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Abstract

Numerous planning models within the chemical, petroleum, and process industries involve coordi-

nating the movement of raw materials in a distribution network so that they can be blended into final

products. The uncapacitated fixed-charge transportation problem with blending (FCTPwB) studied in

this paper captures a core structure encountered in many of these environments. We model the FCT-

PwB as a mixed-integer linear program and derive two classes of facets, both exponential in size, for the

convex hull of solutions for the problem with a single consumer and show that they can be separated

in polynomial time. Furthermore, we prove that in certain situations these classes of facets, along with

the continuous relaxation of the original constraints, yield a description of the convex hull. Finally, we

present a computational study that demonstrates that these classes of facets are effective in reducing

the integrality gap and solution time for more general instances of the FCTPwB with arc capacities and

multiple consumers.
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1 Introduction and Problem Statement

In many operational and planning models within the chemical, petroleum, and process industries, a common

issue involves blending raw materials with varying attributes and concentration levels into homogeneous

intermediate or end products. Blending raw materials affords an organization the opportunity to realize

sizable cost savings, while meeting demand for an array of final products and satisfying pre-determined

specification requirements for each type of product [20]. The inherent flexibility of the blending process can

be exploited to optimize the allocation and transportation of raw materials to production facilities. This

motivates the study of what we call the fixed-charge transportation problem with product blending (FCTPwB).

The feasible region of this problem arises as a substructure within many applications in the petrochemical

industry, and potentially in other areas including supply chain management, agriculture, and the energy

sector.

A general form of the standard fixed-charge transportation problem for a single product can be described

as follows [17]. Consider a set of suppliers S = {1, . . . ,m} and a set of consumers C = {1, . . . , n}. Each

supplier i ∈ S has a minimum and maximum supply of a given product, denoted li and ui, respectively.

Similarly, each consumer j ∈ C has a minimum and maximum demand for the product, denoted lj and uj ,

respectively. Product can be sent from suppliers to consumers on an underlying directed bipartite graph

G = (S ∪ C,A), where A is the set of arcs. For each arc (i, j) ∈ A, let cij denote the unit revenue for flow

shipped from supplier i to consumer j and uij denote the capacity of flow on arc (i, j). What makes this

problem more interesting than the classical transportation problem is the additional assumption that a fixed

cost fij is incurred if arc (i, j) is opened. It is important to emphasize that fixed costs are incurred when

arcs are opened as opposed to when suppliers are opened, as would happen in the facility location problem.

The FCTPwB incorporates an additional proportionality requirement on the quality of the product.

Specifically, let p̃i denote the nominal quality (or purity) of product available from supplier i ∈ S and p̃min
j

denote the minimum quality required at consumer j ∈ C. Then the additional constraint, which we refer to

as a linear blending constraint, requires that the average quality of all product received by consumer j must

be at least p̃min
j , where we assume that product received by a consumer can be blended together to meet this

requirement. A similar constraint could be imposed based on a maximum quality requirement p̃max
j .

In this variant of the problem we assume that there is a single product as well as a single attribute

associated with that product. The blending constraint applies to this single attribute. More generally,

there could be multiple products/commodities each with multiple attributes, and consumers could demand

different products with varying minimum and maximum quality requirements. In addition, the problem

described above consists of a single period in which a product is distributed, but one could envision a multi-

period problem in which the supply and demand inventories are affected by exogeneous factors, which is

why we have chosen to describe the supply and demand as having to satisfy pre-determined inventory level

requirements.

To cast this problem as a mixed-integer program, we introduce continuous decision variables xij to denote

the amount of product sent from supplier i to consumer j and binary decision variables yij which take value

1 if arc (i, j) is opened and 0 otherwise. Let pij := p̃i − p̃min
j be the “purity difference” between supplier i
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and consumer j, ∀(i, j) ∈ A. This yields the arc-based formulation:

(FCTPwB) max
x,y

∑
(i,j)∈A

cijxij −
∑

(i,j)∈A

fijyij (1a)

s.t.
∑
i∈S

pijxij ≥ 0, ∀j ∈ C (1b)

li ≤
∑
j∈C

xij ≤ ui, ∀i ∈ S (1c)

lj ≤
∑
i∈S

xij ≤ uj , ∀j ∈ C (1d)

0 ≤ xij ≤ uijyij , ∀(i, j) ∈ A (1e)

yij ∈ {0, 1}, ∀(i, j) ∈ A . (1f)

The objective of this formulation is to maximize profit, defined as the revenue from shipping product from

suppliers to consumers minus the fixed cost incurred from opening the arcs on which goods are sent. Con-

straint (1b) models the linear blending constraint since it is a re-statement of the blending constraint∑
i∈S p̃ixi∑
i∈S xi

≥ p̃min
j ,

as it would appear in its natural form.

An interesting history of blending in the petroleum industry is given in [5] and [20]. These two works,

along with [21], describe successful deployments of decision support systems in which blending is an integral

component and underscore the importance of mathematical programming methodologies. In the chemical,

petroleum, and wastewater treatment industries, several blending and pooling problems have undergone

extensive study. The survey paper by Misener and Floudas [16] discusses five relevant classes of pooling

problems.

When formulated as mathematical programs, most practical blending problems are modelled as mixed-

integer nonlinear mathematical programming problems (MINLPs). However, because of the difficulty in

solving these MINLPs, mixed-integer linear programming (MIP) formulations are commonly used to ap-

proximate MINLP formulations [11, 14]. In these MIP models, nonlinearities that arise from blending

constraints are linearized (through reformulation) or approximated (sometimes iteratively) [14, 15].

The fixed-charge transportation problem (FCTP) without blending has been studied for years, with early

work dating back to Balinski [3]. In the standard FCTP, each supplier i ∈ S has a fixed supply si = li = ui

and each consumer j ∈ C has a fixed demand dj = lj = uj . This problem is known to be NP-hard. As

a consequence, the FCTPwB is NP-hard since if pij > 0,∀(i, j) ∈ A, then the blending constraints (1b)

become redundant and the resulting problem is simply the FCTP. By and large, researchers have focused on

developing heuristics and exact algorithms for solving the FCTP [1, 4, 6, 10, 12, 13, 19, 22]. More generally,

the FCTP is a special case of the fixed-charge network flow problem for which substantial polyhedral theory

and numerous algorithms have been developed. Notable inequalities derived from studying the single-node

fixed-charge flow model include flow cover cuts [7, 18], flow path cuts [23], and flow pack cuts [2]. These

cutting planes are now standard in many commercial MIP solvers. The relation between our facets and flow

cover cuts is discussed in Section 2.4. We are not aware of any literature in which blending constraints are

also considered.

Despite the abundance of research on blending and fixed-charge problems, there is a dearth of literature

in which both themes are studied simultaneously from a polyhedral vantage point. In this paper, we strive

3



to fill this void by investigating polyhedral aspects of the uncapacitated FCTPwB in which fixed charges

and linear blending constraints are present. Our contributions are a polyhedral analysis of the FCTPwB,

including two new families of facet-defining valid inequalities which fully exploit the presence of a linear

blending requirement, and computational results that demonstrate the effectiveness of the inequalities. In

Section 2, we introduce two exponentially-sized facet classes for the single-consumer uncapacitated FCTPwB

polytope and provide intuition for their validity using arguments based on lifting facets of lower-dimensional

sets. We also show that these facets can be separated with a low-order polynomial-time separation routine.

In Section 3, we prove that in two special cases these facet classes, along with the continuous relaxation of the

original formulation constraints, yield the convex hull of the feasible region. These results lend theoretical

support to our claim that our two facet classes are strong. In Section 4, computational results are presented

to illustrate the effectiveness of our facets at reducing the integrality gap and solution time on instances with

multiple consumers and arc capacities. These results also provide empirical support that our separation

procedure is extremely fast in practice. Some discussion of the relevance and applicability of these cuts to

other models is provided in Section 5.

