88 1086.25 890.92 612.62 254.87
Heuristic Policy Cost 1278.12 (100.27%) 1265.30 (104.24%) 1234.38 (113.64%) 1170.34 (131.36%) 1042.11 (170.11%) 742.13 (291.17%)
Fixed Tour Cost 1286.00 (100.89%) 1286.00 (105.94%) 1286.00 (118.39%) 1286.00 (144.35%) 1286.00 (209.92%) 1286.00 (504.56%)

Table 1: Experiment results for ftv33 (n = 33) with independently distributed costs.

posteriori benchmark – within approximately 80% – in all but the most extreme cases (P(H) = 0.75
and H ∈ {1.25, 1.3}). We observe a similar pattern for all other instances with independently dis-
tributed costs. The heuristic policy also performs quite well, consistently outperforming the best
fixed tour and lying within approximately 20% of the a posteriori benchmark except in extreme
cases (particularly when H is large). However, in the extreme cases the policy significantly out-
performs the fixed tour. For instance, for the most extreme case we tested where P(H) = 0.75
and H = 1.3, the policy is about half as expensive, 57% of the fixed tour’s expected cost. Similar
results hold for the other instances we tested with independently distributed costs.

Table 2 has results for ftv33 with high/low correlated arc costs, with remaining results in the
Appendix. We do not include results for ftv44 because we were not able to solve the ALP for
several of the parameter values within 24 hours. The results for this instance type are similar to
the independent case, with some key differences. The gaps between the a posteriori bound and the
other two bounds seem to depend more heavily on the parameters, with smaller gaps for smaller
parameters (i.e. results closer to the top-left corner) and larger gaps for the more extreme parameter
settings (i.e. the bottom-right corner). However, the gaps between the a posteriori bound and the
two solutions, particularly the heuristic policy, are significantly smaller. For ftv33 the heuristic
policy is within 9% of optimality in all parameter settings and within 2% in all but the most extreme
cases; similar results hold for the other instances. The gap between the heuristic and the bound is
also consistently about half as large (or less) as the gap between the fixed tour and the bound.

In both cases we can ask whether the bound or the policy are responsible for the remaining gap.
We suspect the bound is farther away from the optimal expected cost than the heuristic policy,
especially in the extreme cases. Specifically, Proposition 2.4 suggests ȳLP