2 An Uncapacitated Single-Consumer Model

In this section, we study polyhedral aspects of an uncapacitated single-consumer model. We begin by

collecting several assumptions that we will use throughout the remainder of the paper. We assume that each

supplier can send product to a single consumer, that the consumer’s (supplier’s) lower bound on demand

(supply) is 0, and that the consumer’s (supplier’s) upper bound on demand (supply) is 1, which is without

loss of generality since we can scale parameters accordingly. Having unequal lower and upper bounds is not

critical, but will permit us to work with a set that is full dimensional. We assume that arc capacities are

arbitrarily large. Given that only one consumer is present, we drop the subscript for the consumer. We

assume p1 > p2 > · · · > pm and pi 6= 0,∀i ∈ S. This, again, is done for mathematical convenience. In

fact, when we return to the multi-consumer case we will continue to assume that pij 6= pkj and pij 6= 0,

∀i, k ∈ S,∀j ∈ C. Let S+ = {1, · · · ,m+} be the set of good suppliers (i.e., suppliers whose purity difference

pi is positive) and analogously define S− = {m+ +1, · · · ,m} to be the set of bad suppliers. Let S = S+∪S−

be the set of all suppliers. We assume m+ = |S+| ≥ 1 and m− = |S−| ≥ 1.

The feasible region, denoted by Xm+,m− , of the single-consumer uncapacitated FCTPwB is the set of

points (x,y) ∈ Rm
+ × {0, 1}m satisfying

(blending constraint)
∑

i∈S+ qixi −
∑

k∈S− rkxk ≥ 0 (2a)

(demand constraint)
∑

i∈S xi ≤ 1 (2b)

xi ≤ yi,∀ i ∈ S, (2c)

where qi = pi,∀ i ∈ S+, rk = −pk,∀ k ∈ S−. Note that q1 > · · · > qm+ > 0 and 0 < rm++1 < · · · < rm. We

have introduced the parameters qi and ri for convenience so that all coefficients are positive. Our primary

goal is to obtain a polyhedral description of the convex hull of Xm+,m− , denoted by conv(Xm+,m−).

2.1 Extreme Points

We now characterize the extreme points of conv(Xm+,m−). The intuition behind their structure is simple.

The extreme points of the projection of conv(Xm+,m−) onto the continuous variables correspond to one of
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the three following cases: (i) the origin, (ii) one good supplier sending one unit of flow to satisfy demand

while all other suppliers send nothing, or (iii) one good supplier and one bad supplier each sending product

in such a way that both the blending and demand constraints are tight. When we return to the original

space conv(Xm+,m−), we must also consider the y variables.

Proposition 1 The extreme points of conv(Xm+,m−) are(
0,
∑
i∈T

ei

)
, ∀ T ⊆ S (3a)(

ei, ei +
∑
j∈T

ej

)
, ∀ i ∈ S+,∀ T ⊆ S \ {i} (3b)

(
rk

qi + rk
ei +

qi
qi + rk

ek, ei + ek +
∑
j∈T

ej

)
, ∀ i ∈ S+, k ∈ S−,∀ T ⊆ S \ {i, k}, (3c)

where ei ∈ Rm is the i-th unit vector. All nontrivial extreme points of conv(Xm+,m−) have exactly one

positive value among the variables xi, i ∈ S+, and possibly one additional positive value among the variables

xk, k ∈ S−.

Proof It suffices to prove that the extreme points of {x ∈ Rm
+ : (2a); (2b)}, the continuous projection of

conv(Xm+,m−), have the desired structure. This follows because the set only has two nontrivial constraints

(2a) and (2b), and therefore when choosing which constraints to fix at equality at an extreme point, at most

two variables (satisfying the specified conditions) will be positive. �

Corollary 1 The set conv(Xm+,m−) is full-dimensional.

Corollary 2 xi ≥ 0 and yi ≤ 1 for all i ∈ S are trivial facets of conv(Xm+,m−).

Corollary 3 The blending constraint
∑

i∈S+ qixi −
∑

k∈S− rkxk ≥ 0 is a facet of conv(Xm+,m−). The

inequalities
∑

i∈S xi ≤ 1 and xi ≤ yi for i ∈ S+ are facets of conv(Xm+,m−) when m+ ≥ 2.

Proof We can easily pick 2m+1 affinely independent extreme points for Corollary 1 and 2m such points

for Corollaries 2 and 3.

2.2 Facets of the Uncapacitated Single-Consumer FCTPwB Polytope

We now state and prove our main result.

Theorem 1 (Facet Class 1: Lifted Blending Facets) The inequalities∑
i∈T

xi +
∑
k∈S−

min

{
1,
rk
rl

}
xk ≤

∑
i∈S+\T

(
qi
rl

)
xi +

∑
i∈T

yi, ∀ T ⊆ S+,∀ l ∈ S− , (4)

are valid for conv(Xm+,m−). They are facet-defining in all cases except when (a) T = ∅ and l < m, or (b)

T = S+ and l > m+ + 1.
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Theorem 2 (Facet Class 2: Lifted Variable Upper Bound Facets) Let S+
j = {1, . . . , j} for j ∈ S+ ∪ {0},

with S+
0 = ∅. Let S−l = {m+ + 1, . . . , l} for l ∈ S− ∪ {m+}, with S−m+

= ∅. The inequalities

∑
i∈T+

rl(qi − qj)
qi

xi +
∑

k∈T−∪{l}

(qj + rk)xk ≤
∑

k∈T−∪{l}

qjyk +
∑

i∈S+
j−1\T+

(qi − qj)xi +
∑
i∈T+

rl(qi − qj)
qi

yi,

∀ T+ ⊆ S+
j−1,∀ T

− ⊆ S−l−1,∀ j ∈ S
+,∀ l ∈ S−

(5)

are valid for conv(Xm+,m−). If the conditions T+ = S+
j−1 and T− 6= ∅ do not hold simultaneously, then the

inequalities (5) are also facet-defining for conv(Xm+,m−).

Before proving these theorems, we give a brief explanation about their derivation as well as an illustrative

example. Note that in Facet Class 1 when l = m and T = ∅, the constraint becomes the original blending

constraint (2a). Similarly, note that in Facet Class 2 when j = 1, l ∈ S−, and T− = T+ = ∅, the constraint

becomes a variable upper bound constraint xl ≤ q1
q1+rl

yl on a bad supplier l ∈ S−. Wherever possible, we

will use subscripts i and j when indexing good suppliers and k and l when indexing bad suppliers.

We refer to these inequalities as lifted facets because they can be derived from lifting blending or variable

upper bound inequalities from lower-dimensional sets. Specifically, for Facet Class 1, if we fix T ⊆ S+ and

l ∈ S−, and set xi = yi = 0,∀i ∈ T , and xk = yk = 0,∀k ∈ S−, k 6= l, we may lift the pairs of variables

(xt, yt), which were fixed at 0, by considering the lifting function associated with the blending constraint∑
j∈S+\T qjxj − rlxl ≥ 0, which is a facet on this restricted set. Similarly, for Facet Class 2, we fix a good

supplier j ∈ S+, a bad supplier l ∈ S−, and set xi = yi = xk = yk = 0,∀i ∈ S+
j−1,∀k ∈ S

−
l−1. We may then

lift the pairs of variables (xt, yt), which were fixed at 0, by considering the lifting function associated with

the variable upper bound constraint xl ≤ qj
qj+rl

yl, which is a facet on this restricted set. Moreover, it can be

shown that this lifting function is superadditive, hence, we obtain the computationally attractive property

known as sequence independent lifting [8].