j,U\j is a reasonable proxy for

each action’s future cost-to-go E[y∗j,U\j(Cj)], because computationally it is a close approximation of
ȳj,U\j . Thus the heuristic policy may closely mimic an optimal policy. As for the ALP bound, other
authors have observed similar bound gaps when using affine cost-to-go approximations computa-
tionally, e.g. [7]. The design of more sophisticated approximations that maintain polynomial-time
solvability in (7) is thus an interesting and important research question, particularly in the presence
of high variability, as exemplified by the more extreme parameter settings in the experiments where
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Instance: ftv33
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1221.70 (95.51%) 1157.40 (90.97%) 1093.10 (86.39%) 1028.80 (81.75%) 964.50 (77.09%) 900.20 (72.49%)
ALP Bound 1279.12 (100.00%) 1259.98 (99.04%) 1233.54 (97.48%) 1203.24 (95.62%) 1171.33 (93.63%) 1138.21 (91.66%)
A Posteriori Bound 1279.12 1272.25 1265.37 1258.42 1251.09 1241.80
Heuristic Policy Cost 1279.12 (100.00%) 1272.25 (100.00%) 1265.37 (100.00%) 1258.50 (100.01%) 1251.62 (100.04%) 1244.74 (100.24%)
Fixed Tour Cost 1286.00 (100.54%) 1286.00 (101.08%) 1286.00 (101.63%) 1286.00 (102.19%) 1286.00 (102.79%) 1286.00 (103.56%)
P(H) = 0.6
Optimistic Bound 1189.55 (93.14%) 1093.10 (86.19%) 996.65 (80.72%) 900.20 (72.06%) 803.75 (65.09%) 707.30 (58.14%)
ALP Bound 1274.37 (99.78%) 1243.42 (98.04%) 1203.07 (97.44%) 1158.01 (92.70%) 1108.08 (89.74%) 1053.48 (86.59%)
A Posteriori Bound 1277.13 1268.26 1234.7375 1249.22 1234.74 1216.56
Heuristic Policy Cost 1277.13 (100.00%) 1268.26 (100.00%) 1259.39 (102.00%) 1250.52 (100.10%) 1241.65 (100.56%) 1234.66 (101.49%)
Fixed Tour Cost 1286.00 (100.69%) 1286.00 (101.40%) 1286.00 (104.15%) 1286.00 (102.94%) 1286.00 (104.15%) 1286.00 (105.71%)
P(H) = 0.675
Optimistic Bound 1152.45 (90.27%) 1018.91 (80.39%) 885.36 (70.39%) 751.82 (60.60%) 618.27 (50.79%) 484.72 (40.83%)
ALP Bound 1267.82 (99.30%) 1224.09 (96.58%) 1169.13 (92.95%) 1102.11 (88.84%) 1019.07 (83.71%) 907.50 (76.44%)
A Posteriori Bound 1276.74 1267.48 1257.74 1240.59 1217.41 1187.19
Heuristic Policy Cost 1276.74 (100.00%) 1267.48 (100.00%) 1258.22 (100.04%) 1248.96 (100.67%) 1241.08 (101.94%) 1226.79 (103.34%)
Fixed Tour Cost 1286.00 (100.73%) 1286.00 (101.46%) 1286.00 (102.25%) 1286.00 (103.66%) 1286.00 (105.63%) 1286.00 (108.32%)
P(H) = 0.75
Optimistic Bound 1093.10 (85.73%) 900.20 (71.21%) 707.30 (56.78%) 514.40 (42.35%) 321.50 (27.48%) 128.60 (11.54%)
ALP Bound 1258.09 (98.67%) 1195.09 (94.54%) 1105.75 (88.76%) 968.11 (79.70%) 772.77 (66.05%) 489.57 (43.94%)
A Posteriori Bound 1275.05 1264.09 1245.78 1214.68 1170.04 1114.28
Heuristic Policy Cost 1275.05 (100.00%) 1264.10 (100.00%) 1253.80 (100.64%) 1237.74 (101.90%) 1224.35 (104.64%) 1207.28 (108.35%)
Fixed Tour Cost 1286.00 (100.86%) 1286.00 (101.73%) 1286.00 (103.23%) 1286.00 (105.87%) 1286.00 (109.91%) 1286.00 (115.41%)

Table 2: Experiment results for ftv33 (n = 33) with high/low correlated costs.

the gaps are quite large.
It is worth noting that the procedures we outline in this section are computationally intensive,

as evidenced by our difficulty with the ALP bound for the ftv44 instances with correlated costs. As
a sample, in the Appendix we include two tables outlining experiment running times for the ftv33

instances. The tables contain total running times required to compute the ALP bound, as well as
average time per simulated sample to compute both the a posteriori bound and the heuristic policy.
(Recall that the optimistic bound and the fixed tour cost are obtained directly from TSPLIB.) In
the case of the a posteriori bound, the time corresponds to solving a single TSP with the sampled
arc costs; for the policy, it corresponds to an entire run of the policy for the same sampled arc
costs, i.e. O(n2) LP solves. For instances with independently distributed costs, we observe ALP
solution times on the order of one hour, a posteriori averages of one to two minutes, and policy
averages on the order of three to five minutes for most parameter settings. The latter two averages
are similar for instances with correlated costs; however, ALP solution times were much higher for
these instances, with running times stretching to many hours. This difference surprised us, since
the independently distributed cost instances have many more constraints than the correlated cost
instances with all other things being equal: For a given pair (i, U) the former instance class has
2|U | constraints and the latter only two. However, this may indicate an additional challenge for
this problem and others like it when high correlation among uncertain parameters is present.