Example. There are two good suppliers, S+ = {1, 2}, two bad suppliers, S− = {3, 4}, and p =

(11, 7,−3,−5). The lifted blending facets are

T l

3x1 − 7x2 + 3x3 + 3x4 ≤ 3y1 {1} 3 (LB 3a)

−11x1 + 3x2 + 3x3 + 3x4 ≤ 3y2 {2} 3 (LB 3b)

x1 + x2 + x3 + x4 ≤ y1 + y2 {1, 2} 3 (LB 3c)

−11x1 − 7x2 + 3x3 + 5x4 ≤ 0 ∅ 4 (LB 4a)

5x1 − 7x2 + 3x3 + 5x4 ≤ 5y1 {1} 4 (LB 4b)

−11x1 + 5x2 + 3x3 + 5x4 ≤ 5y2 {2} 4 (LB 4c)

As described above, these facets are obtained by “turning off” all good suppliers in T and all bad suppliers

besides l, and then lifting back in the pairs (xt, yt) of variables that were “turned off” starting from the

lower-dimensional blending constraint
∑

j∈S+\T qjxj − rlxl ≥ 0. Note that facet (LB 4a) is the original

blending constraint. Facet (LB 3c) states that at least one good supplier must be “turned on” if any product

is sent from a supplier.
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The lifted variable upper bound facets are

T+ T− j l

14x3 ≤ 11y3 ∅ ∅ 1 3 (LVUB 13)

16x4 ≤ 11y4 ∅ ∅ 1 4 (LVUB 14)

−4x1 + 10x3 ≤ 7y3 ∅ ∅ 2 3 (LVUB 23a)

12x1 + 110x3 ≤ 12y1 + 77y3 {1} ∅ 2 3 (LVUB 23b)

−4x1 + 12x4 ≤ 7y4 ∅ ∅ 2 4 (LVUB 24a)

−4x1 + 10x3 + 12x4 ≤ 7y3 + 7y4 ∅ {3} 2 4 (LVUB 24b)

20x1 + 132x4 ≤ 20y1 + 77y4 {1} ∅ 2 4 (LVUB 24c)

Note that when j = 1, the variable upper bound inequality (q1 + rl)xl ≤ q1rl, for l ∈ S−, is already facet-

defining. When j = 2 and l = 3, i.e., when supplier 1 alone is “turned off” at the outset, there are two ways

to lift in the pair (x1, y1) to obtain a facet as shown in (LVUB 23a) and (LVUB 23b). When j = 2 and l = 4,

i.e., when suppliers 1 and 3 are “turned off” at the outset, there are three ways to lift in the pairs (x1, y1)

and (x3, y3) to obtain a facet as shown in (LVUB 24a) – (LVUB 24c).

In addition to the bound inequalities, inequalities (LB) and (LVUB), the following three facets are needed

to describe the convex hull of Xm+,m− for this example:

−110x1 + 30x2 + 30x3 + 162x4 ≤ + 30y2 + 77y4

30x1 − 42x2 + 128x3 + 30x4 ≤ 30y1 + 77y3

60x1 + 550x3 + 396x4 ≤ 60y1 + 385y3 + 231y4 .

Proof of Theorem 1: Let (x∗,y∗) ∈ Xm+,m− , T ⊆ S+, and l ∈ S−. If y∗i = 0,∀ i ∈ T , then inequality

(4) reduces to a weakened version (because of the min operator) of the blending constraint (2a) under the

restriction xi = yi = 0,∀ i ∈ T . Otherwise, we have∑
i∈T

x∗i +
∑
k∈S−

min

{
1,
rk
rl

}
x∗k ≤

∑
i∈T

x∗i +
∑
k∈S−

x∗k ≤ 1 ≤
∑
i∈T

y∗i ≤
∑

i∈S+\T

(
qi
rl

)
x∗i +

∑
i∈T

y∗i .

In all but the two exceptional cases, to prove that inequality (4) is facet-defining for a given choice of T ⊆ S+

and l ∈ S−, let u ∈ S+ \ T and v ∈ T . One can verify that the following 2m − 1 points, along with the

origin, are affinely independent: (
0, ei

)
, ∀ i ∈ S+ \ T (6a)(

ei, ei

)
, ∀ i ∈ T (6b)(

rl
qi + rl

ei +
qi

qi + rl
el, ei + el

)
, ∀ i ∈ S+ (6c)

(
0, ek

)
, ∀ k ∈ S− (7a)(

rk
qu + rk

eu +
qu

qu + rk
ek, eu + ek

)
, ∀ k ∈ S−, k < l (7b)(

rk
qv + rk

ev +
qv

qv + rk
ek, ev + ek

)
, ∀ k ∈ S−, k > l (7c)
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Note that (6a)–(6c) contribute 2m+ points and (7a)–(7c) contribute 2m− − 1 points. �

Proof of Theorem 2: Let (x∗,y∗) be an extreme point of conv(Xm+,m−). Let j ∈ S+, l ∈ S−, T+ ⊆
S+
j−1, and T− ⊆ S−l−1. If x∗i = 1 for some i ∈ S+ or if x∗k > 0 for some k ∈ S− \ (T− ∪ {l}), then validity is

immediate. So suppose (x∗,y∗) takes the form (3c) for some i ∈ S+ and some k ∈ T− ∪ {l}.
Case 1: If i ≥ j (qj ≥ qi), then (qj + rk)x∗k = (qj + rk)

(
qi

qi+rk

)
≤ qj = qjy

∗
k.

Case 2: If i ∈ S+
j−1 \ T+, then, since x∗i + x∗k = 1 and rkx

∗
k − qix∗i = 0 is readily seen, we obtain

(qj − qi)x∗i + (qj + rk)x∗k = qj(x
∗
i + x∗k) + rkx

∗
k − qix∗i = qj = qjy

∗
k .

Case 3: If i ∈ T+, then
(

rl(qi−qj)
qi

)
x∗i + (qj + rk)x∗k =

(
rl(qi−qj)

qi

)(
rk

qi+rk

)
+ (qj + rk)

(
qi

qi+rk

)
≤ qj +

rl(qi−qj)
qi

= qjy
∗
k +

(
rl(qi−qj)

qi

)
y∗i , with equality holding only when k = l.

In all but the exceptional cases, to prove that inequality (5) is facet-defining for a given choice of j ∈ S+, l ∈
S−, T+ ⊆ S−j−1, and T− ⊆ S−l−1, let u ∈ S+ \ S+

j−1 and v ∈ S+
j−1 \ T+. One can verify that the following

2m− 1 points, along with the origin, are affinely independent:(
0, ei

)
, ∀ i ∈ (S+

j−1 \ T
+) ∪ (S+ \ S+

j−1) (8a)(
ei, ei

)
, ∀ i ∈ T+ ∪ (S+ \ S+

j−1) (8b)(
rl

qi + rl
ei +

qi
qi + rl

el, ei + el

)
, ∀ i ∈ S+

j−1 (8c)

(
0, ek

)
, ∀ k ∈ (S−l−1 \ T

−) ∪ (S− \ S−l ) (9a)(
rk

qj + rk
ej +

qj
qj + rk

ek, ej + ek

)
, ∀ k ∈ T− ∪ {l} ∪ (S− \ S−l ) (9b)(

rk
qu + rk

eu +
qu

qu + rk
ek, eu + ek

)
, ∀ k ∈ S−l−1 \ T

− (9c)(
rk

qv + rk
ev +

qv
qv + rk

ek, ev + ek

)
, ∀ k ∈ T− (9d)

Note that (8a)–(8c) contribute 2m+ points and (9a)–(9d) contribute 2m− − 1 points. �

2.3 Separation

The next proposition shows that separation of the lifted blending constraints (4) and the lifted variable

upper bound constraints (5) can be done in polynomial time, i.e., the former can be done in O(m2) time

while the latter can be done in O(m3) time.

Proposition 2 Let (x∗,y∗) be an optimal solution to the LP relaxation.

1. Fix l ∈ S−. If

ζ(l) :=
∑
k∈S−

min

{
1,
rk
rl

}
x∗k +

∑
i∈S+

((
1 +

(
qi
rl

))
x∗i − y∗i

)+

−
(
qi
rl

)
x∗i (10)

is positive, where (x)+ := max{0, x}, then the most violated lifted blending inequality (4) for this l ∈ S−

is given by the subset T := {i ∈ S+ :
((

1 +
(

qi
rl

))
x∗i − y∗i

)
> 0}. If ζ(l) ≤ 0,∀l ∈ S−, then there is

no violated lifted blending inequality (4).
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2. Fix j ∈ S+ and l ∈ S−. If

ψ(j, l) := −
j−1∑
i=1

(qi − qj)
rl

x∗i +

j−1∑
i=1

(
(qi − qj)

qi
(x∗i − y∗i ) +

(qi − qj)
rl

x∗i

)+

+

l∑
k=m++1

(
(qj + rk)

rl
x∗k −

qj
rl
y∗k

)+

(11)

is positive, then the most violated lifted variable upper bound inequality (5) for this j ∈ S+ and l ∈ S−

is given by the subsets T+ := {i ∈ {1, . . . , j− 1} :
(

(qi−qj)
qi

(x∗i − y∗i ) +
(qi−qj)

rl
x∗i

)
> 0} and T− := {k ∈

{m+ + 1, . . . , l} :
(

(qj+rk)
rl

x∗k −
qj
rl
y∗k

)
> 0}. If ψ(j, l) ≤ 0,∀j ∈ S+,∀l ∈ S−, then there is no violated

lifted variable upper bound inequality (5).