6 Conclusions

We have presented a dynamic TSP model with stochastic arc costs and applied ALP to tractably
bound the problem, construct policies with theoretical worst-case performance guarantees, and
derive high-quality heuristics. Our work leads to several questions. For example, we do not address
how to obtain a bound when the separation problem for (9) is NP-hard. As we indicate, constraint
sampling may be an option [26, 27, 29], though it suffers from requiring idealized access to the TSP’s
optimal policy to sample constraints. Using a heuristic policy instead could suffice for practical
purposes. Another option in this case is exact separation, which has been applied successfully in
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other contexts, e.g. [2, 7].
Another issue concerns the design of better bases to more accurately approximate the cost-

to-go. This is a challenging question since any basis must trade off approximation fidelity with
computational tractability, and the trade-off is not always obvious. For the TSP, the results in [75]
suggest that only small improvements are possible when considering the combinatorial aspect of
the state space, but whether the same is true for the cost component is unclear.

More generally, we hope our work verifies ALP as an effective methodology for dynamic routing
models under uncertainty, though it is clear that many challenges remain. These models are some
of the most challenging problems currently studied in transportation and discrete optimization,
and the ALP approach offers an approach to tractably model, bound and solve them.

Appendix

Remaining Proofs

Proof of Lemma 3.2. In problem (9), the semi-infinite constraint system’s index set ranges over a
compact space, and all variable coefficients and the right-hand side are continuous functions of the
index. The system also has an easily constructed Slater point: λ0 = λij = −M , for large enough
M > 0, and all other variables set to zero. By [34, Theorem 5.3], the semi-infinite constraint system
is Farkas-Minkowski, and thus the Haar dual (10) is a strong dual with an optimal solution [34,
Theorem 8.4]. �

Proof of Lemma 3.6. Fix i ∈ N , j ∈ N \i, λ and η, and suppose Ci = {c ∈ Rn : c = γ+v, ‖v‖2 ≤ 1};
i.e. Ci is an `2 unit ball centered at γ ∈ Rn. Using

max
ci∈Ci

cij(ηij − 1) +
∑
k∈U

cikηik = γij(ηij − 1) +
∑
k∈U

γikηik +

√
(ηij − 1)2 +

∑
k∈U

η2
ik,

problem (12) is equivalent to

max
∅6=U⊆N\{i,j}

√
aj +

∑
k∈U

ak +
∑
k∈U

bk, (17)

for appropriately chosen aj , ak ≥ 0 and bk. This is a special case of a submodular utility maximiza-
tion problem [9]; following Proposition 1 of this reference, we show (17) is NP-hard by a reduction
from the partition problem [31]. Given a collection of numbers ak > 0, partition asks whether
there exists a set U with

∑
k∈U ak =

∑
k 6∈U ak. Let aj = 0, and by rescaling if necessary, assume∑

ak = 2; then setting bk = −1
2ak, a partition exists if and only if the optimal value of (17) is