Proof. 1. For each bad supplier l ∈ S−, one can find the most violated blending inequality (4), or

determine that no such violated inequality exists, by checking if

ζ(l) = κ+ max
T⊆S+

∑
i∈T

(x∗i − y∗i )−
∑

i∈S+\T

(
qi
rl

)
x∗i

is positive, where κ =
∑

k∈S− min
{

1, rkrl

}
x∗k is a constant independent of the subset T . Notice that the

maximization is trivial: if x∗i − y∗i > −
(

qi
rl

)
x∗i , set i ∈ T ; otherwise, i ∈ S+ \ T . Consequently, if ζ(l), as

defined in (10), is positive, set T = {i ∈ S+ :
((

1 +
(

qi
rl

))
x∗i − y∗i

)
> 0}. Since ζ(l) can be computed by

summing over all good suppliers j ∈ S+, of which there are at most m, and this operation must be done

for each bad supplier l ∈ S−, of which there are also at most m, we can determine the most violated lifted

blending cuts (4) in O(m2) time.

2. For each good supplier j ∈ S+ and each bad supplier l ∈ S−, one can find the most violated variable

upper bound inequality (5), or determine that no such violated inequality exists, by checking if

ψ(j, l) = max
T+⊆S+

j−1,T
−⊆S−

l−1

∑
i∈T+

(qi − qj)
qi

(x∗i − y∗i ) +
∑

k∈T−∪{l}

(
(qj + rk)

rl
x∗k −

qj
rl
y∗k

)
−

∑
i∈S+

j−1\T+

(qi − qj)
rl

x∗i

is positive. As above, this maximization problem is trivial: if
(

rl(qi−qj)
qi

)
(x∗i−y∗i ) > −(qi−qj)x∗i for i ∈ S+

j−1,

set i ∈ T+; otherwise, set i ∈ S+
j−1 \ T+. Similarly, if (qj + rk)x∗k − qjy∗k > 0 for k ∈ S−l−1, set k ∈ T−;

otherwise, set k ∈ S−l−1 \ T−. Hence, if ψ(j, l), as defined in (11), is positive, set T+ and T− accordingly. In

the worst case, it requires O(m3) time to find the most violated lifted variable upper bound facets over all

(j, l) pairs. This follows because looping over all (j, l) pairs, for j ∈ S+ and l ∈ S−, requires O(m2) time,

and for a given (j, l) pair, the above summation requires O(m) time. �

2.4 Relation to Single-Node Flow Covers

We close this section by comparing the constraint set Xm+,m− with that of the single-node flow model since

the latter has been studied extensively in the literature [7, 18]. The constraint set for a single-node flow

model is given by

F :=

(x,y) ∈ Rm
+ × {0, 1}m :

∑
j∈N+

xj −
∑

j∈N−

xj ≤ b, xj ≤ ajyj ,∀ j ∈ N

 ,
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where the set N of arcs has been partitioned into incoming arcs N− and outgoing arcs N+, each arc j has a

fixed capacity aj ∈ R+ if opened, and b ∈ R is the exogeneous supply/demand at this node. There are two

ways to relate the set Xm+,m− to F .

• Interpretation 1: After setting aj = 1,∀j ∈ S, b = 1, and N− = ∅, one can treat the demand

constraint
∑

i∈S xi ≤ 1 as the constraint
∑

j∈N+ xj −
∑

j∈N− xj ≤ b in F and intersect F with a

single homogeneous linear inequality
∑

i∈S+ qixi −
∑

k∈S− rkxk ≥ 0 to obtain the set Xm+,m− as it

was originally defined in (2).

• Interpretation 2: After setting aj = |pj |,∀j ∈ S, and b = 0, and introducing an auxiliary decision

variable zj = |pj |xj ,∀j ∈ S, one can rewrite
∑

j∈S pjxj ≥ 0 as
∑

j∈S− zj −
∑

j∈S+ zj ≤ b. Thus,

S− and S+ play the role of N+ and N−, respectively, in F . In addition, one must intersect these

constraints with the demand constraint, which becomes
∑

i∈S
zj
|pj | ≤ 1, to obtain the set

Z :=

(z,y) ∈ Rm
+ × {0, 1}m :

∑
j∈S−

zj −
∑
j∈S+

zj ≤ 0,
∑
j∈S

zj
|pj |
≤ 1, zj ≤ |pj |yj ,∀ j ∈ S

 .

Since Xm+,m− and Z are subsets of F , valid cuts generated by well known procedures for the single-node

flow covers, e.g., lifted flow cover inequalities, are valid for Xm+,m− and Z. However, it is easy to verify that

our two facet classes cannot be obtained as flow cover inequalities from Xm+,m− or Z when the additional

side constraint is omitted.

3 Special Cases: One Good or One Bad Supplier

In this section, we consider two special cases of the FCTPwB in which S+ or S− is a singleton. In both

cases, we show that the continuous relaxation of Xm+,m− along with Facet Classes 1 and 2 yield the convex

hull of Xm+,m− . These results lend theoretical support to our claim that inclusion of our two facet classes

lead to strong formulations of the FCTPwB. Note that, as shown in the example from Section 2.2, when

|S+| > 1 and |S−| > 1, the continuous relaxation of the original formulation constraints and the two facet

classes are not enough to describe conv(Xm+,m−).

3.1 One Good Supplier and Many Bad Suppliers

First consider the simplified single-consumer model in which there is a single good supplier and one or more

bad suppliers, i.e., S+ = {1} and S− = {2, . . . ,m}. In this case, the lifted blending and variable upper

bound facets for X1,m−1 become: ∑
i∈S

xi ≤ y1 (12a)

xk ≤
q1

q1 + rk
yk,∀ k ∈ S−. (12b)

Constraint (12a) states that if any product is sent, then the arc originating from the lone good supplier must

be “on” (otherwise, the blending constraint cannot be met). Similarly, the maximum amount of product

that can be sent from a bad supplier k ∈ S− is bounded above by the ratio q1
q1+rk

.
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Theorem 3 [A Polyhedral Description of conv(X1,m−1)] Let P := {(x,y) ∈ Rm
+×[0, 1]m : (2a), (12a), (12b)}.

Then P = conv(X1,m−1).

Proof Let (x∗,y∗) ∈ P with some fractional y∗i ∈ (0, 1). We show that (x∗,y∗) cannot be an extreme

point of P (see, e.g., Approach 2 on p.145 of [24]). Without loss of generality, we assume that the pi’s have

been normalized so that q1 = 1. The proof is split into four cases:

Case 1: Suppose i ∈ S− and x∗i <
y∗
i

ri+1 . Then for some ε > 0 we have (x∗,y∗ ± εei) ∈ P . Therefore

(x∗,y∗) is not extreme.

Case 2: Suppose
∑

k∈S x
∗
k = α < 1. Then the points

x1k =
x∗k
α
, y1k = min

{
1,
y∗k
α

}
,∀ k ∈ S, and x2k = 0, y2k = max

{
0,
y∗k − α
1− α

}
,∀ k ∈ S,

satisfy (x1,y1), (x2,y2) ∈ P and yield (x∗,y∗) = α(x1,y1) + (1−α)(x2,y2). Thus, i 6= 1 and we must have∑
k∈S x

∗
k = 1 at any nontrivial extreme point of P .

Case 3: Suppose
∑

k∈S x
∗
k = 1 (which implies y∗1 = 1), x∗i =

y∗
i

ri+1 and x∗1 −
∑

k∈S− rkx
∗
k > 0. The point

(x1,y1) with

x11 =
ri +

∑
k 6=1,i(rk − ri)x∗k
ri + 1

, x1i =
1−

∑
k 6=1,i(rk + 1)x∗k
ri + 1

,

y11 = 1, y1i = 1−
∑
k 6=1,i

(rk + 1)x∗k, (x1k, y
1
k) = (x∗k, y

∗
k),∀ k 6= 1, i

and (x2,y2) with

x21 = 1−
∑
k 6=1,i

x∗k, x2i = 0, y21 = 1, y2i = 0, (x2k, y
2
k) = (x∗k, y

∗
k),∀ k 6= 1, i

belong to P and there is some λ ∈ (0, 1) with (x∗,y∗) = λ(x1,y1) + (1− λ)(x2,y2).

Case 4: Suppose
∑

k∈S x
∗
k = 1, x∗i =

y∗
i

ri+1 and x∗1−
∑

k∈S− rkx
∗
k = 0. Then y∗i +

∑
k∈S−\{i}(rk+1)x∗k = 1,

which implies that 0 ≤ x∗l <
1

rl+1 ,∀l ∈ S
− \ {i}, and that there exists some k ∈ S− \ {i} such that x∗k > 0.

Since 0 < x∗k <
1

rk+1 , y∗k = 1 (otherwise, we are in Case 1). Define the direction vector d ∈ Rm as

d1 =

(
ri + 1

rk + 1
− 1

)
, di = 1, dk = − ri + 1

rk + 1
, dj = 0,∀j /∈ {1, i, k},

and note that
∑

j∈S dj = 0 and d1 −
∑

l∈S− rldl = 0. For ε > 0, define y1i = (ri + 1)(x∗i + ε), y2i =

(ri + 1)(x∗i − ε), and let x1 = x∗ + εd, x2 = x∗ − εd, y1j = y2j = y∗j ,∀ j 6= i. Then if ε is small enough,

(x1,y1), (x2,y2) ∈ P , and (x∗,y∗) is their midpoint, so it cannot be extreme. �

3.2 Many Good Suppliers and One Bad Supplier

A polyhedral description of conv(Xm−1,1) is more complex than conv(X1,m−1), in which there were only a

polynomial number of facets. When S+ = {1, . . . ,m − 1} and S− = {m}, the lifted blending and variable
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upper bound facets for Xm−1,1 become:∑
i∈T

xi + xm ≤
∑

i∈S+\T

(
qi
rm

)
xi +

∑
i∈T

yi, ∀ T ⊆ S+ (13a)

∑
i∈T

rm(qi − qj)
qi

xi + (qj + rm)xm ≤ qjym +
∑

i∈S+
j−1\T

(qi − qj)xi +
∑
i∈T

rm(qi − qj)
qi

yi,

∀ T ⊆ S+
j−1,∀ j ∈ S

+

(13b)

Theorem 4 [A Polyhedral Description of conv(Xm−1,1)] Let P := {(x,y) ∈ Rm
+ × [0, 1]m : xi ≤ yi,∀i ∈

S+, (2b), (13a), (13b)}. Then P = conv(Xm−1,1).

Sketch of Proof. We show that for any cost vector (c, f) ∈ Rm×m, (c, f) 6= (0,0), the set M(c, f) of optimal

solutions to the problem max{cTx − fTy : (x,y) ∈ Xm−1,1} coincides with at least one of the hyperplanes

associated with an inequality defining P (see, e.g., Approach 6 on p.146 of [24]). The proof, which is outlined

in Figure 1, proceeds by partitioning the space of cost vectors and by gradually eliminating cost vectors from

consideration. Initially, cost vectors that lead to optimal solutions that lie on one of the trivial or formulation

facets are considered. Finally, cost vectors that lead to optimal solutions in which we are indifferent between

sending product (a) exclusively from a single good supplier and (b) jointly from a good supplier and the bad

supplier are considered. This last case requires the most care, but also sheds light on when our two facet

classes are necessary. A complete proof is provided in the appendix. �

4 Computational Results

In this section, computational results are presented to illustrate the effectiveness of our two facet classes.

In our first experiment, we investigate the reduction in the root node integrality gap due to our blending

facets on uncapacitated single-consumer FCTPwB instances. Since our facets do not give the convex hull of

Xm+,m− when m+ > 1 and m− > 1, this experiment provides empirical evidence concerning the strength of

our facets with respect to the set Xm+,m− . In our second experiment, we solve capacitated multi-consumer

FCTPwB instances to provable optimality and show that integrating our cuts in a branch-and-cut algorithm

yields significant reductions in the overall solution time and the number of nodes explored in the search tree.

All experiments have the following characteristics: All computations were carried out on a Linux machine

with kernel 2.6.18 running on a 64-bit x86 processor equipped with two Intel Xeon E5520 chips, which run

at 2.27 GHz, and 32GB of RAM. The LP and MIP solvers of Gurobi 3.0 were used [9]. For every set

of parameters, 100 instances were randomly generated. All cuts are generated via the separation routine

described in Proposition 2. Specifically, for each good and each bad supplier, the most violated blending cuts

are generated and are only added if the violation is at least ε := 0.0001. Note that when multiple consumers

are present, the number and set of good and bad suppliers differ for each consumer. Separation is performed

for each consumer.

4.1 Uncapacitated Single-Consumer FCTPwB

In our first experiment, we present results for instances of the uncapacitated single-consumer FCTPwB. In

light of Theorems 3 and 4, all instances have at least two good and bad suppliers so that the convex hull

is not already known. Since our facets, along with the original formulation constraints, do not yield the
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convex hull of Xm+,m− , our main curiosity in this experiment is to obtain empirical evidence concerning how

effective our cuts are at tightening the LP relaxation. Specifically, we aim to answer the following question:

What is the reduction in the integrality gap due to our two facet classes and how many of these cuts are

necessary to achieve this gap reduction? The integrality gap is defined as (z∗ − zLP )/z∗, where z∗ is the

true optimal objective function value (computed in advance) and zLP is the objective function value of the

LP relaxation.

To answer this question, we could compare the integrality gap of the LP relaxation with that of a cutting

plane algorithm in which only blending cuts are separated. However, in addition to this comparison, we

may also want to know the value of our blending cuts when they are embedded in a MIP solver in which

standard MIP cuts are used. To this end, we compare the integrality gap at the root node for four different

options: the LP relaxation (denoted by ‘LP’ in the tables), Gurobi on its own, i.e., without blending cuts,

(‘GRB’), a user-implemented cutting plane algorithm (‘User’) in which only our blending cuts are added

to the model until the LP relaxation ceases to improve by at least ε or no violated cuts are found, and

Gurobi with both standard MIP cuts enabled and blending cuts added through a callback (‘GRB+User’).

We also experimented with turning off all default Gurobi cuts and having Gurobi use only our cuts through a

callback. However, this option was almost always worse than default Gurobi and was always worse than our

cutting plane implementation. Note that in this first experiment MIP preprocessing (‘presolve’) is turned

off to understand how our blending cuts improve the quality of the original formulation.

A particular instance is generated as follows. First, we select the number of good and bad suppliers m+

and m−, respectively. Fixed costs are set such that fi = m − i + 1,∀i ∈ S. Unit cost are set such that

ci = m + 1,∀i ∈ S+, and ck = m + 1 + ∆bad,∀k ∈ S−, where ∆bad ∈ Z+ is a parameter representing

an increase in revenue (i.e., an incentive) for using bad suppliers. It is important to note that without

an appreciable incentive for using bad suppliers, the optimal solution is trivial: send everything from a

single good supplier. In this case, our blending cuts will not help. Nominal purity levels are generated

as p̃i ∼ Normal(0, 1),∀i ∈ S. To have exactly m+ good and m− bad suppliers, respectively, we sort the

p̃i’s in decreasing order, re-index so that p̃1 > · · · > p̃m and set p̃min = (p̃m+ + p̃m++1)/2. Finally, we set

pi = p̃i − p̃min,∀i ∈ S.

The results are shown in Tables 1 and 2. The heading ‘# Good’ refers to the number of good suppliers.

The next four columns indicate the average integrality gap (%) at the root node of the branch-and-bound

tree for the four different options discussed above. To reiterate, this gap is exact since it is relative to the

true optimal MIP solution. The remaining columns show cut-specific information. ‘Cuts (User)’ and ‘Cuts

(GRB+User)’ refer to cut information associated with the ‘User’ and ‘GRB+User’ option, respectively. ‘LB’

and ‘LVUB’ denote the average number of lifted blending cuts (4) and lifted variable upper bound cuts (5)

that were generated through separation, respectively. ‘Rounds’ refers to the average number of separation

rounds, i.e., the average number of times an attempt to separate the current optimal solution to the LP

relaxation with a blending cut.