1
2 . �

Remaining Experiment Results

This section contains the remaining results for experiments outlined in Section 5. Tables 3 through
5 have results for instances ftv35, ftv38 and ftv44 with independently distributed costs. Tables
6 and 7 have results for instances ftv35 and ftv38 with high/low correlated costs. Tables 8 and 9
give running times for the ftv33 instances.
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Instance: ftv35
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1399.35 (95.72%) 1325.70 (91.95%) 1252.05 (88.74%) 1178.40 (86.03%) 1104.75 (83.73%) 1031.10 (81.76%)
ALP Bound 1425.15 (97.48%) 1378.83 (95.64%) 1325.46 (93.94%) 1263.20 (92.22%) 1194.44 (90.53%) 1122.58 (89.02%)
A Posteriori Bound 1461.94 1441.69 1410.98 1369.72 1319.35 1261.11
Heuristic Policy Cost 1470.69 (100.60%) 1463.15 (101.49%) 1456.03 (103.19%) 1451.35 (105.96%) 1427.15 (108.17%) 1415.95 (112.28%)
Fixed Tour Cost 1473.00 (100.76%) 1473.00 (102.17%) 1473.00 (104.40%) 1473.00 (107.54%) 1473.00 (111.65%) 1473.00 (116.80%)
P(H) = 0.6
Optimistic Bound 1362.53 (93.44%) 1252.05 (87.64%) 1141.58 (82.67%) 1031.10 (78.72%) 920.63 (74.86%) 810.15 (73.15%)
ALP Bound 1414.33 (96.99%) 1345.68 (94.19%) 1262.01 (91.39%) 1162.56 (88.76%) 1052.29 (85.56%) 934.76 (84.40%)
A Posteriori Bound 1458.16 1428.61 1380.93 1309.84 1229.83 1107.59
Heuristic Policy Cost 1470.85 (100.87%) 1461.08 (102.27%) 1449.94 (105.00%) 1426.23 (108.89%) 1416.45 (115.17%) 1351.20 (121.99%)
Fixed Tour Cost 1473.00 (101.02%) 1473.00 (103.11%) 1473.00 (106.67%) 1473.00 (112.46%) 1473.00 (119.77%) 1473.00 (132.99%)
P(H) = 0.675
Optimistic Bound 1320.03 (90.74%) 1167.07 (82.66%) 1014.10 (76.06%) 861.14 (70.95%) 708.17 (66.99%) 555.21 (63.91%)
ALP Bound 1402.88 (96.43%) 1310.57 (92.82%) 1187.00 (89.03%) 1032.84 (85.10%) 864.19 (81.74%) 687.51 (79.14%)
A Posteriori Bound 1454.78 1411.89 1333.27 1213.72 1057.18 868.76
Heuristic Policy Cost 1468.67 (100.95%) 1457.82 (103.25%) 1439.96 (108.00%) 1406.56 (115.89%) 1346.17 (127.34%) 1259.09 (144.93%)
Fixed Tour Cost 1473.00 (101.25%) 1473.00 (104.33%) 1473.00 (110.48%) 1473.00 (121.36%) 1473.00 (139.33%) 1473.00 (169.55%)
P(H) = 0.75
Optimistic Bound 1252.05 (86.57%) 1031.10 (75.14%) 810.15 (66.31%) 589.20 (59.43%) 368.25 (54.92%) 147.30 (52.75%)
ALP Bound 1388.88 (96.03%) 1249.72 (91.07%) 1036.51 (84.83%) 780.51 (78.73%) 498.32 (74.32%) 201.04 (72.00%)
A Posteriori Bound 1446.31 1372.23 1221.81 991.42 670.48 279.22
Heuristic Policy Cost 1465.39 (101.32%) 1453.57 (105.93%) 1411.82 (115.55%) 1315.46 (132.68%) 1131.87 (168.81%) 827.07 (296.21%)
Fixed Tour Cost 1473.00 (101.85%) 1473.00 (107.34%) 1473.00 (120.56%) 1473.00 (148.58%) 1473.00 (219.69%) 1473.00 (527.54%)

Table 3: Experiment results for ftv35 (n = 35) with independently distributed costs.