The results in Tables 1 and 2 suggest that our blending cuts are effective at reducing the integrality gap

of the model. In fact, the smallest gap is often achieved when only blending cuts are added. These results

provide compelling empirical evidence that the subset of facets of Xm+,m− identified in Theorems 1 and 2

work well by themselves. We also see that when the number of suppliers is larger and when the incentive for

using bad suppliers (∆bad) increases, our cuts are more valuable, i.e., the difference between the integrality

gap of ‘GRB’ and ‘User’ and between ‘GRB’ and ‘GRB+User’ becomes more pronounced.

Given that blending cuts alone are so effective, one might assume that coupling blending cuts with

13



standard MIP cuts added by Gurobi would further reduce the integrality gap. The results indicate that this

is not the case when we simply add blending cuts as user cuts through a callback in Gurobi. It appears that

with default settings Gurobi prefers not to generate cuts as aggressively as our implemented cutting plane

method. Two possible explanations for this behavior are: (i) if the absolute value of the ratio (violation of

cut)/(norm of cut) does not exceed Gurobi’s default tolerance, the cut may be rejected, and (ii) if two cuts

are close to parallel, one of them may be rejected (Z. Gu, personal communication, August 13, 2010). At

any rate, these results also serve as a useful reminder: Care has to be taken when setting up computational

experiments and with interpreting computational results. If we had just used a callback implementation, we

would have drawn completely different conclusions about the value of our blending cuts!

Data Root Gap (%) Cuts (User) Cuts (GRB+User)

∆bad # Good LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds

5 5 1.19 0.00 0.00 0.00 0 6 1 0 4 1

5 10 1.45 0.00 0.01 0.00 3 49 3 1 17 1

5 15 3.63 0.08 0.32 0.19 38 208 15 7 226 7

15 5 16.72 0.42 0.12 1.27 33 86 8 51 56 5

15 10 29.67 13.93 5.51 14.44 308 652 43 102 801 11

15 15 17.47 2.66 2.20 7.21 315 300 69 58 712 12

25 5 24.52 2.28 0.50 4.97 110 196 14 119 438 9

25 10 22.59 9.92 1.09 8.57 301 439 39 108 874 11

25 15 16.71 2.70 1.08 7.13 281 155 59 56 716 12

50 5 9.29 0.66 0.01 0.87 73 51 6 79 301 5

50 10 13.51 4.19 0.15 2.66 221 154 26 96 742 11

50 15 13.04 4.82 0.32 4.63 227 79 47 58 715 13

100 5 4.20 0.22 0.00 0.23 49 24 3 56 215 3

100 10 7.49 0.68 0.04 0.35 142 68 15 69 536 8

100 15 8.97 2.84 0.13 2.08 175 63 36 55 642 12

Table 1: Root information for the Uncapacitated Single-Consumer FCTPwB with 20 Suppliers

4.2 Capacitated Multi-Consumer FCTPwB

In our next experiment, we show the strength of our two cut classes for capacitated multi-consumer FCTPwB

instances described by Formulation (1). In this capacitated setting, our inequalities remain valid, but may no

longer be facet-defining. The set-up for this experiment resembles what was done above, except in addition

to investigating the root relaxation, we also observe that our cuts are effective at solving these instances to

provable optimality. In some cases, embedding blending cuts within Gurobi reduces solution time by two

orders of magnitude.

A particular instance is generated as follows. There are m = 20 suppliers and the number of consumers

varies depending on data set used. Table 3 specifies the number of consumers as well as the number of good

suppliers for each consumer. For example, in Data Set 1, the first consumer has 15 good suppliers; the last

consumer has 6. As above, nominal purity levels are generated as Normal(0,1) random variables and purity

differences are computed so that the appropriate number of good suppliers aligns with what is stated in
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Data Root Gap (%) Cuts (User) Cuts (GRB+User)

∆bad # Good LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds

5 10 0.25 0.00 0.00 0.00 0 15 1 0 8 0

5 20 0.22 0.00 0.00 0.00 0 78 2 0 20 0

5 30 0.39 0.00 0.00 0.00 1 248 3 0 464 7

15 10 3.99 0.15 0.05 0.31 36 247 9 20 41 2

15 20 3.53 0.28 0.18 0.53 62 1214 16 29 246 3

15 30 12.74 7.83 5.98 8.68 997 1065 105 100 2471 10

25 10 19.04 4.23 0.30 5.76 111 744 17 135 138 5

25 20 24.65 12.73 8.96 12.46 1300 1939 74 283 4422 14

25 30 14.13 8.71 3.91 8.87 1295 1556 136 161 4346 16

50 10 23.89 14.94 1.75 12.10 1068 1610 51 304 2415 10

50 20 16.13 11.46 2.77 7.83 1741 2059 99 261 4583 13

50 30 12.69 7.53 2.31 6.86 1111 772 114 136 3738 14

100 10 9.60 4.91 0.05 5.10 597 487 24 219 1940 7

100 20 9.89 6.06 0.77 4.03 1439 999 78 255 4320 14

100 30 10.19 6.32 0.69 5.56 1050 357 106 134 3610 13

Table 2: Root information for the Uncapacitated Single-Consumer FCTPwB with 40 Suppliers

Data Set # Consumers # Good Suppliers per Consumer

1 10 15,14,13,12,11,10,9,8,7,6

2 17 18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2

Table 3: Data Sets

Table 3. For each arc (i, j) ∈ A, we set fij = m− i− (j/m); cij = m+1 if pij > 0 and cij = m+1+ i+∆bad

if pij < 0. We set li = lj = 0, ui = n, and uj = 1,∀i ∈ S, j ∈ C. Finally, we distinguish between weakly and

highly capacitated instances in which arc capacities uij are randomly generated as Uniform(0.80,0.95) and

Uniform(0.25,0.50), respectively. In the tables, weakly and highly capacitated instances are denoted with a

‘W’ and an ‘H,’ respectively.

The results are shown in Tables 4–7. Tables 4 and 5 present information related to the root node of the

search tree while Tables 6 and 7 focus on information related to solving the instances to provable optimality.

‘Cap’ refers to the capacity of the instance. Note that MIP preprocessing (‘presolve’) is turned on, just as

a user would do. Tables 4 and 5 report the same information reported in the first set of experiments. In

Tables 6 and 7, under the ‘# Cuts’ heading, ‘LB’ and ‘LVUB’ refer to the number of lifted blending and

lifted variable upper bound cuts that were ever generated. ‘# Nodes’ refers to the number of nodes that

were explored in the search tree.

After solving the capacitated multi-consumer FCTPwB model to provable optimality and averaging the

results, the following observations are apparent. No blending (user) cuts were ever generated after the root

node. This does not necessarily mean that there are no violated blending cuts at nodes other than the root

node. However, with default parameter settings Gurobi chooses never to execute our cut callback beyond

the root node and therefore never attempts to generate blending cuts at nodes other than the root node. It
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should also be noted that default Gurobi cuts were almost never generated beyond the root node. In every

case, fewer nodes in the branch-and-cut tree were explored when blending cuts were generated alongside

default Gurobi cuts. This reduction in the number of nodes explored often led to an order of magnitude

improvement in the overall solution time.

In contrast to what was observed in our first experiment, Gurobi often performed many more rounds of

separation at the root node than our implemented cutting plane method in this second experiment. One

possible explanation for this is that when arc capacities are introduced, our inequalities are no longer facet

defining and are unable to reduce the integrality gap as much per iteration as in our first experiment.

Meanwhile, with the introduction of arc capacities and multiple consumers, Gurobi is able to generate more

of its own inequalities (30-40% of which are Gomory mixed-integer cuts and 25-35% of which are flow cover

cuts). Note that arc capacities lead to multiple single-node flow cover sets and, therefore, greater potential

for flow cover inequalities to be separated. This leads to more opportunities for us to generate more (weaker)

inequalities, which in turn leads to more opportunities for Gurobi to generate more inequalities, and so forth.

Thus we end up with many more separation rounds and slow convergence.

In preliminary experimentation, we also learned that when the parameter ∆bad was large, it was im-

portant to place an upper bound on the number of each type of blending cut that can be generated or on

the number of separation rounds. Without such a constraint, an excessive number of blending cuts could be

generated at the root node, bogging down the computations at subsequent iterations, ultimately resulting

in longer solution times than default Gurobi. To avoid this, we imposed an upper bound of 5000 rounds of

separation for all of the instances solved in this second experiment. As a final comment, in general, weakly

capacitated instances are much easier to solve. Since our cuts were developed for an uncapacitated model,

it seems natural that they should perform better on weakly capacitated instances.