Instance: ftv38
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1453.50 (95.65%) 1377.00 (91.94%) 1300.50 (88.76%) 1224.00 (86.04%) 1147.50 (83.77%) 1071.00 (81.90%)
ALP Bound 1477.39 (97.22%) 1426.16 (95.22%) 1363.75 (93.08%) 1295.80 (91.09%) 1225.92 (89.50%) 1152.47 (88.13%)
A Posteriori Bound 1519.67 1497.78 1465.15 1422.60 1369.76 1307.63
Heuristic Policy Cost 1526.46 (100.45%) 1522.46 (101.65%) 1510.92 (103.12%) 1494.98 (105.09%) 1477.46 (107.86%) 1441.38 (110.23%)
Fixed Tour Cost 1530.00 (100.68%) 1530.00 (102.15%) 1530.00 (104.43%) 1530.00 (107.55%) 1530.00 (111.70%) 1530.00 (117.01%)
P(H) = 0.6
Optimistic Bound 1415.25 (93.42%) 1300.50 (87.73%) 1185.75 (82.92%) 1071.00 (79.02%) 956.25 (75.90%) 841.50 (73.45%)
ALP Bound 1466.04 (96.78%) 1389.87 (93.76%) 1299.12 (90.85%) 1194.60 (88.14%) 1080.20 (85.74%) 959.50 (83.75%)
A Posteriori Bound 1514.894 1482.37 1429.93 1355.38 1259.83 1145.67
Heuristic Policy Cost 1524.69 (100.65%) 1524.49 (102.84%) 1510.47 (105.63%) 1489.46 (109.89%) 1432.64 (113.72%) 1393.09 (121.60%)
Fixed Tour Cost 1530.00 (101.00%) 1530.00 (103.21%) 1530.00 (107.00%) 1530.00 (112.88%) 1530.00 (121.45%) 1530.00 (133.55%)
P(H) = 0.675
Optimistic Bound 1371.12 (90.65%) 1212.23 (82.75%) 1053.35 (76.09%) 894.46 (71.03%) 735.58 (67.06%) 576.69 (64.20%)
ALP Bound 1454.12 (96.13%) 1350.42 (92.18%) 1221.03 (88.21%) 1059.72 (84.15%) 886.83 (80.85%) 705.43 (78.53%)
A Posteriori Bound 1512.61 1465.00 1384.27 1259.30 1096.94 898.25
Heuristic Policy Cost 1527.32 (100.97%) 1519.09 (103.69%) 1493.90 (107.92%) 1455.99 (115.62%) 1378.30 (125.65%) 1265.95 (140.93%)
Fixed Tour Cost 1530.00 (101.15%) 1530.00 (104.44%) 1530.00 (110.53%) 1530.00 (121.50%) 1530.00 (139.48%) 1530.00 (170.33%)
P(H) = 0.75
Optimistic Bound 1300.50 (86.46%) 1071.00 (74.77%) 841.50 (65.71%) 612.00 (59.38%) 382.50 (55.32%) 153.00 (53.60%)
ALP Bound 1437.29 (95.56%) 1286.90 (89.84%) 1064.47 (83.12%) 800.80 (77.69%) 511.68 (74.00%) 205.98 (72.16%)
A Posteriori Bound 1504.11 1432.42 1280.70 1030.71 691.46 285.44
Heuristic Policy Cost 1526.59 (101.49%) 1507.67 (105.25%) 1458.24 (113.86%) 1354.56 (131.42%) 1163.57 (168.28%) 797.46 (279.38%)
Fixed Tour Cost 1530.00 (101.72%) 1530.00 (106.81%) 1530.00 (119.47%) 1530.00 (148.44%) 1530.00 (221.27%) 1530.00 (536.02%)

Table 4: Experiment results for ftv38 (n = 38) with independently distributed costs.

22



Instance: ftv44
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1532.35 (95.42%) 1451.70 (91.39%) 1371.05 (87.78%) 1290.40 (84.68%) 1209.75 (82.06%) 1129.10 (79.88%)
ALP Bound 1550.82 (96.57%) 1503.80 (94.67%) 1442.55 (92.35%) 1376.98 (90.36%) 1307.02 (88.66%) 1230.08 (87.02%)
A Posteriori Bound 1605.83 1588.52 1561.97 1523.85 1474.21 1413.48
Heuristic Policy Cost 1634.46 (101.78%) 1635.27 (102.94%) 1619.47 (103.68%) 1609.62 (105.63%) 1589.83 (107.84%) 1557.18 (110.17%)
Fixed Tour Cost 1631.00 (101.57%) 1631.00 (102.67%) 1631.00 (104.42%) 1631.00 (107.03%) 1631.00 (110.64%) 1631.00 (115.39%)
P(H) = 0.6
Optimistic Bound 1492.03 (93.13%) 1371.05 (87.13%) 1250.08 (81.97%) 1129.10 (77.47%) 1008.13 (73.94%) 887.15 (71.14%)
ALP Bound 1542.13 (96.26%) 1471.02 (93.49%) 1380.95 (90.55%) 1278.63 (87.73%) 1159.59 (85.05%) 1032.47 (82.80%)
A Posteriori Bound 1602.06 1573.50 1525.05 1457.41 1363.35 1246.97
Heuristic Policy Cost 1635.20 (102.07%) 1625.96 (103.33%) 1606.05 (105.31%) 1570.25 (107.74%) 1531.64 (112.34%) 1485.02 (119.09%)
Fixed Tour Cost 1631.00 (101.81%) 1631.00 (103.65%) 1631.00 (106.95%) 1631.00 (111.91%) 1631.00 (119.63%) 1631.00 (130.80%)
P(H) = 0.675
Optimistic Bound 1445.50 (90.45%) 1277.99 (82.05%) 1110.49 (75.07%) 942.98 (69.46%) 775.48 (65.27%) 607.98 (62.28%)
ALP Bound 1533.22 (95.94%) 1434.97 (92.13%) 1307.76 (88.40%) 1145.77 (84.40%) 961.63 (80.94%) 764.14 (78.27%)
A Posteriori Bound 1598.05 1557.49 1479.33 1357.50 1188.04 976.25
Heuristic Policy Cost 1636.57 (102.41%) 1624.08 (104.28%) 1596.03 (107.89%) 1554.67 (114.52%) 1485.94 (125.07%) 1371.46 (140.48%)
Fixed Tour Cost 1631.00 (102.06%) 1631.00 (104.72%) 1631.00 (110.25%) 1631.00 (120.15%) 1631.00 (137.28%) 1631.00 (167.07%)
P(H) = 0.75
Optimistic Bound 1371.05 (86.10%) 1129.10 (74.17%) 887.15 (64.73%) 645.20 (57.96%) 403.25 (53.67%) 161.30 (51.86%)
ALP Bound 1517.40 (95.29%) 1375.90 (90.38%) 1152.58 (84.10%) 870.12 (78.17%) 554.52 (73.80%) 223.20 (71.76%)
A Posteriori Bound 1592.44 1522.33 1370.45 1113.16 751.39 311.01
Heuristic Policy Cost 1637.68 (102.84%) 1614.17 (106.03%) 1565.60 (114.24%) 1447.39 (130.03%) 1281.98 (170.62%) 923.55 (296.95%)
Fixed Tour Cost 1631.00 (102.42%) 1631.00 (107.14%) 1631.00 (119.01%) 1631.00 (146.52%) 1631.00 (217.07%) 1631.00 (524.41%)

Table 5: Experiment results for ftv44 (n = 44) with independently distributed costs.

Instance: ftv35
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1399.35 (95.34%) 1325.70 (90.72%) 1252.05 (86.10%) 1178.40 (81.48%) 1104.75 (75.82%) 1031.10 (72.26%)
ALP Bound 1441.72 (98.22%) 1419.30 (97.13%) 1394.35 (95.89%) 1366.42 (94.48%) 1333.07 (91.49%) 1294.93 (90.74%)
A Posteriori Bound 1467.82 1461.29 1454.13 1446.23 1457.06 1427.00
Heuristic Policy Cost 1473.80 (100.41%) 1466.46 (100.35%) 1461.63 (100.52%) 1456.80 (100.73%) 1472.86 (101.08%) 1447.23 (101.42%)
Fixed Tour Cost 1473.00 (100.35%) 1473.00 (100.80%) 1473.00 (101.30%) 1473.00 (101.85%) 1473.00 (101.09%) 1473.00 (103.22%)
P(H) = 0.6
Optimistic Bound 1362.53 (92.94%) 1252.05 (85.92%) 1141.58 (78.92%) 1031.10 (71.90%) 920.63 (64.84%) 810.15 (57.70%)
ALP Bound 1435.05 (97.89%) 1403.20 (96.29%) 1364.31 (94.32%) 1315.44 (91.73%) 1253.42 (88.28%) 1182.27 (84.21%)
A Posteriori Bound 1465.99 1457.25 1446.48 1434.09 1419.76 1404.02
Heuristic Policy Cost 1470.45 (100.30%) 1464.46 (100.50%) 1458.48 (100.83%) 1452.49 (101.28%) 1446.50 (101.88%) 1441.36 (102.66%)
Fixed Tour Cost 1473.00 (100.48%) 1473.00 (101.08%) 1473.00 (101.83%) 1473.00 (102.71%) 1473.00 (103.75%) 1473.00 (104.91%)
P(H) = 0.675
Optimistic Bound 1320.03 (90.17%) 1167.07 (80.35%) 1014.10 (70.54%) 861.14 (60.67%) 708.17 (50.65%) 555.21 (40.44%)
ALP Bound 1428.30 (97.56%) 1384.12 (95.30%) 1325.64 (92.21%) 1241.04 (87.44%) 1137.29 (81.33%) 1009.28 (73.51%)
A Posteriori Bound 1463.98 1452.41 1437.63 1419.36 1398.31 1372.90
Heuristic Policy Cost 1469.01 (100.34%) 1460.94 (100.59%) 1452.87 (101.06%) 1444.80 (101.79%) 1436.73 (102.75%) 1427.80 (104.00%)
Fixed Tour Cost 1473.00 (100.62%) 1473.00 (101.42%) 1473.00 (102.46%) 1473.00 (103.78%) 1473.00 (105.34%) 1473.00 (107.29%)
P(H) = 0.75
Optimistic Bound 1252.05 (85.78%) 1031.10 (71.52%) 810.15 (57.15%) 589.20 (42.45%) 368.25 (27.28%) 147.30 (11.32%)
ALP Bound 1418.38 (97.18%) 1352.28 (93.80%) 1240.80 (87.53%) 1080.29 (77.83%) 859.99 (63.70%) 539.08 (41.44%)
A Posteriori Bound 1459.55 1441.67 1417.64 1388.10 1350.13 1300.72
Heuristic Policy Cost 1465.81 (100.43%) 1454.30 (100.88%) 1442.79 (101.77%) 1431.28 (103.11%) 1417.01 (104.95%) 1391.31 (106.96%)
Fixed Tour Cost 1473.00 (100.92%) 1473.00 (102.17%) 1473.00 (103.91%) 1473.00 (106.12%) 1473.00 (109.10%) 1473.00 (113.24%)