Data Root Gap (%) # Cuts (User) # Cuts (GRB+User)

Cap ∆bad LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds

W 5 40.55 31.65 15.24 9.40 1219 4380 50 31342 178102 2128

W 15 35.37 27.30 14.11 9.62 856 3062 27 2860 10049 143

W 25 29.69 23.80 12.76 8.10 339 1714 3 1522 6783 27

W 50 22.60 16.47 10.99 5.93 327 1773 3 1696 7787 46

W 100 16.93 12.01 9.79 4.75 316 1712 3 2897 9681 174

H 5 43.60 20.89 23.71 13.65 91 57 12 574 466 466

H 15 36.13 23.19 20.67 12.31 212 48 25 1169 302 417

H 25 30.15 21.08 18.35 11.23 311 64 34 1796 376 1159

H 50 24.35 20.37 14.25 11.86 431 82 47 742 159 106

H 100 15.59 11.65 9.11 6.81 415 74 38 675 128 65

Table 4: Root information for Data Set 1

5 Future Research

We would like to extend our two facet classes in two ways. First, it would be interesting to determine

similar cuts for the capacitated FCTPwB. We attempted to do this for the case of a single good supplier
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Data Root Gap (%) # Cuts (User) # Cuts (GRB+User)

Cap ∆bad LP GRB User GRB+User LB LVUB Rounds LB LVUB Rounds

W 5 34.39 20.23 13.03 7.97 1473 4924 40 65557 281830 3665

W 15 30.49 18.59 12.38 7.78 629 2608 6 1717 7037 19

W 25 27.32 17.76 11.82 7.76 449 2035 3 1833 8021 20

W 50 21.36 13.50 10.37 5.77 447 2170 3 1760 8063 20

W 100 16.56 9.50 8.86 3.71 395 1879 3 2084 7346 51

H 5 24.54 7.37 13.99 4.79 240 69 30 1354 594 798

H 15 27.94 10.03 12.79 5.30 330 87 39 7061 1717 3646

H 25 26.22 11.71 12.80 5.84 450 98 53 6795 4927 2829

H 50 22.37 11.75 11.85 6.29 679 118 76 26381 3914 4568

H 100 15.06 7.96 9.29 6.71 684 118 68 12042 2878 3158

Table 5: Root information for Data Set 2

Data Time (sec) # Cuts # Nodes

Cap ∆bad GRB GRB+User LB LVUB GRB GRB+User

W 5 271.06 7.42 31342 178102 2018646 3204

W 15 217.10 0.91 2860 10049 1538488 159

W 25 59.97 0.47 1522 6783 443672 17

W 50 19.40 0.55 1696 7787 114445 37

W 100 59.42 0.80 2897 9681 300811 167

H 5 0.40 0.61 574 466 1433 603

H 15 2.41 0.65 1169 302 18523 469

H 25 28.48 1.55 1796 376 249101 1485

H 50 43.49 0.26 742 159 317443 95

H 100 29.95 0.21 675 128 218113 53

Table 6: Full solve information for Data Set 1

and many bad suppliers. However, even for this simple set, the form of the cuts became complicated.

Second, it would be interesting to construct facet classes when the right-hand-side b, which in our model is

set to 0, of the blending constraint
∑

i∈S pixi ≥ b takes nonzero values. Obtaining facets for this set, i.e.,

X := {(x,y) ∈ Rm
+ × {0, 1}m :

∑
i∈S pixi ≥ b,

∑
i∈S xi ≤ 1, xi ≤ yi,∀i ∈ S}, could have greater appeal to

the MIP community as they could be used to solve general MIP instances in which this structure appears.

Our initial efforts into the question suggest that when b > 0 Facet Class 2 inequalities remain valid and

facet-defining. However, we also found that “new” facets surface. We believe that lifting arguments will help

to resolve this issue.

Although not presented here, we have also tested our blending inequalities when there are multiple

blending constraints present. Specifically, suppose that the single blending constraint
∑

i∈S pixi ≥ 0 is

replaced by
∑

i∈S p
a
i xi ≥ 0,∀a ∈ A, where A is a set of attributes and pai is the purity difference for supplier

i with respect to attribute a ∈ A. We have found that applying our cuts for each attribute independently
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Data Time (sec) # Cuts # Nodes

Cap ∆bad GRB GRB+User LB LVUB GRB GRB+User

W 5 931.71 12.45 65557 281830 4176033 5627

W 15 221.64 0.61 1717 7037 962686 8

W 25 123.12 0.56 1833 8021 465171 8

W 50 63.83 0.49 1760 8063 230501 8

W 100 11.18 0.60 2084 7346 42606 38

H 5 2.11 1.57 1354 594 10382 1089

H 15 5.90 6.58 7061 1717 27501 5500

H 25 169.14 46.41 6795 4927 843040 148599

H 50 265.60 159.21 26381 3914 1028405 444680

H 100 273.77 129.75 12042 2878 1076130 372344

Table 7: Full solve information for Data Set 2

can reduce the root integrality gap by 80% on instances similar to those considered in Section 4.1. It would

be interesting to explore how our cuts perform on multi-period models as well as multi-period models with

multiple attributes.
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Appendix

In this appendix, we prove Theorem 4. The next two propositions are used in the proof of Theorem 4. Let

αi = rm
qi+rm

and (1− αi) = qi
qi+rm

,∀ i ∈ S+.

Proposition 3 The extreme points of conv(Xm−1,1) that lie in a lifted blending facet (13a) defined by the

subset T ⊆ S+ are: (
0,
∑
u∈U

eu

)
, ∀ U ⊆ S \ T (14a)(

ei, ei +
∑
u∈U

eu

)
, ∀ i ∈ T, ∀ U ⊆ S+ \ T (14b)(

αiei + (1− αi)em, ei + em +
∑
u∈U

eu

)
, ∀ i ∈ S+,∀ U ⊆ S+ \ T , (14c)

Proof By inspection. Substitute each extreme point of conv(Xm−1,1) into the lifted blending facet

defined by the subset T ⊆ S+ and verify that the facet is only satisfied at equality by the above extreme

points. �

Proposition 4 The extreme points of conv(Xm−1,1) that lie in a lifted variable upper bound facet (13b)

defined by j ∈ S+ and the subset T ⊆ Sj−1 are:(
0,
∑
u∈U

eu

)
, ∀ U ⊆ S+ \ T (15a)(

ei, ei +
∑
u∈U

eu

)
, ∀ i ∈ (S+ \ Sj−1) ∪ T, ∀ U ⊆ S+ \ (T ∪ {i}) (15b)(

αiei + (1− αi)em, ei + em +
∑
u∈U

eu

)
, ∀ i ∈ Sj ,∀ U ⊆ S+ \ (T ∪ {i}), (15c)

Proof By inspection. Substitute each extreme point of conv(Xm−1,1) into the lifted variable upper

bound facet defined by j ∈ S+ and the subset T ⊆ Sj−1 and verify that the facet is only satisfied at equality

by the above extreme points. �

Proof of Theorem 4. We show that for any cost vector (c, f) ∈ Rm×m, (c, f) 6= (0,0), the set M(c, f)

of optimal solutions to the problem max{cTx − fTy : (x,y) ∈ Xm−1,1} coincides with at least one of

the hyperplanes associated with an inequality defining P (see, e.g., Approach 6 on p.146 of [24]). Since

the inequalities defining P are all facets of conv(Xm−1,1), P is a minimal polyhedral representation of

conv(Xm−1,1). The proof, which is outlined in Figure 1, proceeds by partitioning the space of cost vectors

and by gradually eliminating cost vectors from consideration. Initially, cost vectors that lead to optimal

solutions that lie on one of the trivial or formulation facets are considered. Finally, cost vectors that lead

to the case in which we are indifferent between sending product exclusively from a single good supplier and

from a good supplier and the bad supplier are considered. The following notation will be used:

• αi = rm
qi+rm

, (1− αi) = qi
qi+rm

,∀ i ∈ S+

• gi = αici + (1− αi)cm − (fi + fm),∀ i ∈ S+

• CF = arg max{ci − fi : (x,y) ∈ Xm−1,1}
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• G = arg max{gi : (x,y) ∈ Xm−1,1}

Note that CF and G are sets, not indices. Here ci − fi denotes the cost of sending all supply exclusively

from good supplier i ∈ S+, whereas gi denotes the cost of sending a nontrivial convex combination of supply

from supplier i and the lone bad supplier m so that
∑

i∈S xi = 1 and
∑

i∈S pixi = 0. We say that gi is the

cost associated with a “blended” solution. Each bullet below corresponds to a branch in the tree presented

in Figure 1.