Table 6: Experiment results for ftv35 (n = 35) with high/low correlated costs.
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Instance: ftv38
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
Optimistic Bound 1453.50 (95.34%) 1377.00 (90.70%) 1300.50 (86.06%) 1224.00 (81.42%) 1147.50 (76.78%) 1071.00 (72.16%)
ALP Bound 1499.04 (98.32%) 1473.81 (97.08%) 1445.99 (95.69%) 1415.49 (94.16%) 1379.98 (92.34%) 1340.45 (90.31%)
A Posteriori Bound 1524.61 1518.17 1511.08 1503.35 1494.52 1484.21
Heuristic Policy Cost 1526.60 (100.13%) 1521.20 (100.20%) 1515.81 (100.31%) 1509.53 (100.41%) 1503.71 (100.62%) 1497.89 (100.92%)
Fixed Tour Cost 1530.00 (100.35%) 1530.00 (100.78%) 1530.00 (101.25%) 1530.00 (101.77%) 1530.00 (102.37%) 1530.00 (103.09%)
P(H) = 0.6
Optimistic Bound 1415.25 (92.88%) 1300.50 (85.78%) 1185.75 (78.68%) 1071.00 (71.58%) 956.25 (64.47%) 841.50 (57.31%)
ALP Bound 1491.37 (97.88%) 1455.65 (96.02%) 1413.24 (93.77%) 1361.93 (91.02%) 1300.43 (87.67%) 1227.81 (83.62%)
A Posteriori Bound 1523.70 1516.04 1507.12 1496.32 1483.26 1468.32
Heuristic Policy Cost 1525.70 (100.13%) 1519.40 (100.22%) 1513.10 (100.40%) 1508.64 (100.82%) 1502.40 (101.29%) 1496.16 (101.90%)
Fixed Tour Cost 1530.00 (100.41%) 1530.00 (100.92%) 1530.00 (101.52%) 1530.00 (102.25%) 1530.00 (103.15%) 1530.00 (104.20%)
P(H) = 0.675
Optimistic Bound 1371.12 (90.12%) 1212.23 (80.23%) 1053.35 (70.33%) 894.46 (60.37%) 735.58 (50.33%) 576.69 (40.17%)
ALP Bound 1483.36 (97.50%) 1434.95 (94.97%) 1372.87 (91.66%) 1289.13 (87.01%) 1183.59 (80.98%) 1050.56 (73.17%)
A Posteriori Bound 1521.36 1510.96 1497.80 1481.52 1461.53 1435.70
Heuristic Policy Cost 1524.18 (100.19%) 1516.37 (100.36%) 1508.55 (100.72%) 1501.92 (101.38%) 1493.90 (102.22%) 1486.50 (103.54%)
Fixed Tour Cost 1530.00 (100.57%) 1530.00 (101.26%) 1530.00 (102.15%) 1530.00 (103.27%) 1530.00 (104.69%) 1530.00 (106.57%)
P(H) = 0.75
Optimistic Bound 1300.50 (85.65%) 1071.00 (71.24%) 841.50 (56.73%) 612.00 (42.05%) 382.50 (27.00%) 153.00 (11.20%)
ALP Bound 1472.09 (96.95%) 1402.12 (93.27%) 1290.13 (86.98%) 1124.61 (77.26%) 890.58 (62.86%) 554.86 (40.63%)
A Posteriori Bound 1518.36 1503.33 1483.24 1455.54 1416.67 1365.78
Heuristic Policy Cost 1521.70 (100.22%) 1511.41 (100.54%) 1501.11 (101.20%) 1492.64 (102.55%) 1480.63 (104.52%) 1456.11 (106.61%)
Fixed Tour Cost 1530.00 (100.77%) 1530.00 (101.77%) 1530.00 (103.15%) 1530.00 (105.12%) 1530.00 (108.00%) 1530.00 (112.02%)