• If fi < 0 for some i ∈ S, then yi = 1 in every optimal solution, i.e., M(c, f) = {(x,y) ∈ Xm−1,1 : yi =

1}. Thus, we may assume that fi ≥ 0,∀i ∈ S.

• If cm < 0, then xm = 0 in every optimal solution, i.e., M(c, f) = {(x,y) : xm = 0}. Thus, we may

assume that cm ≥ 0.

• If cm = 0, then

– if ci − fi < 0 for some i ∈ S+, then xm = 0 in every optimal solution. Thus, we may assume that

ci − fi ≥ 0,∀i ∈ S+.

– if ci − fi > 0 for some i ∈ S+, then xi = 0 in every optimal solution. Thus, we may assume that

ci − fi = 0,∀i ∈ S+.

– if ci − fi = 0,∀i ∈ S+, then xi = yi in every optimal solution.

Thus, we may assume that cm > 0. In the remainder of the proof, we omit the statement “Thus, we

may assume ...” to refer to the complement case as the details are shown in the tree structure of Figure

1.

• If gj < 0,∀j ∈ G, then xm = 0 in every optimal solution.

• If ci − fi > gj ,∀i ∈ CF, ∀j ∈ G, then
∑

i∈S xi = 1 and xm = 0 in every optimal solution.

• If ci − fi < 0,∀i ∈ CF , then a “blended” solution is always optimal in which case
∑

i∈S pixi = 0 in

every optimal solution.

• Similarly, if ci − fi < gj ,∀i ∈ CF, ∀j ∈ G, then a “blended” solution is always optimal in which case∑
i∈S pixi = 0 in every optimal solution.

• If ci − fi > 0,∀i ∈ CF , then a solution in which all product is sent exclusively from a good supplier is

optimal in which case
∑

i∈S xi = 1 in every optimal solution.

• If i /∈ CF ∪G, then xi = 0 in every optimal solution.

Finally, we arrive at the last black box in Figure 1 in which we only have to consider cost vectors that

satisfy c ∈ Rm−1×R++, f ∈ Rm
+ , 0 = ci−fi = gj ,∀i ∈ CF, ∀j ∈ G;CF∪G = S+. Let F0 = {i ∈ S+ : fi = 0}

and F+ = {i ∈ S+ : fi > 0}. We now consider two cases, fm = 0 and fm > 0, and show that the former

leads to extreme points that lie on a lifted blending facet and the latter to extreme points on a lifted variable

upper bound facet.

Suppose fm = 0. Set T = CF and note that fi > 0,∀i ∈ T , i.e., T ⊆ F+. This follows since for all

k ∈ CF ∩G, 0 = ck − fk = gk implies ck = fk = cm(> 0). Similarly, for all i ∈ CF \G, we have ci = fi ≥ 0

by assumption. Suppose, to the arrive at a contradiction, that fi = 0. Since 0 > gi = αici + (1− αi)cm and
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(1−αi)cm > 0 by assumption, it must be the case that ci < 0, which is a contradiction. Then, in accordance

with Proposition 3, the following extreme points lie on the lifted blending facet defined by T :(
0,
∑
k∈U

ek

)
, ∀ U ⊆ F0 (16a)(

ei, ei +
∑
k∈U

ek

)
, ∀ i ∈ CF, ∀ U ⊆ S+ \ F+ (16b)(

αiei + (1− αi)em, ei + em +
∑
j∈U

ej

)
, ∀ i ∈ G,∀ U ⊆ S+ \ F+. (16c)

Suppose fm > 0. Set j = max{t ∈ G} and T = CF ∩ Sj−1 so that CF ⊆ (S+ \ Sj−1) ∪ T and G ⊆ Sj .

Then, in accordance with Proposition 4, the following extreme points lie on the lifted variable upper bound

facet defined by j and T ⊆ Sj−1: (
0,
∑
k∈U

ek

)
, ∀ U ⊆ F0 (17a)(

ei, ei +
∑
k∈U

ek

)
, ∀ i ∈ CF, ∀ U ⊆ S+ \ (T ∪ {i} ∪ F+) (17b)(

αiei + (1− αi)em, ei + em +
∑
k∈U

ek

)
, ∀ i ∈ G,∀ U ⊆ S+ \ (T ∪ {i} ∪ F+). (17c)

The only fact that we need to justify is that F0 ⊆ S+ \ T , or, equivalently, T ⊆ F+. Suppose, to arrive at

a contradiction, that this is not the case, i.e., that T 6= ∅ and ∃i ∈ T such that fi = 0. Then, since i ∈ CF
and fi = 0, we have ci− fi = ci = fi = 0 and 0 ≥ gi = αici + (1−αi)cm− fi− fm = (1−αi)cm− fm, which

implies that fm ≥ (1− αi)cm. Since j /∈ T by construction and 1− α1 > · · · > 1− αm−1 by assumption, we

see that fm ≥ (1− αi)cm > (1− αj)cm, or

(1− αj)cm − fm < 0 . (18)

In addition, we have cj − fj ≤ 0, which means that fj ≥ cj and

αjcj − fj ≤ 0 . (19)

It follows from inequalities (18) and (19) that

0 = gj = αjcj − fj︸ ︷︷ ︸
≤0

+ (1− αj)cm − fm︸ ︷︷ ︸
<0

< 0 , (20)

which is a contradiction. �
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c ∈ Rm, f ∈ Rm

yj = 1

∃j ∈ S : fj < 0

c ∈ Rm, f ∈ Rm
+

xm = 0

cm < 0

c ∈ Rm−1 × R+, f ∈ Rm
+

c ∈ Rm−1 × {0}, f ∈ Rm
+

xm = 0

ci − fi > 0

xi = 0

ci − fi < 0

∃i ∈ S+ : ci − fi 6= 0

xi = yi

ci − fi = 0,∀i ∈ S+

cm = 0

c ∈ Rm−1 × R++, f ∈ Rm
+

xm = 0

gj < 0,∀j ∈ G

c ∈ Rm−1 × R++, f ∈
Rm

+ , gj ≥ 0,∀j ∈ G

∑
i∈S xi = 1, xm = 0

ci − fi > gj ,∀i ∈ CF, ∀j ∈ G
c ∈ Rm−1 × R++, f ∈
Rm

+ , ci − fi ≤ gj ≥ 0,∀i ∈
CF, ∀j ∈ G

∑
i∈S pixi = 0

ci − fi < 0,∀i ∈ CF
c ∈ Rm−1 × R++, f ∈
Rm

+ , 0 ≤ ci − fi ≤ gj ,∀i ∈
CF, ∀j ∈ G

∑
i∈S pixi = 0

ci − fi < gj ,∀i ∈ CF, ∀j ∈ G
c ∈ Rm−1 × R++, f ∈
Rm

+ , 0 ≤ ci − fi = gj ,∀i ∈
CF, ∀j ∈ G

∑
i∈S xi = 1

ci − fi > 0,∀i ∈ CF
c ∈ Rm−1 × R++, f ∈
Rm

+ , 0 = ci − fi = gj ,∀i ∈
CF, ∀j ∈ G

xi = 0

i /∈ CF ∪G c ∈ Rm−1 × R++, f ∈
Rm

+ , 0 = ci − fi = gj ,∀i ∈
CF, ∀j ∈ G;CF ∪G = S+

Facet Class 1

fm = 0

Facet Class 2

fm > 0

ci − fi ≤ gj ,∀i ∈ CF, ∀j ∈ G

gj ≥ 0,∀j ∈ G

cm > 0

cm ≥ 0

fj ≥ 0,∀j ∈ S

Figure 1: Proof Outline of Theorem 4
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