Table 7: Experiment results for ftv38 (n = 38) with high/low correlated costs.

Instance: ftv33
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
ALP Bound (total) 4776.00 2764.00 2832.00 3099.00 2975.00 3337.00
A Posteriori Bound (avg.) 60.82 72.26 74.98 105.30 132.38 162.32
Heuristic Policy (avg.) 101.68 113.76 122.94 159.94 182.22 205.28
P(H) = 0.6
ALP Bound (total) 3779.00 2654.00 3243.00 3386.00 3268.00 3843.00
A Posteriori Bound (avg.) 71.98 93.38 110.24 117.98 71.60 40.60
Heuristic Policy (avg.) 102.66 198.02 146.98 181.36 210.22 276.30
P(H) = 0.675
ALP Bound (total) 2769.00 2599.00 2747.00 2997.00 3337.00 3559.00
A Posteriori Bound (avg.) 69.66 97.36 97.16 63.74 30.44 10.60
Heuristic Policy (avg.) 103.76 118.54 305.36 213.06 481.50 315.82
P(H) = 0.75
ALP Bound (total) 2145.00 2146.00 2740.00 3421.00 3975.00 4382.00
A Posteriori Bound (avg.) 81.70 152.20 101.04 35.38 6.54 3.16
Heuristic Policy (avg.) 183.66 142.56 353.54 268.42 301.92 320.72

Table 8: Experiment running times in seconds for ftv33 (n = 33) with independently distributed
costs.
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Instance: ftv33
H 1.05 1.10 1.15 1.2 1.25 1.30
P(H) = 0.5
ALP Bound (total) 37861.00 20634.00 17173.00 25279.00 19361.00 19645.00
A Posteriori Bound (avg.) 35.80 43.28 46.12 50.86 58.44 56.86
Heuristic Policy (avg.) 99.74 110.92 114.64 135.86 142.58 144.90
P(H) = 0.6
ALP Bound (total) 37979.00 32703.00 27398.00 13857.00 19631.00 21297.00
A Posteriori Bound (avg.) 41.80 47.60 52.68 59.68 55.80 55.10
Heuristic Policy (avg.) 96.44 182.64 119.80 121.22 139.30 178.08
P(H) = 0.675
ALP Bound (total) 89388.00 24058.00 24235.00 18119.00 32521.00 34236.00
A Posteriori Bound (avg.) 45.14 48.48 55.78 55.20 51.10 43.84
Heuristic Policy (avg.) 96.18 189.60 199.86 147.68 190.60 234.16
P(H) = 0.75
ALP Bound (total) 29677.00 29147.00 31555.00 33493.00 39247.00 28277.00
A Posteriori Bound (avg.) 45.50 51.76 55.64 46.14 47.20 37.22
Heuristic Policy (avg.) 168.10 107.28 139.40 195.56 275.00 248.62

Table 9: Experiment running times in seconds for ftv33 (n = 33) with high/low correlated costs.
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